
MSA220 Statistical Learning for Big
Data

Lecture 4

Rebecka Jörnsten

Mathematical Sciences
University of Gothenburg and Chalmers University of Technology

More on Discriminant analysis

More on Discriminant analysis

As mentioned in the previous lecture, one problem with LDA stems
from the instability of the estimate Σ̂ when n is small and/or p is
large and/or x-features are correlated.
Let’s look at the source of this problem in more detail.

Inverse of Σ

Consider the eigendecomposition of Σ̂ = UDU ′, where U are the
eigenvectors and U ′U = I and D is a diagonal matrix containing
the eigenvalues

d2
1 0 · · ·

0 d2
2 · · ·

.
· · · 0 d2

p

where d2

1 > d2
2 > · · ·

Inverse of Σ

We can then write the inverse as

Σ̂−1 = UD−1U ′

and plugging this into the expression for the DA rule

ĉ(x) = arg min
c

(x − µ̂c)′Σ̂−1(x − µ̂c) =

= (x − µ̂c)′UD−1U ′(x − µ̂c) =

= [U ′(x − µ̂c)]′D−1[U ′(x − µ̂c)] =

= (x̃ − µ̃)′D−1(x̃ − µ̃) =

=

p∑
j=1

(x̃j − µ̃j)2

d2
j

which is a weighted euclidean distance between x and µ in the new
coordinate system corresponding to the principal component
directions U of Σ̂.

Inverse of Σ

So LDA is really just nearest centroids in the new coordinate
system that you get by rotating the data by U and scaling it by D.
Writing Σ̂ = UDU ′ = UD1/2D1/2U ′, we have that

Σ̂−1 = UD−1/2D−1/2U ′ = Σ̂−1/2Σ̂−1/2

where we define Σ̂−1/2 = D−1/2U ′ (square root of a diagonal
matrix is just the square root of the elements).
Therefore we can write

(x − µ̂c)′Σ̂−1(x − µ̂c) = [Σ̂−1/2(x − µ̂c)]′[Σ̂−1/2(x − µ̂c)].

Inverse of Σ

The operation Σ̂−1/2 on x is called sphering the data. Why?

Cov(Σ̂−1/2X) = E [Σ̂−1/2X (Σ̂−1/2X)′] =

= E [Σ̂−1/2XX ′Σ̂−1/2] = Σ̂−1/2E [XX ′]Σ̂−1/2 = Σ̂−1/2Σ̂Σ̂−1/2 = I

I.e., in the new coordinate system X s are uncorrelated and all
features have variance 1.

Inverse of Σ

When Σ̂ is near singular, Σ̂−1 behaves poorly (or may not even
exist). The estimate is numerically unstable and small changes to
the data can lead to big change for the inverse (and thus how you
rotate the data before applying nearest centroids → poor
classification performance.
The source of the problems lie in the direction uj corresponding to
small eigenvalues dj since dj appears in the denominator in the
weighted euclidean distance computation. Small ds ”blows up” the
distance computation.
How do we fix this? The solution is to stabilize the inverse by
reducing the influence of these small eigenvalues. This is done
quite easily by simply adding something to the diagonal of Σ̂
before you take the inverse.

Inverse of Σ

Use Σ̃ = (Σ̂ + λI) and its inverse Σ̃−1 = (Σ̂ + λI)−1.
The impact of this is mainly limited to the small eigenvalues as we
can see from the following

Σ̂ + λI = UDU ′ + λI = UDU ′ + λUU ′ = U(D + λI)U ′

For large dj the contribution λ is negligible.
Using Σ̃−1 in your DA rule is called penalized DA (or regularized
DA). When λ = 0 PDA is the same as LDA. If you make λ really
big it starts to dominate the dj , ∀j which essentially means you
start ignoring the correlation and scale structure in the data (get
closer and closer to nearest centroids).

Flexible DA methods

Penalized DA addresses one problem with LDA, poor performance
due to unstable estimates of Σ̂−1 (high variance). We also need to
be concerned with potential BIAS, meaning the linear boundaries
that LDA implicitly assumes are too simplistic to separate the
classes from eachother.
One extension is then to use QDA (quadratic DA) we already
looked at. This assumes that each class has its own correlation and
scale structure. It leads to quadratic boundaries in x-space and is
quite costly in terms of the number of parameters you need to
estimate. This can reduce BIAS but lead to a large increase in
VARIANCE so the end result is little or no improvement over LDA
(or even worse performance if VARIANCE grows quickly as would
be the case for very large p).

Mixture DA

A very nice alternative to QDA that generalizes LDA to more
flexible boundaries is mixture discriminant analysis (MDA),
introduced by Hastie and Tibshirani in the mid-90s.
We make the classifier more complex by allowing each class to be
made up of many, simple components (as opposed to one complex
component as in QDA). By combining many simple shapes we can
build up quite complex shapes in x-space! Example: you can build
a donut shape in x-space with 5-6 spherical distributions.

Mixture DA

We assume the following model for each class

p(x | y = c) =
Rc∑
r=1

πcrN(x ;µcr ,Σ)

Notice

There are Rc components for class c and this may differ from
class to class

Each component has a different contribution or ”weight” in
the class distribution, πcr

Each component within and between the classes have the
same shape, Σ.

For large p, the last bullet constitutes a large savings in terms of
the number of parameters compared to QDA.

Mixture DA

As we saw before, estimating parameters in DA was relatively easy
(just computing means, proportions and covariances). Here, the
situation is more complex since we don’t actually know which
component r within class c that an observation belongs to. The
components are artificial constructs that allows to generate
complex data distribution shapes, but we don’t know anything
about them a-priori.

Mixture DA

For models like these we start by working out what we would do if
we did know about the component memberships. Then things are
just as easy as in standard DA. We would take all the observations
in each component and compute the parameter estimates:

For all classes c , compute for each component r within this
class: µ̂cr =

∑
i∈cr xi/Ncr , Ncr =

∑
i∈cr 1

π̂cr = Ncr/Nc , Nc =
∑

yi=c 1

Σ̂ =
∑C

c=1

∑Rcr
r=1(xi − µ̂cr)(xi − µ̂cr)′/(N − C)

Mixture DA

So now we know what we would do if we knew which observations
belonged to which component. Let’s ask the other hypothetical
question: what would we do if we knew all the parameters of the
class components? If we knew those we could just apply the
maximum posterior principle to classify observations at the
component level rather than the class level:

arg max
r ∈ class c

p(i ∈ component r of class c | yi = c , µcr , πcr ,Σ)

Mixture DA

To get something we can work with for the posterior we apply
Bayes theorem:

arg max
r ∈ class c

p(i ∈ component r of class c | yi = c , µcr , πcr ,Σ) =

=
πcrN(xi ;µcr ,Σ)∑Rc
l=1 πclN(xi ;µcl ,Σ)

We usually denote this posterior by ηcr (xi).

Mixture DA

Let’s put the two things together. Given a component classification
we know how to estimate the parameters, given the parameters we
know how to classify observations into the components. We simply
iterate these two steps until the results converge.
How do you start off? Usually by a random selection of center
points for each component and a nearest centroid classification.
Then you start estimating the parameters etc. You may need to
try a couple of different starting points in order to ensure
convergence to the best fitting component distribution.

Mixture DA

The above iterative scheme is a variant of the so-called EM
(Expectation-Maximization) algorithm which is a very important
tool for dealing with models that have this additional complication
- a bit of information is missing (component labels). The above
algorithm is a variant called classification EM since I classify the
observations into only one of the components.
Since the components are an artificial construct they are rarely well
separated and then one might argue that using observations only
for one component is an inefficient use of data if the components
overlap and blend into each other.

Mixture DA

The remedy for this is to use weighs in the parameter estimation
and let those weights be the component posterior probabilities for
each observation. This way, an observation can contribute to all
components within a class, just more to the component it fits best
to.
The weights are thus the ηcr (xi) we defined above.

Mixture DA

We use the weights to come up with another form for the
parameter estimates:

For all classes c , compute for each component r within this
class: µ̂cr =

∑
yi=c ηcr (xi)xi/Ncr , Ncr =

∑
yi=c ηcr (xi)

π̂cr = Ncr/Nc , Nc =
∑

yi=c

∑Rc
r=1 ηcr (xi)

Σ̂ =
∑C

c=1

∑
yi=c

∑Rcr
r=1 ηcr (xi)(xi−µ̂cr)(xi−µ̂cr)′∑

yi=c ηcr (xi)
/(N − C)

EM algorithm

The EM-algorithm is something we will come back to when we do
clustering.
Here, the E-step is the computation of the posterior probabilities
that an observation belongs to a certain component within a class.
This produces the weights ηcr (x).
The M-step is the parameter estimation step where the weights are
used to allow for observations within a class to contribute to the
estimation of all the class components.

Validation

Both PDA and MDA can be tuned to be more or less flexible/local.
For PDA, you have to choose λ just big enough that the instability
of the matrix inverse operation is surpressed (variance reduced)
without affecting the rotation of the data in the leading principal
component directions (would lead to bias).
For MDA, you have to choose the number of components for each
class just big enough so that the class shapes are adapting to the
data shape but not so big that you are adapting to random noise
in the data or don’t have enough observations to train the
component parameters on.
As always in statistics - we have to consider the bias-variance
trade-off!

Validation

Both PDA and MDA tuning parameter selection can be done via
cross-validation.
PDA:

1 Split the data into B parts

2 For b = 1, · · · ,B
For λ = 0, · · · , λmax

1 Apply PDA with value λ to all data except the b-th test data
2 Predict class labels on the b-th test data
3 Compute the test error rate TE b

λ

3 Compute the average error rate across folds b for each λ:
TEλ =

∑
b TE

b
λ/B

4 Choose the λ that minimizes this test error: λ∗ = arg minTEλ

Validation

For MDA it’s slightly more complicated since you have to consider different
number of components for each class. Let’s denote a set of component
numbers by R = (R1,R2, · · · ,RC), e.g. R = (3, 4) if you use 3 components for
class 1 and 4 components for class 4. Let’s enumerate all sets R to consider as
Rm,m = 1, · · · ,M

1 Split the data into B parts

2 For b = 1, · · · ,B
For m = 1, · · · ,M

1 Apply MDA, with component set Rm = (Rm
1 ,R

m
2 , · · · ,Rm

C), to
all data except the b-th test data

2 Predict class labels on the b-th test data
3 Compute the test error rate TE b

m

3 Compute the average error rate across folds b for each m:
TEm =

∑
b TE

b
m/B

4 Choose the m that minimizes this test error: m∗ = arg minTEm

The space of component sets to consider is quite large, but it’s usually a safe
strategy to start out small and search forward by adding one component at a
time to the class where the improvement is the biggest.

