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Classification - feature selection

Filter - select features based on some property

Wrapper - build into classification algorithm

Embedding - make selection part of the goal of the method



Classification - feature selection

Filter methods

F-test or similar (Between/Within class variation) - what if many
classes? imbalance?

information theoretic: reduction in entropy (spread) when we
condition on class label - generalization to mixed, discrete data -
but see above

Based on distances to observations with same label and average
across other labels (ReliefF) - local query.

Many variants.... careful how much they impact specific classifiers -
they are univariate selectors and make assumption about relevance.

Write your own or there are packages like FSelector (and
GeneSelector in the Bioconductor environment).



Classification - feature selection

Filter methods

Careful - most filtering methods work feature-by-feature, i.e.
univariate approach

Also - you may want to check that your top-ranked features aren’t
all separating one class from the others

You can use one-against-all and use top-ranked features from all
such comparisons - or do postprocessing on tests for all-pair
comparisons

Pro: very fast and simple and scales up easily.

Con: filter is not connected to the learning process so may not pick
features that work for the method you intend to use

Tuning: Mainly filtering is used to reduce the dimension of the
problem and this would be followed by some feature selection that is
more advanced.

... but you can certainly use CV to pick the number of filtered
features to use.



Classification - feature selection

Wrapper methods

Incorporate selection into the classification method - e.g. by
evaluating performance as function of selection.

How search for set to evaluate? All-subset = expensive,
Forward/backward = greedy, hybrid/random = needs many
iterations

RFE (recursive feature estimation) is a kind of wrapper - sometimes
refers to backward selection and in other cases to a backward
elimination based on variable importance.

Implemented in caret for a few methods but not all. Backward
selection is not a difficult wrapper to write yourselves though.



Classification - feature selection

Embedding

Introduce a penalty on the number of features used - that’s a hard
selection problem...

... which we make practical by using sparsity constraints on
feature-specific coefficients: L1-penalty (lasso, and variants
thereof)!

For Mini3 - the L1-penalized logistic regression can be investigated
(package glmnet - also in caret). Also all the regularized
discriminant methods we’ve looked at.

First a brief introduction to L1-penalized modeling.



Intro - penalized regression

We want to fit a regression model to our data using least squares.

y = Xβ + ε

y is our n × 1 vector of outcome data

X is our n × p design matrix

ε is our n × 1 vector with additive errors.

For convenience, assume centered and standardized data.

Is this OK?
Reality check: 5 basic assumptions, scatter plots,....
TRANSFORMATIONS! ID EXTREME OUTLIERS!



Regularized regression

When p is large or covariates in X are correlated, it is a tricky
business to fit regression via OLS.
Why?

minβ ||y − Xβ||2 has closed form solution

(X ′X )−1X ′y

IF the inverse of X ′X exists.

Not true if p > n. Inverse unstable if some covariates
extremely correlated.



Regularized regression

What do we do?

Reduce the number of covariates - prefiltering

PCA of X and use only leading components.

Partial least squares (more later)

Regularized regression



Ridge regression

Regularization: To supress variance (due to instability of inverse of
X ′X ), be willing to accept some bias!

Ridge regression:

(X ′X + λI )−1X ′y

If X ′X = I , this estimate βR = βOLS/(1 + λ) so biased but
with lower variance

If X s are correlated, ridge regression shrinkage acts mostly on
the directions with lower eigenvalues which correspond to the
high variance estimates!

See regression notes (MVE190/MSG500) for more on this.



Ridge regression

An alternative formulation of the ridge regression problem through
penalized least squares.
We want to minimize

||y − Xβ||2

subject to ||β||22 ≤ τ
I.e., try to minimize least squares but don’t let the average β get
too big...

Lagrangian formulation: minβ
1
2 ||y − Xβ||2 + λ||β||22

Take derivatives with respect to β

−X ′(y − Xβ) + λβ = 0

Solution βR = (X ′X + λI )−1X ′y

Choose λ to make sure condition τ holds or more commonly,
choose λ via Cross-validation



Ridge regression

Pros and Cons?

Pro: easy!

Pro: can write other types of penalties here as well λβ′Ωβ to
penalize βs in a desired way

Con: bias biggest for large coefficients

Con: full model always returned since βR may become very
small but never exactly 0.



Lq-penalized regression

We can adress the growing bias and the lack of model interpretability using a
different kind of penalty.

L0: minβ ||y − Xβ||2 + λ
∑p

j=1 1{βj 6= 0}
Lq: minβ ||y − Xβ||2 + λ

∑p
j=1 |βj |

q

L1: minβ ||y − Xβ||2 + λ
∑p

j=1 |βj |
L1: minβ ||y − Xβ||2 + λ

∑p
j=1 β

2
j

Fraction q < 1, q = 1 and q = 2



Lq-penalized regression

q = 0 is the penalty that corresponds to optimal model selection, we only
count the number of variables included in the model.
Pro: no bias. Con: since the penalty is non-convex it is very difficult to work
with.
q = 1 is the smallest q that provides a convex penalty AND has the nice
property of performing selection.
Why?
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Because the L1 penalty has ”singularities” (points) this makes the selection of
solutions at those points more likely.
We will see this by solving the problem mathematically too, but think of this as
the penalty region extremes being the most likely to lead to a solution that is
optimal for the loss (model fit).
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L1-penalized regression

1

2
||y − Xβ||2 + λ||β||1

Consider first the special case X ′X = I .

1

2
y ′y − y ′Xβ +

1

2
β′β + λ||β||1 = ∗ ∗ ∗

Take derivatives with respect to βj :

∂ ∗ ∗∗
∂βj

= −x ′j y + βj + λνj

where

νj =

{
sign(βj) if βj 6= 0
{νj : |νj | ≤ 1} if βj = 0

(1)



L1-penalized regression

∂ ∗ ∗∗
∂βj

= −x ′j y + βj + λνj

where

νj =

{
sign(βj) if βj 6= 0
{νj : |νj | ≤ 1} if βj = 0

(2)

So if βj > 0, this is β̂j = x ′j y − λ and if βj < 0 this is β̂j = x ′j y + λ.
There is a conflict between the assumed sign and the solution if
|x ′j y | < λ. Note, x ′j y = β̂LSj for this special case X ′X = I .
Solution:

β̂j =


βLSj − λ if βLSj > λ

βLSj + λ if βLSj < −λ
0 if |βLSj | < λ

(3)

This is called the Soft Thresholding operation, ST and we write

β̂j = ST (x ′j y , λ)



L1-penalized regression

What about the general case? We can’t solve this with a
closed-form expression. But there are tons of ways of solving this,
numerically and iteratively.
We will look more into this in the upcoming lecture.
What does L1-penalties give us?

Biased estimates → adaptive lasso, SCAD next lecture
If λ = o(n), then βl1−pen → βtrue as n→∞
If λ ∝ n1/2 L1-pen has a non-zero probability of identifying
the true model (model selection consistency) (Knight and Fu,
2000)
BUT if many of the non-relevant variables are correlated with
the relevant variables, L1-pen regression may fail to select the
true model even if n is large.
We need the Irrepresentable condition to hold

|(X ′1X1)−1(X ′2X2)| < 1− η
where X1 are the irrelevant and X2 the relevant variables.
(Zhao and Yu, 2006)



Regularized Discriminant Analysis

We already talked about one particular kind of penalized DA: when
we used the inverse of Σ̂W + λI to rotate/sphere our data.
Last lecture we saw that discriminant analysis could also be
formulated as a regression problem which means you could do
feature selection at the regression step via e.g. lasso.
This method, and variants on the same theme, is called sparse
discriminant analysis. sparseLDA package



Regularized Discriminant Analysis

Several methods have been proposed for regularizing the
within-covariance estimates.

In QDA we can penalize each individual within-class
covariance toward a common covariance (LDA)

We can regularize the common within-class covariance toward
a diagonal matrix (RDA)

We can assume that the within-covariance matrix is diagonal
(naive bayes)

We can use a ridge-penalized estimate of the covariance
matrix (PDA)



NB and Shrunken centroids

A special case of Naive Bayes is to replace the within-covariance
estimate by its diagonal component.
This means we assume that features are independent.
In high-dimensional settings this tends to work quite well! The
classifier now works on each variable at a time

k(i) = arg min
l

p∑
j=1

(xij − µlj)2

σ2l

where k(i) is the optimal class for observation i .
Tibshirani et al (2002) proposed we not use all the variables for
classification.

Shrink the class means (centroids) toward a common value
(after standardizing by the within-class standard deviation)

We can regularize the common within-class covariance toward
a diagonal matrix (RDA)

We can assume that the within-covariance matrix is diagonal
(naive bayes)



Shrunken centroids

Use a diagonal covariance estimate diag(Σ + s20 I ) (where a
small s0 is used to avoid having really small standard
deviations in the denominator later on)

Compute for each variable j

t∗kj =
µ̂kj − µ̂j

mk(sj + s0)

where µ̂j is the overall mean for variable j , sj = Σ̂jj and

mk =
√

1
nk

+ 1
n

Apply a soft-threshold to t∗kj : tkj = ST (t∗kj ,∆)

Define µskj = µj + mk(sj + s0)tkj

Use these shrunken centroids in your classifier!

pamr package



SC-RDA

In 2005, Guo et al, proposed a combination of RDA and shrunken
centroids

We can use the SC method to shrink the centroids, either in
the original data space

or in the rotated data space!

arg mink(x − µsk)′Σ̂−1R (x − µsk)

rda package



Mini3

Choose one of the following topics via the doodle. On real and/or
simulated data:

1 Imbalanced data?: Investigate the impact of imbalanced class sizes
and try out some of the up/downsampling methods (e.g. SMOTE).

2 Filter vs Method: Filtering is easy to apply and to scale up - but is
it favoring some methods over others? Try 2-3 filtering methods
and 2-3 methods - do you see any combinations that are better than
others and if so can you think of a reason why?

https://doodle.com/poll/x4zuucbyykfimh3y


Mini3

3 Wrapper - Selection accuracy: How well do the wrappers do? On
simulated data and real data - which features are picked? How
much does the search type matter (backward, forward, random,
exhaustive). The mlr package has many different search strategies
(check makeFeatSelControl... for more info).

4 Wrapper vs Method: Which methods benefit most from feature
reduction?



Mini3

5 Embedding - selection accuracy: On simulated data - check how
well embedding methods work (glmnet for penalized methods, but
you can also try other methods if you like). Sample size effect?
Number of classes? etc.

6 Many classes How well do the wrappers/filters work if you have
many classes in your data set? Two-class problems vs K-class
problem. Is feature selection more difficult when you have many
classes?

7 Unrelated/Correlated features Investigate the feature selection
problem in the context of unrelated features and correlated features.
Here, you can have correlated between relevant feature, between
unrelated features, between related and unrelated features, etc.




