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1 Rayleigh quotient

1.1 The basic Rayleigh quotient
The Rayleigh quotient for a symmetric matrix A ∈ ℝp×p is a useful computational
tool. It is de�ned for vectors 0 ≠ x ∈ ℝp as

J(x) = xTAx
xTx

. (1.1)

Note that it is enough to normalize x and calculate the Rayleigh quotient for the
normalized vector since

J(x) = xTAx
xTx

=
‖x‖2

‖x‖2
xTAx
xTx

=

x
‖x‖

T
A x

‖x‖

x
‖x‖

T x
‖x‖

= x
‖x‖

T
A x
‖x‖ . (1.2)
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One says the Rayleigh quotient is scale-invariant. A common task is to �nd the x̂
that maximizes the Rayleigh quotient, i.e.

x̂ = argmax
x

xTAx
xTx

. (1.3)

As noted above the Rayleigh quotient is scale-invariant. Therefore, for any solution
x̂ of the maximization problem in Eq. (1.3) the vector c ⋅ x̂for arbitrary c ∈ ℝ is a
solution as well. To restrict the space of possible solutions we require that ‖x̂‖ = 1.
This results in the optimization problem

max
x

xTAx subject to xTx = 1. (1.4)

The Lagrangian (optimization course) of this problem is

L(x) = xTAx − �(xTx − 1) (1.5)

where � is a Lagrange multiplier. We want to �nd a maximum of L(x) and � will be
determined along the way. The gradient of L(x) with respect to x is

)L(x)
)x = Ax − �x (1.6)

and setting Eq. (1.6) equal to 0 leads to

Ax = �x. (1.7)

Since x ≠ 0 this is an eigenvalue equation and � has to be one of p eigenvalues of
A. Using Eq. (1.7) in our original optimization problem Eq. (1.4) gives

max
x, ‖x‖=1

xTAx = max
x, ‖x‖=1
Ax=�x

�xTx = max
x, ‖x‖=1
Ax=�x

� (1.8)

The optimization problem is therefore solved by an eigenvector x ofAwith ‖x‖ = 1
such that the corresponding eigenvalue � is maximal among all eigenvalues of A.
Note that there are always two solutions to this problem. For every x with ‖x‖ = 1
maximizing the Rayleigh quotient, the �ipped vector −x is a solution with ‖x‖ = 1
as well.

Note that since A is real and symmetric, a theorem from linear algebra guarantees
the existence of p real eigenvalues.

1.2 A more general Rayleigh quotient
A variant of the Rayleigh quotient assumes that there are two symmetric matrices
A,B ∈ ℝp×p where B is positive de�nite1. The Rayleigh quotient is then de�ned
for 0 ≠ x ∈ ℝp as

J(x) = xTAx
xTBx

. (1.9)

1i.e. all eigenvalues are positive, xTBx > 0 for all x ≠ 0 and B is invertible. Therefore, the numerator
of the Rayleigh quotient is non-zero and positive as long as x ≠ 0.
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As before J(x) is invariant to scaling of x and to make the optimization problem
uniquely solvable (up to inverting the direction of the solution over the origin) we
need to �xate a scaling. From linear algebra we know that there exists an orthogonal
matrix2 U ∈ ℝp×p and a diagonal matrix3 D ∈ ℝp×p such that B = UDUT . De�ne
D1∕2 = diag(

√
Dii , i = 1, … , p) and B1∕2 = UD1∕2UT , then B1∕2B1∕2 = B4.

In the previous section, we required to �x the scaling

‖x‖ = xTx = 1. (1.10)

This is very convenient for the applications below and it led for the numerator of
the Rayleigh quotient to be one which made the proof above simpler. However, this
is not equally convenient here since we have xTBx in the numerator. We therefore
require

‖B1∕2x‖ = xTBx = 1, (1.11)

which leads to the optimization problem

max
x

xTAx subject to xTBx = 1. (1.12)

Note that this is equivalent to solving

max
x

xTAx
xTBx

subject to xTx = 1 (1.13)

since for every solution x̂ to Eq. (1.13) the vector z = x̂∕‖B1∕2x̂‖ also maximizes
the Rayleigh quotient with zTBz = 1 and is therefore a solution to Eq. (1.12). On
the other hand, every solution x̂ to Eq. (1.12) is a solution to Eq. (1.13) by setting
z = x̂∕‖x̂‖.

Using a Lagrangian, calculating its gradient and setting it to zero (as above for the
basic Rayleigh quotient) leads to

Ax = �Bx (1.14)

This is called a generalized eigenvalue problem for the symmetric matrices A and
B. Using B1∕2 as above we get

(
B−1∕2AB−1∕2

) (
B1∕2x

)
= �

(
B1∕2x

)
(1.15)

De�ningw = B1∕2x results in
(
B−1∕2AB−1∕2

)
w = �w (1.16)

2UUT = UTU = In
3The eigenvalues ofU are on the diagonal.
4Note that there was a similar construct in the lecture. A inverse covariance matrix �−1 was written

as �−1 = RD−1RT . With the de�nition �−1∕2 ∶= D−1∕2RT it holds that
(
�−1∕2

)T
�−1∕2 = �−1. Note that

there is a transpose and above we are simply multiplying the “square root” matrices.
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which is an eigenvalue problem for the symmetric matrixB−1∕2AB−1∕2. This matrix
is guaranteed to have p real-valued eigenvalues and corresponding eigenvectorswi
for i = 1, … , p. Note that the rank of this matrix is determined by the rank of A
since B−1∕2 is invertible. The original generalized eigenvectors x can be recovered
through

x = B−1∕2w. (1.17)

By using Eq. (1.14) in the original optimization problem in Eq. (1.12), show that this
more general variant of the Rayleigh quotient is maximized for the vector x such
thatB−1∕2x is an eigenvector of thematrixB−1∕2AB−1∕2 corresponding to its largest
eigenvalue �.

2 Principal component analysis (PCA)
When we have quantitative data, a natural choice of coordinate system is one where
the axes point in the directions of largest variance and are orthogonal to each other.
It is also natural to sort these in descending order, since most information will be
gained by observing the most variable direction. Assume we have a data matrix
X ∈ ℝn×p with rows xTi . To determine the �rst principal component we are looking
for a direction r1 (a unit vector, i.e. ‖r1‖ = 1) in which the variance ofX is maximal.
De�ne si = rT1xi , which is the coe�cient of xi projected onto r1. The variance in
the direction of r1 is

n∑

i=1
(si − s)2 =

n∑

i=1

(
rTi (xi − x)

)2
(2.1)

where x is the mean over all observations. We want to �nd r1 such that the variance
in Eq. (2.1) becomes maximal. Note that

n∑

i=1

(
rT(xi − x)

)2 =
n∑

i=1
rT(xi − x)(xi − x)Tr

= rT
n∑

i=1
(xi − x)(xi − x)Tr

= (n − 1) rT�̂r

(2.2)

where �̂ is the empirical covariancematrix of the data. Since �̂ is a symmetricmatrix
and it is required that ‖r‖ = 1,maximizing Eq. (2.2) is equivalent to solving the basic
Rayleigh quotient maximisation problem in Section 1. It therefore follows that r1
is an eigenvector of �̂ corresponding to its largest eigenvalue �1. Since we required
r1 to be of length one, this problem is solved uniquely up to sign (i.e. −r1 is also a
solution). Note especially that the variance of the si , that we tried to maximize in
the original problem (Eq. (2.1)) is equal to �1.

Assume we have found the �rstm− 1 < p principal components r1, … , rm−1 corre-
sponding to the eigenvalues �1 ≥ … ≥ �m−1 of �̂. From linear algebra we know that
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a square matrix P is an orthogonal projection matrix if

P2 = P = PT . (2.3)

Projecting a vector onto r1, … , rm−1 is accomplished by the orthogonal projection
matrix

P =
m−1∑

i=1
rirTi (2.4)

Another property of orthogonal projection matrices is that I − P is an orthogonal
projection matrix onto the orthogonal complement of the subspace that P was pro-
jecting on, i.e. I − P1 is a projection matrix onto the space of vectors which are
orthogonal to r1, … , rm−1.

Project the data into this space, after having found the �rstm − 1 principal compo-
nents, i.e. de�ne

Xm−1 = X
⎛
⎜
⎝
Ip −

m−1∑

i=1
rirTi

⎞
⎟
⎠

(2.5)

and

�̂m−1 =
XT
m−1Xm−1
n − 1 =

⎛
⎜
⎝
Ip −

m−1∑

i=1
rirTi

⎞
⎟
⎠

T

�̂
⎛
⎜
⎝
Ip −

m−1∑

i=1
rirTi

⎞
⎟
⎠
. (2.6)

The new data matrix is constant (no variance) along the directions of r1, … , rm−1.
Finding the most variable direction now means to solve

max
r
rT�̂m−1r subject to rTr = 1. (2.7)

This is solved by an eigenvector rm of �̂m−1 corresponding to its largest eigenvalue
�m, i.e. �̂m−1rm = �mrm. It turns out that for i = 1, … ,m − 1

rTmri =
1
�m

rTm�̂m−1ri

= 1
�m

rTm
⎛
⎜
⎝
Ip −

m−1∑

j=1
rjrTj

⎞
⎟
⎠

T

�̂
⎛
⎜
⎝
Ip −

m−1∑

j=1
rjrTj

⎞
⎟
⎠
ri

⏟⎴⎴⎴⎴⏟ ⎴⎴⎴⎴⏟
=0

= 0 (2.8)
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as well as
�mrm = �̂m−1rm

=
⎛
⎜
⎝
Ip −

m−1∑

j=1
rjrTj

⎞
⎟
⎠

T

�̂
⎛
⎜
⎝
Ip −

m−1∑

j=1
rjrTj

⎞
⎟
⎠
rm

=
⎛
⎜
⎝
Ip −

m−1∑

j=1
rjrTj

⎞
⎟
⎠
�̂rm

= �̂rm −
m−1∑

j=1
rj rTj �̂rm

⏟⏟⏟
=�jrTj rm=0

= �̂r2

(2.9)

which shows that rm is orthogonal to r1, … , rm−1 and an eigenvector of �̂. In addi-
tion, since �1 ≥ … ≥ �m−1 are them − 1 largest eigenvalues of �̂, it must hold that
�m−1 ≥ �m.

As a procedural way of calculating the PCA of a data matrix X ∈ ℝn×p, one has to
follow the following steps

1. Centre and standardize the columns of the data matrix X (the variables)

2. Calculate the empirical covariance matrix

�̂ = 1
n − 1X

TX (2.10)

3. Determine the eigenvalues �i for i = 1, … , p of �̂ and a set of p corresponding
orthonormal eigenvectors ri such that

�̂ri = �iri , ‖ri‖ = 1, i = 1, … , p and rTi rj = 0, i ≠ j (2.11)

as well as
�1 ≥ �2 ≥ … ≥ �p (2.12)

4. Set
R =

(
r1, … , rp

)
∈ ℝp×p and D = diag(�1, … , �p) (2.13)

so that
�̂ = RDRT (2.14)

5. The vectors ri are the principal component directions, the projections rTi x
are called principal components and the corresponding eigenvalues �i are the
variance of the data in the direction of the principal component.
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PCA can be used to reduce the dimension of the data. Since the principal compo-
nents account for less variance in every step, it is possible that there is little infor-
mation in the last principal components. An important result from linear algebra
is that for a matrix A ∈ ℝp×p with eigenvalues �1, … , �p it holds that

tr(A) =
p∑

i=1
�i . (2.15)

The empirical covariance matrix has the variance of each variable on its diagonal
and therefore

tr
(
�̂
)
=

p∑

i=1
s2(X⋅i) =

p∑

i=1
�i , (2.16)

where X⋅i is the i-th column of the data matrix and s2 is the empirical variance. If
the variables are standardized then s2(X⋅i) = 1 for all i and therefore tr

(
�̂
)
= p.

This means in particular that the mean of the eigenvalues will be 15. A typical crite-
rion for considering a principal component as important is that the corresponding
eigenvalue is larger than the mean of all eigenvalues (in case of standardised data:
larger than one). A tool for the analysis of the information behind the principal
components is a scree plot. In a scree plot, the eigenvalues (variances) are plotted as
a function of the index of the principal components. It is a way to quickly see how
many principal components are of interest.

3 Singular value decomposition (SVD)
The singular value decomposition (SVD) of a matrix X ∈ ℝn×p, n ≥ p, splits the
data matrix into a product of three matrices

X = UDVT (3.1)

where U ∈ ℝn×p has orthonormal columns, D ∈ ℝp×p is a diagonal matrix, and
V ∈ ℝp×p is an orthogonal matrix. Note that

UTU = Ip and VVT = VTV = Ip (3.2)

Note that if n > p it cannot hold that UUT = In 6. The matrix D is diagonal and
contains the singular values di . These are typically sorted such that di+1 ≤ di .

The orthogonality properties in Eq. (3.2) can now be used to derive the following
equations

XXTU = UDVTVDUTU = UD2

XTXV = VDUTUDVTV = VD2 (3.3)

5∑p
i=1 �i∕p = 1

6A set of maximally p vectors can be linearly independent inℝp and the equation above would imply
that n > p vectors in ℝp are orthogonal and thus linearly independent.
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Since D is a diagonal matrix, this reduces the problem of determiningU and V to
solving a series of eigenvalue problems

XXTui = d2i ui and XTXvi = d2i vi , i = 1, … , p (3.4)

Since n ≥ p, thematrixXTX ∈ ℝp×p is as large as or smaller thanXXT ∈ ℝn×n. It is
therefore more computationally e�ective to calculateV by solving the p eigenvalue
problems in Eq. (3.4) and then arrive atU by projecting the observations inX on the
space spanned by the columns of V and scaling them by the inverse of the singular
values, i.e.

U = XVD−1. (3.5)

Note that this approach requires that there are no singular values equal to zero
(which is allowed and possible in general).

For n < p the SVD can still be calculated. Note that the SVD can be calculated
as above for XT ∈ ℝp×n. We get matrices V ∈ ℝp×n (orthonormal columns), a
diagonal matrix D ∈ ℝn×n, andU ∈ ℝn×n (orthogonal matrix) such that

XT = VDUT . (3.6)

By transposing again we get
X = UDVT . (3.7)

Note that this timeU is square and V is rectangular.

3.1 SVD and PCA
The SVD of a datamatrixX ∈ ℝn×p is usually used to calculate the principal compo-
nents in the data. Assume that n ≥ p for now. Assume that the variables in X have
been centred and scaled. Note that the empirical covariance matrix of X is

�̂ = XTX
n − 1. (3.8)

Using the SVD of X = UDVT this leads to

�̂ = 1
n − 1VDU

TUDVT = V ( 1
n − 1D

2)VT . (3.9)

Comparing this with an orthogonal decomposition of a symmetric real matrix, we
get that the eigenvalues of �̂ are on the diagonal of the matrix D2∕(n − 1), and the
columns of V are the corresponding eigenvectors. This determines the principal
components and the corresponding variance explained by each component.

For n < p the calculations above work out the same, however, V is not a square
matrix any longer. The interpretation of eigenvalues and principal components still
holds up since

�̂V = V ( 1
n − 1D

2) (3.10)

but note that the eigenvalues �n+1, … , �p are zero.
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3.2 SVD and dimension reduction
When using SVD for dimension reduction, we want to reduce the number of vari-
ables. Therefore we want to �nd a subspace ofℝp of dimension q ≤ min(n, p) such
that the projections of the observations into this subspace are as similar to the orig-
inal observations in the Euclidean norm as possible, i.e. the objective is to �nd a
subspace Ŝ ⊂ ℝp, such that

Ŝ = argmin
S

n∑

i=1
‖xi − PSxi‖22 (3.11)

where PS is the orthogonal projection of ℝp onto the subspace S. Note that

n∑

i=1
‖xi − PSxi‖22 =

n∑

i=1
(xi − PSxi)

T (xi − PSxi)

=
n∑

i=1

[
xTi xi − 2xTi PSxi + x

T
i P

T
SPSxi

]

=
n∑

i=1

[
xTi xi − x

T
i P

T
SPSxi

]

=
n∑

i=1

[
‖xi‖22 − ‖PSxi‖22

]

(3.12)

This shows that minimizing the squared distance between the observations and
their projections on the subspace is equivalent to maximizing the squared length of
the projected vectors7. Let’s start by looking for the best one-dimensional subspace
S1. Every one-dimensional vector space is spanned by a vector r1 andwe can assume
that ‖r1‖2 = 1. The projection matrix onto a one-dimensional vector space is P =
r1rT1 and thus we are trying to maximize

n∑

i=1
‖r1rT1xi‖

2
2 =

n∑

i=1
(rT1xi)

2

= rT1 (
n∑

i=1
xixTi ) r1

= (n − 1)rT1 �̂r1

(3.13)

The term we are maximizing is the Rayleigh quotient and therefore the optimal
subspace is spanned by r1, the eigenvector of �̂ with the largest corresponding
eigenvalue. So the optimal one-dimensional sub-space that is closest to the data
is spanned by the �rst principal component, which is also the �rst column of the
matrix V in the SVD of X.

7Since
∑n

i=1 ‖xi‖
2
2 is a constant given a dataset. The only object we can control is the subspace we

project into and therefore we can only change
∑n

i=1 ‖PSxi‖
2
2.
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Similar arguments as for PCA lead to the conclusion that the best q-dimensional
subspace to approximate the data in is the space spanned by the �rst q principal
component directions, which are also the �rst q columns in thematrixV in the SVD
ofX. Note that forn < p the data ismaximallyn dimensional andany approximating
subspace must therefore have dimension < n.

3.3 SVD and orthogonal components
Another interpretation of SVD is that it describes a method to describe the data
as a structure of orthogonal components. Let ui ∈ ℝn be the columns of U and
vi ∈ ℝmin(n,p) the columns of V. Then

X = UDVT =
min(n,p)∑

i=1
diuivTi . (3.14)

Each matrix uivTi is of rank 1 and these matrices are scaled by the singular values
di . As we have seen above in Section 3.2, the optimal q ≤ min(n, p) subspace to
approximate X is spanned by the �rst q columns of V and the projection on that
subspace is

Pq =
q∑

i=1
vivTi . (3.15)

ProjectingX on this optimalq-dimensional subspace using the projection inEq. (3.15)
and the representation in Eq. (3.14) leads to

Xq = XPq =
⎛
⎜
⎝

min(n,p)∑

i=1
diuivTi

⎞
⎟
⎠

⎛
⎜
⎝

q∑

j=1
vjvTj

⎞
⎟
⎠
=

q∑

i=1
diuivTi . (3.16)
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So projecting the data into this optimal q-dimensional subspace simply means to
only keep components 1 to q. The approximation error in Frobenius norm8 is

‖X − Xq‖2F =
‖‖‖‖‖‖‖‖‖‖

min(n,p)∑

i=q+1
diuivTi

‖‖‖‖‖‖‖‖‖‖

2

F

= tr
⎡
⎢
⎢
⎣

⎛
⎜
⎝

min(n,p)∑

i=q+1
diuivTi

⎞
⎟
⎠

T
⎛
⎜
⎝

min(n,p)∑

j=q+1
djujvTj

⎞
⎟
⎠

⎤
⎥
⎥
⎦

= tr
⎡
⎢
⎣

min(n,p)∑

i,j=q+1
didjviuTi uiv

T
j
⎤
⎥
⎦

= tr
⎡
⎢
⎣

min(n,p)∑

i,j=q+1
didjvivTj

⎤
⎥
⎦

=
min(n,p)∑

k=1

min(n,p)∑

i,j=q+1
didjvikvjk

=
min(n,p)∑

i,j=q+1
didj

min(n,p)∑

k=1
vikvjk

=
min(n,p)∑

i,j=q+1
didj 1(i = j) =

min(n,p)∑

i=q+1
d2i

(3.17)

3.4 SVD and regression
In addition to dimension reduction andeasy determination of the optimalq-dimensional
approximation to the data, SVD can also be a useful tool in regression.

Recall the linear regression problemwith response vectory ∈ ℝn and designmatrix
X ∈ ℝn×(p+1), where we adopt the convention that the �rst column of X is a vector
of 1’s to encode the intercept. The variable y is modelled as

y = xT� + " (3.18)

where x ∈ ℝp+1 is a vector of predictors with x1 = 1 and � ∈ ℝp+1 are the regres-
sion coe�cients. The variable " is the error and typically one assumes that

" ∼ Normal(0, �2) (3.19)

for some (possibly unknown) variance �2. A solution to the regression model can
be found with least squares, i.e. solving

min
�∈ℝp+1

‖y − X�‖22 (3.20)

8This is a matrix norm de�ned by ‖X‖2F =
∑n

i=1
∑n

j=1 x
2
ij
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The solution to the least squares problem is given by

�̂ =
(
XTX

)−1 XTy, (3.21)

which requires n ≥ p for the inversion to be possible. The SVD of X = UDVT can
be plugged into this equation to arrive at

�̂ =
(
VDUTUDVT)−1VDUTy

=
(
VD2VT)−1VDUTy

= VD−2VTVDUTy
= VD−1UTy

(3.22)

The expression
X+ =

(
XTX

)−1 XT = VD−1UT (3.23)

is called the Moore-Penrose pseudo-inverse of X. While it is therefore possible to
obtain a least squares solution through SVD, there are other simpler algorithms (e.g.
QR decomposition) which are preferable.

The �tted values for y are then

ŷ = X�̂ = UDVTVD−1UTy = UUTy. (3.24)

Note that UUT is an orthogonal projection matrix, projecting y onto the column
space ofU.

For ridge regression the problem to be solved is

min
�∈ℝp

‖y − X�‖22 + �‖�‖22 (3.25)

for some � ≥ 0. Assume that the response y and the columns of X are centred. The
solution is given by

�̂ =
(
XTX + �Ip

)−1 XTy. (3.26)

Using the SVD of X = UDVT leads to

�̂ = V
(
D2 + �Ip

)−1DUTy =
p∑

i=1

di
d2i + �

viuTi y. (3.27)

It can be seen that � can lead to stability in the calculation of the fractions di∕(d2i +�).
If di is small, the fraction would become big if � = 0. Increasing lambda decreases
themagnitude of the fractions and increases numerical stability. Also, an increase in
� decreases the in�uence of each term in the same and therefore shrinks coe�cients
towards 0.
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