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1 Rayleigh quotient

1.1 The basic Rayleigh quotient

The Rayleigh quotient for a symmetric matrix A € RP*P is a useful computational
tool. It is defined for vectors 0 # x € R? as

xT Ax
xTx

J(x) = (1.1)

Note that it is enough to normalize x and calculate the Rayleigh quotient for the
normalized vector since
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One says the Rayleigh quotient is scale-invariant. A common task is to find the ¥
that maximizes the Rayleigh quotient, i.e.

xTAx

X = arg max (1.3)

X xTx

As noted above the Rayleigh quotient is scale-invariant. Therefore, for any solution
X of the maximization problem in Eq. (1.3) the vector ¢ - Xfor arbitrary c € R is a
solution as well. To restrict the space of possible solutions we require that ||x]| = 1.
This results in the optimization problem

max xTAx subjectto xTx=1. (1.4)
X
The Lagrangian (optimization course) of this problem is
L(x) =xTAx — 2(xTx - 1) (1.5)

where A is a Lagrange multiplier. We want to find a maximum of L(x) and 4 will be
determined along the way. The gradient of L(x) with respect to x is

aL_(x) =Ax — Ax (1.6)
ox
and setting Eq. (1.6) equal to 0 leads to
Ax = 1x. (1.7)

Since x # 0 this is an eigenvalue equation and 4 has to be one of p eigenvalues of
A. Using Eq. (1.7) in our original optimization problem Eq. (1.4) gives

max x’Ax = max Ax'x= max A (1.8)
x, ||x[|=1 x, ||x||=1 x, [|x||=1
Ax=1x Ax=1x

The optimization problem is therefore solved by an eigenvector x of A with ||x|| = 1
such that the corresponding eigenvalue 4 is maximal among all eigenvalues of A.
Note that there are always two solutions to this problem. For every x with ||x|| =1
maximizing the Rayleigh quotient, the flipped vector —x is a solution with ||x|| =1
as well.

Note that since A is real and symmetric, a theorem from linear algebra guarantees
the existence of p real eigenvalues.

1.2 A more general Rayleigh quotient

A variant of the Rayleigh quotient assumes that there are two symmetric matrices

A, B € RPXP where B is positive definite'. The Rayleigh quotient is then defined

for0 # x € RP as

_xTAx
xTBx’
lie. all eigenvalues are positive, xTBx > 0 for all x # 0 and B is invertible. Therefore, the numerator

of the Rayleigh quotient is non-zero and positive as long as x # 0.

J(x)

(1.9)




As before J(x) is invariant to scaling of x and to make the optimization problem
uniquely solvable (up to inverting the direction of the solution over the origin) we
need to fixate a scaling. From linear algebra we know that there exists an orthogonal
matrix’ U € RP*P and a diagonal matrix® D € RP*P such that B = UDU . Define
D'/2 = diag(\/Dy;,i = 1, ..., p) and B'/2 = UD'/2UT", then B'/2B'/? = B*.

In the previous section, we required to fix the scaling
x|l = xTx = 1. (1.10)

This is very convenient for the applications below and it led for the numerator of
the Rayleigh quotient to be one which made the proof above simpler. However, this
is not equally convenient here since we have x” Bx in the numerator. We therefore
require

|B/?x|| = x"Bx = 1, 1.11)

which leads to the optimization problem

max x’ Ax subjectto x"Bx =1. (1.12)
X

Note that this is equivalent to solving

T

X' Ax .
max —— subjectto x

T
x=1 1.13
x xIBx ( )

since for every solution % to Eq. (1.13) the vector z = X/||B!/2%]| also maximizes
the Rayleigh quotient with z Bz = 1 and is therefore a solution to Eq. (1.12). On
the other hand, every solution X to Eq. (1.12) is a solution to Eq. (1.13) by setting
z=x/||x|.

Using a Lagrangian, calculating its gradient and setting it to zero (as above for the
basic Rayleigh quotient) leads to

Ax = ABx (1.14)

This is called a generalized eigenvalue problem for the symmetric matrices A and
B. Using B'/2 as above we get

(B~1/2AB7/?) (B'/?x) = 1 (B'/?x) (1.15)
Defining w = B/?x results in

(B12AB71?)w = 1w (1.16)

2uuT =UTU =1,

3The eigenvalues of U are on the diagonal.

“Note that there was a similar construct in the lecture. A inverse covariancei matrix X! was written
as=~! = RD'R”. With the definition £71/2 := D=1/2R" it holds that (£7/2)" £7/2 = 1. Note that
there is a transpose and above we are simply multiplying the “square root” matrices.



which is an eigenvalue problem for the symmetric matrix B-'/2AB~1/2. This matrix
is guaranteed to have p real-valued eigenvalues and corresponding eigenvectors w;
fori = 1,..., p. Note that the rank of this matrix is determined by the rank of A
since B~1/2 is invertible. The original generalized eigenvectors x can be recovered
through

x = B /2w, (1.17)

By using Eq. (1.14) in the original optimization problem in Eq. (1.12), show that this
more general variant of the Rayleigh quotient is maximized for the vector x such
that B~1/2x is an eigenvector of the matrix B—'/2AB~1/2 corresponding to its largest
eigenvalue A.

2 Principal component analysis (PCA)

When we have quantitative data, a natural choice of coordinate system is one where
the axes point in the directions of largest variance and are orthogonal to each other.
It is also natural to sort these in descending order, since most information will be
gained by observing the most variable direction. Assume we have a data matrix
X € R™P with rows xiT. To determine the first principal component we are looking
for a direction r; (a unit vector, i.e. ||r;|| = 1) in which the variance of X is maximal.
Define s; = r!x;, which is the coefficient of x; projected onto r. The variance in

1
the direction of r; is

S =92 =3 (T — %)’ @1)
i=1 i=1

where X is the mean over all observations. We want to find r; such that the variance
in Eq. (2.1) becomes maximal. Note that

ST (x - %) = (- X — D)
i=1 i=1

=rT Y (-0 -0 2)
i=1

=(m-1Dr'Sr

where £ is the empirical covariance matrix of the data. Since £ is a symmetric matrix
and itis required that ||r|| = 1, maximizing Eq. (2.2) is equivalent to solving the basic
Rayleigh quotient maximisation problem in Section 1. It therefore follows that r;
is an eigenvector of £ corresponding to its largest eigenvalue 4. Since we required
r, to be of length one, this problem is solved uniquely up to sign (i.e. —r; is also a
solution). Note especially that the variance of the s;, that we tried to maximize in
the original problem (Eq. (2.1)) is equal to 4;.

Assume we have found the first m — 1 < p principal components ry, ..., r,,_; corre-
sponding to the eigenvalues 1, > ... > A,,_; of X. From linear algebra we know that



a square matrix P is an orthogonal projection matrix if
pPl=p=pT (2.3)

Projecting a vector onto r, ..., r,,_; is accomplished by the orthogonal projection

matrix
m—1

P= rl-rl.T (2.4)
i=1
Another property of orthogonal projection matrices is that I — P is an orthogonal
projection matrix onto the orthogonal complement of the subspace that P was pro-
jecting on, i.e. I — P; is a projection matrix onto the space of vectors which are
orthogonal to rq, ... , ¥y 1.

Project the data into this space, after having found the first m — 1 principal compo-
nents, i.e. define

m—1
Xy =X|I,— ), rirl (2.5)
i=1
and
T m—1 g m—1
X X — ~
a —1*m-1 -~
Sl = mnT =1, > " | E[1,- > | (2.6)
i=1 i=1

The new data matrix is constant (no variance) along the directions of ry, ..., ;-
Finding the most variable direction now means to solve

maxr’S,,_,r subjectto rir=1. (2.7)
r

This is solved by an eigenvector r,, of £,,_; corresponding to its largest eigenvalue
Ay i€ ¥y = APy It turns out that fori =1,...,m -1

PN

1

l—r mam—1Vi

m

1 m—1 g m—1 (2 8)

/1— rjro |1, - rerT ri=0 :
j=1 j=1




as well as

m—1 m—1
_ _ AN _ T
=1, rr; 21, riri |Tm
Jj=1 Jj=1
m—1
=\|I,— rrl |Sr
p i¥; m (2.9
Jj=1
m—1
=Sr, — r; riSr
m J j m
Jj=1 N———
=/1jr;rm=0

which shows that r,, is orthogonal to r, ..., r,,,_; and an eigenvector of $. In addi-
tion, since 1; > ... > 4,,_; are the m — 1 largest eigenvalues of Z, it must hold that
Am_1 2 Ay

As a procedural way of calculating the PCA of a data matrix X € R"*P, one has to
follow the following steps

1.
2.

Centre and standardize the columns of the data matrix X (the variables)

Calculate the empirical covariance matrix

_1 xrx (2.10)

s =
n—1

Determine the eigenvalues A; fori = 1, ..., p of £ and a set of p corresponding
orthonormal eigenvectors r; such that

Sri=Ar, |lri|=1,i=1,..,p and riTrj =0,i#j (2.11)
as well as
Lh2d2..22, (2.12)
Set
R=(ry,..,rp) €RP*? and D =diag(l,,...,4p) (2.13)
so that
S = RDRT (2.14)

The vectors r; are the principal component directions, the projections rl.Tx
are called principal components and the corresponding eigenvalues 4; are the
variance of the data in the direction of the principal component.



PCA can be used to reduce the dimension of the data. Since the principal compo-
nents account for less variance in every step, it is possible that there is little infor-
mation in the last principal components. An important result from linear algebra
is that for a matrix A € RP*P with eigenvalues 4, ..., i, it holds that

P
tr(A) = D p;. (2.15)
i=1

The empirical covariance matrix has the variance of each variable on its diagonal
and therefore

)4 p
tr <§) = Z SZ(X_i) = 2 /11', (216)
i=1 i=1

where X ; is the i-th column of the data matrix and s? is the empirical variance. If
the variables are standardized then s*(X.;) = 1 for all i and therefore tr (f) = p.

This means in particular that the mean of the eigenvalues will be 1°. A typical crite-
rion for considering a principal component as important is that the corresponding
eigenvalue is larger than the mean of all eigenvalues (in case of standardised data:
larger than one). A tool for the analysis of the information behind the principal
components is a scree plot. In a scree plot, the eigenvalues (variances) are plotted as
a function of the index of the principal components. It is a way to quickly see how
many principal components are of interest.

3 Singular value decomposition (SVD)

The singular value decomposition (SVD) of a matrix X € R"*P, n > p, splits the
data matrix into a product of three matrices

X =UDvVT (3.1)

where U € R"™ P has orthonormal columns, D € RP*P is a diagonal matrix, and
V € RP*P is an orthogonal matrix. Note that

U'u=1, and VV'=vVV =1, (3.2)

Note that if n > p it cannot hold that UUT = I, °. The matrix D is diagonal and
contains the singularvalues d;. These are typically sorted such thatd;,; < d;.

The orthogonality properties in Eq. (3.2) can now be used to derive the following
equations
xx"v = upvTvDUTU = UD?

3.3
XT’xv =vDUTUDVTV = vD? (33)

T Ai/p=1
=1

6 A set of maximally p vectors can be linearly independent in R? and the equation above would imply
that n > p vectors in R? are orthogonal and thus linearly independent.



Since D is a diagonal matrix, this reduces the problem of determining U and V' to
solving a series of eigenvalue problems

XXTu; =d’u; and X"Xv;=d’v;, i=1,..,p (3.4)

Since n > p,the matrixX7X € RP*P is as large as or smaller than XX T € R™", Itis
therefore more computationally effective to calculate V' by solving the p eigenvalue
problems in Eq. (3.4) and then arrive at U by projecting the observations in X on the
space spanned by the columns of V" and scaling them by the inverse of the singular
values, i.e.

U=XVDl. (3.5)

Note that this approach requires that there are no singular values equal to zero
(which is allowed and possible in general).

For n < p the SVD can still be calculated. Note that the SVD can be calculated
as above for X7 € RP*", We get matrices V € RP*" (orthonormal columns), a
diagonal matrix D € R™", and U € R™" (orthogonal matrix) such that

XT =vDUT. (3.6)

By transposing again we get
X =UDvT. (3.7)

Note that this time U is square and V is rectangular.

3.1 SVDand PCA

The SVD of a data matrix X € R"*P is usually used to calculate the principal compo-
nents in the data. Assume that n > p for now. Assume that the variables in X have
been centred and scaled. Note that the empirical covariance matrix of X is

o X'Xx
Y= . .
— (3.8)
Using the SVD of X = UDV this leads to
s- ' ypulupv’ =v (LDZ) VT, (3.9)
n—1 n—1

Comparing this with an orthogonal decomposition of a symmetric real matrix, we
get that the eigenvalues of £ are on the diagonal of the matrix D?/(n — 1), and the
columns of V are the corresponding eigenvectors. This determines the principal
components and the corresponding variance explained by each component.

For n < p the calculations above work out the same, however, V is not a square
matrix any longer. The interpretation of eigenvalues and principal components still
holds up since
a 1
SV =v|——D? 3.10
(=) (3.10)
but note that the eigenvalues 4,,, 1, ... ,/1p are zero.



3.2 SVD and dimension reduction

When using SVD for dimension reduction, we want to reduce the number of vari-
ables. Therefore we want to find a subspace of R? of dimension g < min(n, p) such
that the projections of the observations into this subspace are as similar to the orig-
inal observations in the Euclidean norm as possible, i.e. the objective is to find a
subspace 8 ¢ RP, such that

n
§=argmin ) ||x; — Psx;||2 (3.11)
i=1
where Pg is the orthogonal projection of RP onto the subspace 8. Note that

n n

T
DIk — Psxi|l? = (x; — Psx;) (x; — Psx;)
i=1 i

—_

I
.M=

Il
—

T T T pT
[x]x; — 2x] Pgx; + x] P{Pgx;]

(3.12)

[xIx; — x] PLPgx;]

Il
.M=

Il
—

Il
M=

2 2
[lIx:115 — [1Psx;]13]

1l
—

This shows that minimizing the squared distance between the observations and
their projections on the subspace is equivalent to maximizing the squared length of
the projected vectors’. Let’s start by looking for the best one-dimensional subspace
8;. Every one-dimensional vector space is spanned by a vector ; and we can assume
that ||r;||, = 1. The projection matrix onto a one-dimensional vector space is P =
r r{ and thus we are trying to maximize

n n

T T
DollrrTx )2 = x,)?
i=1 i=1

n
A T
i=1

=(n—-Drlsr

(3.13)

The term we are maximizing is the Rayleigh quotient and therefore the optimal
subspace is spanned by r;, the eigenvector of $ with the largest corresponding
eigenvalue. So the optimal one-dimensional sub-space that is closest to the data
is spanned by the first principal component, which is also the first column of the
matrix ¥ in the SVD of X.

7Since 3, ||x;]|? is a constant given a dataset. The only object we can control is the subspace we
i=1 th2

|Psx;13.

project into and therefore we can only change Zinzl |



Similar arguments as for PCA lead to the conclusion that the best g-dimensional
subspace to approximate the data in is the space spanned by the first g principal
component directions, which are also the first g columns in the matrix ¥ in the SVD
of X. Note thatforn < p the data is maximally n dimensional and any approximating
subspace must therefore have dimension < n.

3.3 SVD and orthogonal components

Another interpretation of SVD is that it describes a method to describe the data
as a structure of orthogonal components. Let u; € R" be the columns of U and
v; € RM(P) the columns of V. Then

min(n,p)

x=Uupvi= > duy!. (3.14)
i=1

Each matrix uiviT is of rank 1 and these matrices are scaled by the singular values
d;. As we have seen above in Section 3.2, the optimal g < min(n, p) subspace to
approximate X is spanned by the first g columns of V' and the projection on that
subspace is

q
P,=) v/ (3.15)
i=1

Projecting X on this optimal g-dimensional subspace using the projection in Eq. (3.15)
and the representation in Eq. (3.14) leads to

min(n,p)

q q
X, =XP, = Z diuiviT Z vjva. = Z diuiviT. (3.16)
i=1 j=1 i=1

10



So projecting the data into this optimal g-dimensional subspace simply means to
only keep components 1 to g. The approximation error in Frobenius norm® is

min(n,p)
IX — X,|I% = Z diuo!

i=q+1 F

i T
min(n,p) min(n,p)

— T ar.pT
=tr Z diu;v; Z djujvj
i=q+1 Jj=q+1

_min(n,p)

= d.v:uTu vl

=tr Z did;vu, uv;

_1,]=q+1

_min(n,p)

=tr d;d;v;o"
2 didju]

_1,]=q+1

(3.17)

min(n,p) min(n,p)

Z dl-djvikvjk
k=1 i,j=q+1

min(n,p) min(n,p)

Y. didj YT ik

i,j=q+1 k=1

min(n,p) min(n,p)

D, didjli=j)= ), d?

i,j=q+1 i=q+1

3.4 SVD and regression

In addition to dimension reduction and easy determination of the optimal g-dimensional
approximation to the data, SVD can also be a useful tool in regression.

Recall the linear regression problem with response vector y € R" and design matrix
X e R™(P+D) where we adopt the convention that the first column of X is a vector
of 1’s to encode the intercept. The variable y is modelled as

y=xTB+¢ (3.18)

where x € RP*! is a vector of predictors with x; = 1 and B € RP*! are the regres-
sion coefficients. The variable ¢ is the error and typically one assumes that

¢ ~ Normal(0, o2) (3.19)

for some (possibly unknown) variance o2. A solution to the regression model can
be found with least squares, i.e. solving

i — X812 3.20
(min ||y - X6 (3.20)

8This is a matrix norm defined by ||X||2 = Z:;l E;‘zl xizj

11



The solution to the least squares problem is given by
B = (XTX)_1 xTy, (3.21)

which requires n > p for the inversion to be possible. The SVD of X = UDV'T can
be plugged into this equation to arrive at

£=(vpuTupv?) 'vDUTy
= (vDvT) ' vDUTy

(3.22)
=vD2vTvDUTy
=vDUTy
The expression
X+ =(x"x)" xT =vDp'U" (3.23)

is called the Moore-Penrose pseudo-inverse of X. While it is therefore possible to
obtain a least squares solution through SVD, there are other simpler algorithms (e.g.
QR decomposition) which are preferable.

The fitted values for y are then
y=XB=UDvIvD UTy = UUTy. (3.24)

Note that UUT is an orthogonal projection matrix, projecting y onto the column
space of U.

For ridge regression the problem to be solved is

; _ 2 2
foin, ly — X815 + All8ll; (3.25)

for some 4 > 0. Assume that the response y and the columns of X are centred. The
solution is given by

F=(XTX +11,)" XTy. (3.26)
Using the SVD of X = UDVT leads to

p
~ _ d:
=V (D?+AI,) DUTy= i

vl-ul.Ty. (3.27)

It can be seen that A can lead to stability in the calculation of the fractions d; / (dl.2 +1).
If d; is small, the fraction would become big if 1 = 0. Increasing lambda decreases
the magnitude of the fractions and increases numerical stability. Also, an increase in
A decreases the influence of each term in the same and therefore shrinks coefficients
towards O.

12
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