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High-Dimensional Discriminant Analysis
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We propose a new discriminant analysis method for high-dimensional data, called
High-Dimensional Discriminant Analysis (HDDA). Our approach is based on
the assumption that high-dimensional data live in different subspaces with low
dimensionality. We therefore propose a new parameterization of the Gaussian model
which combines the ideas of dimension reduction and constraints on the model.
This parameterization takes into account the specific subspace and the intrinsic
dimension of each class to limit the number of parameters to estimate. In addition, it
is possible to make additional assumptions on the model to further limit the number
of parameters. Our experiments on artificial and real datasets highlight that HDDA
is more efficient than classical methods in high-dimensional spaces and with small
learning datasets.

Keywords Class-specific subspaces; Discriminant analysis; High-dimensional
data; Regularization.

Mathematics Subject Classification 62H25; 62H30

1. Introduction

Many scientific domains need to analyze data which are increasingly complex.
For example, medical research, financial analysis, and computer vision provide
high-dimensional data. Classifying such data is a challenging problem since the
performance of classification methods suffers from the curse of dimensionality,
first introduced by Bellman (1957), i.e., both classification accuracy and efficiency
decrease rapidly in high dimensions. We therefore propose a new parameterization
of the Gaussian model to classify high-dimensional data. This parameterization
takes into account the specific subspace and the intrinsic dimension of each class
to limit the number of parameters to estimate. In order to further limit the number
of parameters, it is possible to make additional assumptions on the model and
this gives rise to several particular models. We can, for example, assume that the
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classes are spherical in their subspaces or fix some parameters to be common
between classes. A regularized discriminant analysis method for high-dimensional
data is derived based on these models. This method is called High-Dimensional
Discriminant analysis (HDDA). The article is organized as follows. Section 2
presents the discrimination problem and existing methods to regularize discriminant
analysis in high-dimensional spaces. Section 3 introduces the theoretical framework
of HDDA and Sec. 4 is devoted to the inference aspects. Our method is then
compared to classical methods on artificial and real datasets in Sec. 5.

2. Discriminant Analysis Framework

In this section, we describe the general framework of the discrimination problem
and present existing approaches of discriminant analysis in high-dimensional spaces.

2.1. Discrimination Problem

The goal of discriminant analysis is to assign an observation x ∈ �p with unknown
class membership to one of k classes C1� � � � � Ck known a priori. For learning,
we have a dataset A = ��x1� c1�� � � � � �xn� cn�/xj ∈ �p and cj ∈ �1� � � � � k��, where the
vector xj contains p components of explanatory variables and cj indicates the index
of the class of xj . The optimal decision rule, called Bayes decision rule, assigns
the observation x to the class Ci∗ which has the maximum a posteriori probability.
This is equivalent to minimize a cost function Ki�x�, i.e., i

∗ = argmini=1�����kKi�x�,
with Ki�x� = −2 log��i fi�x��� where �i is the a priori probability of class Ci and
fi�x� denotes the class conditional density of x, ∀i = 1� � � � � k. For instance, Linear
Discriminant Analysis (LDA) and Quadratic Discriminant Analysis (QDA) rely on
the assumption that fi�x� is a Gaussian density. An overview on this topic can be
found in the book of McLachlan (1992). In this article, we focus on discriminant
analysis methods based on Gaussian mixture models.

2.2. Dimension Reduction and Parsimonious Models

The majority of existing methods shows a disappointing behavior when the size of
the training dataset is too small compared to the number of parameters to estimate
which grows with the square of the dimension. On one hand, the direct application
of standard discrimination method to high-dimensional data fails because of the
singularity of the covariance matrices. Krzanowski et al. (1995) present a method
to augment the covariance matrix such that it retains its major characteristics and
becomes non singular. On the other hand, it is necessary to reduce the number of
parameters to avoid overfitting. This is possible by either reducing the dimension
of the data or by using a parsimonious model with additional assumptions on the
model.

• Dimension Reduction. Many methods use global dimension reduction
techniques to overcome problems due to high dimensionality. A widely used
solution is to reduce the dimensionality of the data before using a classical
discriminant analysis method. Dimension reduction can be done using
Principal Components Analysis (PCA) or a variable selection technique,
see, respectively, Jolliffe (1986) and Guyon and Elisseeff (2003) for further
details. It is also possible to reduce the data dimension for classification
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purposes by using Fisher Discriminant Analysis (FDA) which projects the
data on the �k− 1� discriminant axes and then classifies the projected data.
The dimension reduction is often advantageous in terms of performance but
loses information which could be discriminant due to the fact that most
approaches are global and not designed for classification. Flury et al. (1997)
proposed a discrimination method which uses dimension reduction for the
purpose of classification by assuming that all differences between two classes
occur in a low-dimensional subspace.

• Parsimonious Models. Another solution is to use a model which requires
the estimation of fewer parameters. The parsimonious models most often
used assume a Gaussian model with a common covariance matrix for all
classes (used in LDA), i.e., ∀i, �i = �, or diagonal covariance matrices,
i.e., �i = diag�	i1� � � � � 	ip�. Other approaches propose new parameterizations
of the Gaussian model in order to find different parsimonious models.
For example, the method proposed by Friedman (1989), called Regularized
Discriminant Analysis (RDA), uses two regularization parameters to
design an intermediate classifier between QDA and LDA. The Eigenvalue
Decomposition Discriminant Analysis (EDDA), proposed by Bensmail and
Celeux (1996), is based on a re-parameterization of the covariance matrices
of the classes in their eigenspace. A survey on discriminant analysis
regularization can be found in Mkhadri et al. (1997).

3. High-Dimensional Discriminant Analysis

The above-mentioned methods do not always allow to solve efficiently the problem
of high dimensionality because the data usually contain clusters which are hidden
in different subspaces of the original feature space. The empty space phenomenon,
first noticed by Scott and Thompson (1983), allows us assume that high-dimensional
data live in low-dimensional subspaces. We will therefore propose in this section
a new parameterization of the Gaussian model which combines a local linear
subspaces approach and a parsimonious model.

3.1. Definitions and Assumptions

Similar to classical discriminant analysis, we assume that class conditional densities
are Gaussian � �
i� �i�, ∀i = 1� � � � � k. Let Qi be the orthogonal matrix of the
eigenvectors of �i, then �i = Qt

i �i Qi is a diagonal matrix containing the eigenvalues
of �i. We further assume that �i has the following form:

�i =



ai1 0
� � �

0 aidi

0

0

bi 0
� � �

0 bi



 di

 �p− di�

where aij ≥ bi, for j = 1� � � � � di and di < p. The class-specific subspace �i is
generated by the di first eigenvectors corresponding to the eigenvalues aij with
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i ∈�i. Outside this subspace, the variance is modeled by the single parameter bi.
In addition, we respectively define the projection operators of x on �i and �⊥

i :

Pi�x� = Q̃iQ̃
t
i�x − 
i�+ 
i� (1)

P⊥
i �x� = QiQ

t

i�x − 
i�+ 
i (2)

where Q̃i is made of the di first columns of Qi supplemented by zeros and
Qi =Qi − Q̃i. Figure 1 summarizes these notations. This model will be referred in
the following by �aijbiQidi.

3.2. Decision Rule

Deriving the Bayes decision rule with the model �aijbiQidi described in the
previous section yields the decision rule of High-Dimensional Discriminant Analysis
(HDDA).

Theorem 3.1. Bayes decision rule yields the decision rule of HDDA which classifies x
as the class Ci∗ such that i∗ = argmini=1�����k�Ki�x�� where Ki is defined by:

Ki�x� = �
i − Pi�x��2�i
+ 1

bi
�x − Pi�x��2 +

di∑
j=1

log�aij�+ �p− di� log�bi�− 2 log��i��

(3)

where � · ��i
is a norm on �i such that �x�2�i

= xt�ix with �i = Q̃i�
−1
i Q̃t

i .

Figure 1. The subspaces �i and �⊥
i of the class Ci.
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We can observe that this new decision rule is mainly based on two distances:
the distance between the observation and the subspace �i, and the distance between
the projection of x on �i and the mean of the class. It also depends on the variances
aij and bi and on the a priori probability �i. This rule is easily understood because
it is natural to assign a new observation to the class for which it is close to the
subspace and for which its projection on the class subspace is close to the mean
of the class. The variances aij and bi balance the importance of both distances.
For example, if the data are very noisy, i.e., bi is large, it is natural to balance the
distance �x − Pi�x��2 by 1/bi in order to take into account the large variance in
�⊥

i . This rule allows a straightforward interpretation of the classification results,
whereas other methods, such as Support Vectors Machine or logistic regression (see
Hastie et al., 2001), provide results which are difficult to understand. Note that
the decision rule of HDDA does not use the projection on �⊥

i and thus requires
only the estimation of the di first columns of Qi. This reduces significantly the
number of parameters to estimate. For example, if we consider 100-dimensional
data, made of 4 classes and with common intrinsic dimensions di equal to 10,
HDDA estimates only 4,231 parameters whereas QDA estimates 20,603 parameters.
In addition, the fact of not using the projection �⊥

i prevents numerical problems
due to the singularity of covariance matrices. Finally, the a posteriori probability
��x∈Ci � x�, which measures the probability that x belongs to Ci and allows to
identify dubiously classified points, can be written as follows:

��x ∈ Ci�x� = 1/
k∑

�=1

exp
(
1
2
�Ki�x�− K��x��

)
�

3.3. A Family of Models Designed for High-Dimensionality

By fixing some of the HDDA parameters to be common between classes, we
obtain 28 different models (including the model �aijbiQidi) which correspond to
different types of regularization, some of them having geometrically interpretable
decision rule. For instance, if we fix the di first eigenvalues aij to be common
within each class, we obtain the more restricted model �aibiQidi. In the following,
“free Qi” means that Qi is specific to the class Ci and “common Qi” means that
for each i = 1� � � � � k, Qi = Q and consequently the class orientations are the same.
We split this family of models designed for high dimensionality into three categories:
models with free orientations, models with common orientations, and models with
common covariance matrices. Several models with common orientations require a
complex iterative estimation based on the FG algorithm of Flury and Gautschi
(1986) and therefore they will not be considered here. Table 1 summarizes the
properties of these models. The second column of this table gives the number of
parameters to estimate. The third column provides the asymptotic order of the
number of parameters to estimate (with the assumption k � d � p). The fourth
column gives this number for the particular case k = 4, p = 100, and ∀i� di = 10.
The last column indicates whether the estimators are closed form or not. These
values are also given for QDA, LDA, and the model ��kBk of EDDA. We can
observe that all HDDA models require the estimation of a number of parameters
lower than both QDA and LDA. In addition, some particular cases of HDDA
correspond to classical discriminant analysis. For example, if di = �p− 1�, for
i= 1� � � � � k, then HDDA reduces to QDA. Moreover, if aij = aj , bi = b and Qi = Q,
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Table 1
Properties of the HDDA models: � = kp+ k− 1 is the number of parameters

required for the estimation of means and proportions, �̄ =∑k
i=1 di�p− �di + 1�/2

and � = d�p− �d + 1�/2 are the number of parameters required for the estimation
of Q̃i and Q̃, and D =∑k

i=1 di. For asymptotic orders, we assume that k � d � p.
CF means that the ML estimates are closed form. IP means that the

ML estimation needs an iterative procedure. FG means that the ML estimation
requires the iterative FG algorithm

Number of Asymptotic Nb of prm for k = 4, ML
Model parameters order p = 100 and d = 10 estimation

�aijbiQidi �+ �̄+ 2k+D kpd 4231 CF
�aijbQidi �+ �̄+ k+D + 1 kpd 4228 CF
�aibiQidi �+ �̄− 3k kpd 4195 CF
�abiQidi �+ �̄+ 2k+ 1 kpd 4192 CF
�aibQidi �+ �̄+ 2k+ 1 kpd 4192 CF
�abQidi �+ �̄+ k+ 2 kpd 4189 CF
�aijbiQid �+ k��+ d + 1�+ 1 kpd 4228 CF
�ajbiQid �+ k��+ 1�+ d + 1 kpd 4198 CF
�aijbQid �+ k��+ d�+ 2 kpd 4225 CF
�ajbQid �+ k�+ d + 2 kpd 4195 CF
�aibiQid �+ k��+ 2�+ 1 kpd 4192 CF
�abiQid �+ k��+ 1�+ 2 kpd 4189 CF
�aibQid �+ k��+ 1�+ 2 kpd 4189 CF
�abQid �+ k�+ 3 kpd 4186 CF
�aijbiQdi �+ �+D + 2k pd 1396 FG
�aijbQdi �+ �+D + k+ 1 pd 1393 FG
�aibiQdi �+ �− 3k pd 1360 FG
�aibQdi �+ �+ 2k+ 1 pd 1357 FG
�abiQdi �+ �+ 2k+ 1 pd 1357 FG
�abQdi �+ �+ k+ 2 pd 1354 FG
�aijbiQd �+ �+ kd + k+ 1 pd 1393 FG
�ajbiQd �+ �+ k+ d + 1 pd 1363 FG
�aijbQd �+ �+ kd + 2 pd 1390 FG
�aibiQd �+ �+ 2k+ 1 pd 1357 IP
�abiQd �+ �+ k+ 2 pd 1354 IP
�aibQd �+ �+ k+ 2 pd 1354 IP
�ajbQd �+ �+ d + 2 pd 1360 CF
�abQd �+ �+ 3 pd 1351 CF
QDA �+ kp�p+ 1�/2 kp2/2 20603 CF
LDA �+ p�p+ 1)/2 p2/2 5453 CF
EDDA ��kBk �+ kp kp 803 CF

for i = 1� � � � � k, then HDDA reduces to LDA. Furthermore, the regularized method

proposed by Flury et al. (1997) is equivalent to HDDA with the model �aijbQd and

an additional assumption on the means.
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4. Parameters Estimation

The parameters of HDDA are estimated using the maximum likelihood (ML)
estimation technique based on the learning dataset A. In the following, parameters
�i, 
i, and �i of the class Ci are estimated by their empirical counterparts:

�̂i =
ni

n
� 
̂i =

1
ni

∑
xj∈Ci

xj� �̂i =
1
ni

∑
xj∈Ci

�xj − 
̂i�
t�xj − 
̂i��

where ni = card�Ci�. We also introduce the following notations: � =∑k
i=1 �̂idi is the

average dimension of the class-specific subspaces, Ŵ =∑k
i=1 �̂i�̂i is the empirical

estimate of the within-covariance matrix, �ij is the jth largest eigenvalue of �̂i and
�j is the jth largest eigenvalue of Ŵ . We first present the estimators of HDDA
parameters and then those of intrinsic dimensions. Proofs of following results are
given in the Appendix.

4.1. Models with Free Orientations

The following three propositions provide closed form estimators for the
model parameters.

Proposition 4.1. The di first columns of Qi are estimated by the eigenvectors associated
with the di largest eigenvalues �ij of �̂i.

Proposition 4.2. Model �aijbiQidi: The estimator of aij is âij = �ij and the estimator

of bi is the mean of the �p− di� smallest eigenvalues of �̂i and can be written as follows:

b̂i =
1

�p− di�

(
tr��̂i�−

di∑
j=1

�ij

)
� (4)

Model �aijbQidi: The estimator of aij is âij = �ij and the estimator of b is:

b̂ = 1
�p− ��

(
tr�Ŵ �−

k∑
i=1

�̂i

di∑
j=1

�ij

)
� (5)

Model �aibiQidi: The estimator of bi is given by (4) and the estimator of ai is:

âi =
1
di

di∑
j=1

�ij� (6)

Model �abiQidi: The estimator of bi is given by (4) and the estimator of a is:

â = 1
�

k∑
i=1

�̂i

di∑
j=1

�ij� (7)

Model �aibQidi: The estimators of ai and b are, respectively, given by (6) and (5).
Model �abQidi: The estimators of a and b are, respectively, given by (7) and (5).
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Proposition 4.3. The estimators of the models with common dimensions di can be
obtained from those of Proposition 4.2 by replacing the values di by d, for each
i= 1� � � � � k. In this case, Eqs. (5) and (7) can be simplified as:

â = 1
d

d∑
j=1

�j� (8)

b̂ = 1
�p− d�

(
tr�Ŵ �−

d∑
j=1

�j

)
� (9)

Model �ajbiQid: The estimator of aj is âj = �j and the estimator of bi is given by (4).
Model �ajbQid: The estimator of aj is âj = �j and the estimator of b is given by (9).

4.2. Models with Common Orientations

Here, we assume that the orientations and the dimensions are common between
classes. The following propositions both give rise to an iterative scheme for
estimating the parameters.

Proposition 4.4. Given ai and bi, the d first columns of Q are estimated by the
eigenvectors associated to the d largest eigenvalues of the matrix M defined by:

M�a1� � � � � ak� b1� � � � � bk� =
k∑

i=1

ni

(
1
bi

− 1
ai

)
�̂i�

Proposition 4.5. Model �aibiQd: Given Q, the estimator of ai and bi are:

âi�Q� = 1
d

d∑
j=1

qt
j�̂iqj� (10)

b̂i�Q� = 1
�p− d�

(
tr��̂i�−

d∑
j=1

qt
j�̂iqj

)
� (11)

Model �aibQidi: Given Q, the estimator of ai is given by (10) and the estimator of b is:

b̂�Q� = 1
�p− d�

(
tr�Ŵ �−

d∑
j=1

qt
jŴqj

)
� (12)

Model �abiQd: Given Q, the estimator of bi is defined by (11) and the estimator of a is:

â�Q� = 1
d

d∑
j=1

qt
jŴqj� (13)

Model �aibQd: Given Q, the estimators of ai and b are, respectively, given by (10)
and (12).

The estimators of these models require an iterative estimation procedure.
For example, it is possible to use the following iterative procedure for the
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model �aibiQd:

• Initialization: The d first columns of Q�0� are the eigenvectors associated with
the d largest eigenvalues of Ŵ .

• Until convergence: a���
i = âi�Q

��−1��, b���i = b̂i�Q
��−1��, and the d first columns

of Q��� are the eigenvectors associated to the d largest eigenvalues of
M�a

���
i � b

���
i �, for i = 1� � � � � k.

4.3. Models with Common Covariance Matrices

For this category of models, the parameters can be estimated in closed form.

Proposition 4.6. The d first columns of the matrix Q are the eigenvectors associated
to the d largest eigenvalues of Ŵ .

Proposition 4.7. Model �ajbQd: The estimator of aj is âj = �j and the estimator of b
is given by (9).

Model �abQd: The estimator of a and b are, respectively, given by (8) and (9).

4.4. Estimation of the Intrinsic Dimension

The estimation of the dataset intrinsic dimension is a difficult problem which does
not have an explicit solution. If the dimensions di are common between classes,
i.e., di = d for i = 1� � � � � k, we can determine the dimension d by cross-validation,
i.e., by maximizing the correct classification rate on the learning dataset. Otherwise,
we use an approach based on the eigenvalues of the class conditional covariance
matrix �̂i. The jth eigenvalue of �̂i corresponds to the fraction of the full variance
carried by the jth eigenvector of �̂i. We therefore propose to estimate dimensions
di with the empirical method “scree-test” of Cattell (1966). For each class, the
selected dimension di is the one for which the difference between the two subsequent
eigenvalues is smaller than a given threshold t. The threshold t is found by cross-
validation on the learning dataset. We also compared the scree-test of Cattell to
the probabilistic criterion BIC proposed by Schwarz (1978) and we obtained similar
choices of dimension.

5. Numerical Results

In this section, we present results for artificial and real datasets illustrating the
main features of HDDA. They show the influence of the dimensionality and of the
size of the learning dataset on the behavior of classification methods. We refer to
our previous work, Bouveyron et al. (2005), for an application of HDDA to the
recognition of object classes in natural images. In following experiments, HDDA
will be compared to four classical methods: QDA, LDA, EDDA, and PCA+ LDA.
For EDDA, we used the model ��kBk which is recommended by the authors.
PCA + LDA reduces the dimension to 15 with PCA and then applies standard
LDA. A numerical regularization was necessary in order to inverse the covariance
matrices in the methods QDA, LDA, and EDDA so that they are able to work with
data of dimension larger than 50.
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5.1. Simulation Study

For this experiment, we simulated three Gaussian densities in �p, p = 15� � � � � 100,
according to the model �aibiQidi with the following parameters: �d1� d2� d3� =
�2� 5� 10�, ��1� �2� �3� = �0�4� 0�3� 0�3�, �a1� a2� a3� = �150� 75� 50�, �b1� b2� b3� =
�10� 10� 10�, and with close means and random Qi. The learning and the test
datasets are respectively made of 250 and 1,000 points. The performance of
methods is measured by the average classification rate computed on 50 replications.
Firstly, Fig. 2 shows that data dimensionality does not influence the performance
of HDDA and that it is very close to the performance of the Bayes decision rule
(computed with the true densities). In addition, HDDA provides a classification rate
similar to QDA in low dimensions. QDA is known to be very sensitive to the data
dimensionality and, indeed, gives bad results in high-dimensional spaces. LDA is
more robust to dimensionality, but cannot correctly find the class specific subspaces
and therefore provides poor classification results. LDA is also penalized by the
data dimensionality for dimensions larger than 60. The dimension reduction allows
PCA+LDA to have a constant performance according to the data dimensionality
but does not allow to improve over LDA results. Finally, the model ��kBk of
EDDA does not suffer from the curse of the dimensionality, but provides results
which are worse than HDDA. This is certainly due to the fact that the model ��kBk
of EDDA is too parsimonious. To summarize, HDDA is not sensitive to the
dimensionality and works very well in low- and in high-dimensional spaces. HDDA
seems to have the right number of degrees of freedom since it outperforms methods
requiring a higher number of parameters (QDA, LDA) and a method requiring a
smaller number of parameters (model ��kBk of EDDA).

Figure 2. Influence of the dimensionality on classification results obtained with HDDA
and classical methods on an artificial dataset.
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Figure 3. Some examples of the USPS dataset used for the OCR experiment.

5.2. Real Data Study

Figure 4 presents results for optical character recognition (OCR) on the USPS
dataset available at www.kernel-machines.org. We dispose of 7,291 images for
learning and 2,007 images for testing. The data are divided into 10 classes and each
digit is a 16× 16 grey level image, represented as a 256-dimensional vector. Figure 3
show some examples of the USPS dataset. In order to show the influence of the size
of the learning dataset on classification results, we successively used an increasing
part of the learning set to classify the test dataset. The performance of methods is
measured by the average classification rate computed on 50 replications. Figure 4
highlights that HDDA works very well compared to the other methods when
the size of the learning dataset is small. We can also observe that the dimension
reduction step allows PCA + LDA to improve recognition results and to work with
small learning datasets. Table 2 presents the classification results obtained with
some HDDA models on the USPS dataset. These experiments illustrate that HDDA
provides very satisfying performances in high-dimensional space and with small
learning datasets. In addition, among all HDDA models, the models with common
bi seem particularly efficient.

Figure 4. Influence of the size of the learning dataset on classification results obtained with
HDDA and classical methods on a real dataset (USPS digits).
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Table 2
Classification results for some HDDC

models on the USPS dataset

Model Classification rate

�aijbiQidi 92.63
�aijbQidi 93.67
�aibiQidi 92.78
�aibQidi 93.72
�abQidi 93.17
�aijbiQid 92.83
�aijbQid 94.77
�aibiQid 92.83
�aibQid 94.57
�abQid 94.52

6. Conclusion

In this article we introduce a new parameterization of the Gaussian model
appropriate for classifying high-dimensional data in a supervised framework. Based
on this model, we derive a regularized discriminant analysis technique, called
High-Dimensional Discriminant Analysis. The decision rule of HDDA is easy
to interpret since it takes into account the distance to the class mean and the
distance to the subspace. Experimental results confirm that HDDA works very well
in high-dimensional spaces and with small learning datasets. A natural extension
of this work is to use the same Gaussian model in the context of unsupervised
classification.

A. Appendix

A.1. The Decision Rule

Proof of Theorem 3.1. We derive the Bayes decision rule for the Gaussian model
presented in section. Writing fi with the new class conditional covariance matrix �i,
we obtain:

−2 log�fi�x�� = �x − 
i�
t�Qi�iQ

t
i�

−1�x − 
i�+ log�det�i�+ p log�2���

Given the structure of �i and using the relations Qi = Q̃i +Qi, Q̃iQ̃
t
iQ̃i = Q̃i and

QiQ
t

iQi = Qi, we obtain:

−2 log�fi�x�� = �Q̃t
iQ̃i�x − 
i��2�i

+ 1
bi
�Qt

iQi�x − 
i��2 + log�det�i�+ p log�2���
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where � · ��i
is a norm on �i such that �x�2�i

= xt�ix and with �i = Q̃i�
−1
i Q̃t

i . Using
the definitions of Pi and P⊥

i and in view of Fig. 1, we obtain:

−2 log�fi�x�� = �
i − Pi�x��2�i
+ 1

bi
�x − Pi�x��2 + log�det�i�+ p log�2���

The relation log�det�i� =
∑di

j=1 log�aij�+ �p− di� log�bi� concludes the proof. �

A.2. Parameters Estimation

Lemma A.1. First of all, we introduce the following useful formulation of the log-
likelihood:

−2 log�L� =
k∑

i=1

ni

p∑
j=1

(
log��ij�+

1
�ij

qt
ij�̂iqij

)
+ cst� (14)

where �ij is the jth diagonal coefficient of �i and qij is the jth column of Qi.

We refer to Flury (1984) for a demonstration of this result.

Proof of Proposition 4.1. The log-likelihood is to be maximized under the
constraint qt

ijqij = 1, which is equivalent to finding a saddle point of the Lagrange
function:

� = −2 log�L�−
p∑

j=1

�ij�q
t
ijqij − 1��

where �ij are the Lagrange multipliers. Using the expression (14) of the log-
likelihood, the gradient of � with respect to qij is:

�qij
� = 2

ni

�ij
�̂iqij − 2�ijqij�

and by multiplying this quantity on the left by qt
ij , we obtain:

qt
ij�qij

� = 0 ⇔ �ij =
ni

�ij
qt
ij�̂iqij �

Consequently, �̂iqij = �ij�ij
ni

qij and thus qij is the eigenvector of �̂i associated with the

eigenvalue �ij = �ij�ij
ni

= qt
ij�̂iqij . As the vectors qij are eigenvectors of the symmetric

matrix �̂i, this implies that qt
ijqi� = 0 if j 
= �. The log-likelihood can therefore be

re-written as follows:

−2 log�L� =
k∑

i=1

ni

(
di∑
j=1

(
log�aij�+

�ij

aij

)
+

p∑
j=di+1

(
log�bi�+

�ij

bi

))
+ cst�
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and, using the relation
∑p

j=di+1 �ij = tr��̂i�−
∑di

j=1 �ij , we obtain:

−2 log�L� =
k∑

i=1

ni

(
di∑
j=1

log�aij�+ �p− di� log�bi�+
tr��̂i�

bi
+

di∑
j=1

(
1
aij

− 1
bi

)
�ij

)
+ cst�

(15)

Thus, minimizing −2 log�L� with respect to �ij is equivalent to minimizing
the quantity

∑k
i=1 ni

∑di
j=1�

1
aij

− 1
bi
��ij . Since � 1

aij
− 1

bi
� < 0, ∀j = 1� � � � � di, �ij must

therefore be as larger as possible. Thus, the column vector qij , ∀j = 1� � � � � di, is
estimated by the eigenvector associated to the jth largest eigenvalue of �̂i. �

Proof of Proposition 4.2. Model �aijbiQidi: starting from Eq. (15), the partial
derivative of −2 log�L� with respect to aij and bi are:

−2
� log�L�
�aij

= ni

(
1
aij

− �ij

a2
ij

)
and − 2

� log�L�
�bi

= ni�p− di�

bi
− ni

b2i

(
tr��̂i�−

di∑
j=1

�ij

)
�

The condition � log�L�
�aij

= 0 implies that âij = �ij and the condition � log�L�
�bi

= 0
implies (4).

Model �aijbQidi: The partial derivative of −2 log�L� with respect to b is:

−2
� log�L�

�b
= n�p− ��

b
− 1

b2

k∑
i=1

ni

(
tr��̂i�−

di∑
j=1

�ij

)
�

and the condition � log�L�
�b

= 0 proves (5).
Model �aibiQidi: From (15), the partial derivative of −2 log�L� with respect to

ai is:

−2
� log�L�

�ai

= nidi

ai

− ni

a2
i

di∑
j=1

�ij�

and the condition � log�L�
�ai

= 0 implies (6).
Model �abiQidi: The partial derivative of −2 log�L� with respect to a is:

−2
� log�L�

�a
= n�

a
− 1

a2

k∑
i=1

ni

di∑
j=1

�ij�

and the condition � log�L�
�a

= 0 gives (7). �

Proof of Proposition 4.3. Model �ajbiQid: the partial derivative of −2 log�L� with
respect to aj is:

−2
� log�L�

�aj

= n

aj

− 1

a2
j

k∑
i=1

ni�ij�

The condition � log�L�
�aj

= 0 and the relation
∑k

i=1 ni�ij = n�j imply that âj = �j . �
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Proof of Proposition 4.4. Starting from the likelihood expression of Lemma A.1, we
can write:

−2 log�L� =
k∑

i=1

ni

d∑
j=1

(
log�ai�+

1
ai

qt
j�̂iqj

)
+

k∑
i=1

ni

p∑
j=d+1

(
log�bi�+

1
bi
qt
j�̂iqj

)
+ cst�

=
k∑

i=1

ni�d log�ai�+ �p− d� log�bi��+
d∑

j=1

qt
jAqj +

p∑
j=d+1

qt
jBqj + cst�

where A =∑k
i=1

ni
ai
�̂i and B =∑k

i=1
ni
bi
�̂i. Note that

∑p
j=d+1 q

t
jBqj can be written using

the trace of B:
∑p

j=d+1 q
t
jBqj = tr�B�−∑d

j=1 q
t
jBqj . This yields:

−2 log�L� =
k∑

i=1

ni�d log�ai�+ �p− d� log�bi��−
d∑

j=1

qt
j�B − A�qj + tr�B�+ cst� (16)

Consequently, the gradient of� = −2 log�L�−∑p
j=1 �j�q

t
jqj − 1�with respect to qj is:

�qj
� = −2�B − A�qj − 2�jqj�

where �j is the jth Lagrange multiplier. The relation �qj
� = 0 is equivalent to �B −

A�qj = −�jqj which means that qj is eigenvector of the matrix �B − A�. In order to
minimize the quantity −2 log�L�, the d first columns of Q must be the eigenvectors
associated with the d largest eigenvalues of �B − A�. �

Proof of Proposition 4.5. Model �aibiQd: Starting from Eq. (16), the partial
derivatives of −2 log�L� with respect to ai and bi are:

−2
� log�L�

�ai

= nid

ai

− ni

a2
i

d∑
j=1

qt
j�̂iqj and

−2
� log�L�

�bi
= ni�p− d�

bi
− ni

b2i

(
tr��̂i�−

d∑
j=1

qt
j�̂iqj

)
�

The condition � log�L�
�ai

= 0 gives (10) and � log�L�
�bi

= 0 gives (11).
Model �aibQd: The partial derivative of −2 log�L� with respect to b is:

−2
� log�L�

�b
= n�p− d�

b
− n

b2

(
tr�Ŵ �−

d∑
j=1

qt
jŴqj

)
�

and the condition � log�L�
�b

= 0 implies (12).
Model �abiQd: The partial derivative of −2 log�L� with respect to a is:

−2
� log�L�

�a
= nd

a
− n

a2

d∑
j=1

qt
jŴqj�

and the condition � log�L�
�a

= 0 implies (13).
�
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Proof of Proposition 4.6. The log-likelihood can be written as follows:

−2 log�L� = n

(
d∑

j=1

log�aj�+ �p− d� log�b�+ tr�Ŵ �

b
+

d∑
j=1

(
1
aj

− 1
b

)
qt
jŴqj

)
+ cst�

The gradient of � = −2 log�L�−∑p
j=1 �j�q

t
jqj − 1� with respect to qj is:

�qj
� = 2n

(
1
aj

− 1
b

)
Ŵqj − 2�jqj�

where �j is the jth Lagrange multiplier. The relation �qj
� = 0 implies that qj is

eigenvector of Ŵ . In order to minimize −2 log�L�, the first columns of Q must be
the eigenvectors associated to the d largest eigenvalues of Ŵ . �

Proof of Proposition 4.7. Model �ajbQd: The partial derivatives of −2 log�L� with
respect to aj and b are:

−2
� log�L�

�aj

= n

aj

− n

a2
j

qt
jŴqj and − 2

� log�L�
�b

= n�p− d�

b
− n

b2

p∑
j=d+1

qt
jŴqj�

The condition � log�L�
�ai

= 0 implies that âj = �j . The combination of the condition
� log�L�

�b
= 0 with the relation

∑p
j=d+1 �j = tr�Ŵ �−∑d

j=1 �j gives the estimator of b.
Model �abQd: The partial derivatives of −2 log�L� with respect to a is:

−2
� log�L�

�a
= nd

a
− n

a2

d∑
j=1

qt
jŴqj�

and the condition � log�L�
�a

= 0 implies that â = 1
d

∑d
j=1 �j and concludes the proof. �
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