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A short recap



Goals of modelling

1. Predictive strength: How well can we reconstruct the
observed data? Has been most important so far.

2. Model/variable selection: Which variables are part of the
true model? This is about uncovering structure to allow
for mechanistic understanding.
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Feature selection

Feature selection can be addressed in multiple ways
▶ Filtering: Remove variables before the actual model for
the data is built

▶ Often crude but fast
▶ Typically only pays attention to one or two features at a
time (e.g. F-Score, MIC) or does not take the outcome
variable into consideration (e.g. PCA)

▶ Wrapping: Consider the selected features as an
additional hyper-parameter

▶ computationally very heavy
▶ most approximations are greedy algorithms

▶ Embedding: Include feature selection into parameter
estimation through penalisation of the model coefficients

▶ Naive form is equally computationally heavy as wrapping
▶ Soft-constraints create biased but useful approximations
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Penalised regression

The optimization problem

arg min
𝜷

1
2‖𝐲 − 𝐗𝜷‖22 subject to ‖𝜷‖𝑞𝑞 ≤ 𝑡

for 𝑞 > 0 is equivalent to

̂𝜷 = arg min
𝜷

1
2‖𝐲 − 𝐗𝜷‖22 + 𝜆‖𝜷‖𝑞𝑞

when 𝑞 ≥ 1.
▶ For 𝑞 = 2 known as ridge regression for 𝑞 = 1 known as
the lasso

▶ Constraints are convex for all 𝑞 ≥ 1 but not differentiable
in 𝜷 = 𝟎 for 𝑞 = 1
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Intuition for the penalties (I)

Assume the OLS solution 𝜷OLS exists and set

𝐫 = 𝐲 − 𝐗𝜷OLS

it follows for the residual sum of squares (RSS) that

‖𝐲 − 𝐗𝜷‖22 = ‖(𝐗𝜷OLS + 𝐫) − 𝐗𝜷‖22
= ‖(𝐗(𝜷 − 𝜷OLS) − 𝐫‖22
= (𝜷 − 𝜷OLS)𝑇𝐗𝑇𝐗(𝜷 − 𝜷OLS) − 2𝐫𝑇𝐗(𝜷 − 𝜷OLS) + 𝐫𝑇𝐫

which is an ellipse (at least in 2D) centred on 𝜷OLS.
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Intuition for the penalties (II)

The least squares RSS is minimized for 𝜷OLS. If a constraint is
added (‖𝜷‖𝑞𝑞 ≤ 𝑡) then the RSS is minimized by the closest 𝜷
possible that fulfills the constraint.
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Intuition for the penalties (III)

Depending on 𝑞 the
different constraints
lead to different
solutions. If 𝜷OLS is in
one of the coloured
areas or on a line, the
constrained solution
will be at the
corresponding dot.

Sparsity only for 𝑞 ≤ 1
Convexity only for 𝑞 ≥ 1
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Shrinkage and effective degrees of freedom

When 𝜆 is fixed, the shrinkage of the lasso estimate 𝜷lasso(𝜆)
compared to the OLS estimate 𝜷OLS is defined as

𝑠(𝜆) = ‖𝜷lasso(𝜆)‖1
‖𝜷OLS‖1

Note: 𝑠(𝜆) ∈ [0, 1] with 𝑠(𝜆) → 0 for increasing 𝜆 and 𝑠(𝜆) = 1 if
𝜆 = 0

For ridge regression define

𝐇(𝜆) ∶= 𝐗(𝐗𝑇𝐗 + 𝜆𝐈𝑝)−1𝐗𝑇

and

df(𝜆) ∶= tr(𝐇(𝜆)) =
𝑝
∑
𝑗=1

𝑑2𝑗
𝑑2𝑗 + 𝜆

,

the effective degrees of freedom.
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A regularisation path

Prostate cancer dataset (𝑛 = 67, 𝑝 = 8)
Red dashed lines indicate the 𝜆 selected by cross-validation
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Connection to classification



Recall: Regularised Discriminant Analysis (RDA)

Given training samples (𝑖𝑙, 𝐱𝑙), quadratic DA models

𝑝(𝐱|𝑖) = 𝑁(𝐱|𝝁𝑖, 𝚺𝑖) and 𝑝(𝑖) = 𝜋𝑖

Estimates 𝝁𝑖 , 𝚺𝑖 and 𝜋𝑖 are straight-forward to find,…
…but evaluating the normal density requires inversion of 𝚺𝑖 . If
it is (near-)singular, this can lead to numerical instability.
Penalisation can help here:

▶ Use 𝚺𝑖 = �̂�QDA
𝑖 + 𝜆�̂�LDA for 𝜆 > 0

▶ Use LDA (i.e. 𝚺𝑖 = 𝚺) and 𝚺 = 𝚺LDA + 𝜆𝚫 for 𝜆 > 0 and a
diagonal matrix 𝚫
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Recall: Naive Bayes LDA

Naive Bayes LDA means that we assume that 𝚺 = �̂� for a
diagonal matrix �̂�. The diagonal elements are estimated as

Δ̂2𝑗𝑗 =
1

𝑛 − 𝐾
𝐾
∑
𝑖=1

∑
𝑖𝑙=𝑖

(𝑥𝑙𝑗 − 𝝁𝑖,𝑗)2

which is the pooled within-class variance.
Classification is performed by evaluating the discriminant
functions

𝛿𝑖(𝐱) = −12(𝐱 − 𝝁𝑖)𝑇�̂�−1(𝐱 − 𝝁𝑖) + log(𝜋𝑖)
and by choosing

𝑐(𝐱) = arg max
𝑖

𝛿𝑖(𝐱)

as the predicted class.
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Shrunken centroids (I)

In high-dimensional problems, centroids will
▶ contain noise
▶ be hard to interpret when all variables are active

As in regression, we would like to perform variable selection
and reduce noise.
Note: The class centroids solve

𝝁𝑖 = arg min
𝐯

1
2 ∑𝑖𝑙=𝑖

‖𝐱𝑙 − 𝐯‖22

Nearest shrunken centroids performs variable selection and
stabilises centroid estimates by solving

𝝁𝑠𝑖 = arg min
𝐯

1
2 ∑𝑖𝑙=𝑖

‖(�̂�+𝑠0𝐈𝑝)−1/2(𝐱𝑙−𝐯)‖22+𝜆√
(𝑛 − 𝑛𝑖)𝑛𝑖

𝑛 ‖𝐯−𝝁𝑇‖1
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Shrunken centroids (II)

Nearest shrunken centroids

𝝁𝑠𝑖 = arg min
𝐯

1
2 ∑𝑖𝑙=𝑖

‖(�̂� + 𝑠0𝐈𝑝)−1/2(𝐱𝑙−𝐯)‖22+𝜆√
(𝑛 − 𝑛𝑖)𝑛𝑖

𝑛 ‖𝐯−𝝁𝑇‖1

▶ Penalises distance of class centroid to the overall
centroid 𝝁𝑇

▶ �̂� + 𝑠0𝐈𝑝 is the diagonal regularised within-class
covariance matrix. Leads to greater weights for variables
that are less variable across samples (interpretability)

▶ √(𝑛 − 𝑛𝑖)𝑛𝑖/𝑛 is only there for technical reasons
▶ If the predictors are centred (𝝁𝑇 = 0) this is a scaled lasso
problem
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Shrunken centroids (III)

The solution for component 𝑗 can be derived using
subdifferentials as

𝝁𝑠𝑖,𝑗 = 𝝁𝑇,𝑗+𝑚𝑖(Δ𝑗𝑗+𝑠0)ST (𝑡𝑖,𝑗, 𝜆) where 𝑡𝑖,𝑗 =
𝝁𝑖,𝑗 − 𝝁𝑇,𝑗
𝑚𝑖(Δ𝑗𝑗 + 𝑠0)

and 𝑚𝑖 =√
1
𝑛𝑖
− 1

𝑛
.

Note: 𝜆 is a tuning parameter and has to be determined
through e.g. cross-validation.

▶ Typically, misclassification rate improves first with
increasing 𝜆 and declines for too high values

▶ The larger 𝜆 the more components will be equal to the
respective component of the overall centroid.
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Application of nearest shrunken centroids (I)

A gene expression data set with 𝑛 = 63 and 𝑝 = 2308. There
are four classes (cancer subtypes) with 𝑛BL = 8, 𝑛EWS = 23,
𝑛NB = 12, and 𝑛RMS = 20.
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Application of nearest shrunken centroids (II)
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General calculation of the lasso
estimates



Calculation of the lasso estimate

Last lecture: When 𝐗𝑇𝐗 = 𝐈𝑝 and 𝜷OLS are the OLS estimates
then

𝛽lasso,𝑗(𝜆) = sign(𝛽OLS,𝑗)(|𝛽OLS,𝑗| − 𝜆)+ = ST(𝛽OLS,𝑗, 𝜆)
where 𝑥+ = max(𝑥, 0) and the soft-thresholding operator ST.

What about the general case?

Coordinate Descent: The lasso problem

arg min
𝜷

1
2‖𝐲 − 𝐗𝜷‖22 + 𝜆‖𝜷‖1

can be written in coordinates (omitting terms not dependent
on any 𝛽𝑖)

arg min
𝛽1,…,𝛽𝑝

1
2

𝑝
∑
𝑖,𝑗=1

𝐱𝑇𝑖 𝐱𝑗𝛽𝑖𝛽𝑗 −
𝑛
∑
𝑙=1

𝑝
∑
𝑖=1

𝑦𝑙𝑥𝑙𝑖𝛽𝑖 + 𝜆
𝑝
∑
𝑖=1

|𝛽𝑖|
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Subderivative and subdifferential

Let 𝑓 ∶ 𝐼 → ℝ be a convex function in an open interval 𝐼 and
𝑥0 ∈ 𝐼. A 𝑐 ∈ ℝ is called a subderivative of 𝑓 at 𝑥0 if

𝑓(𝑥) − 𝑓(𝑥0) ≥ 𝑐(𝑥 − 𝑥0)
It can be shown that for

𝑎 = lim
𝑥→𝑥−0

𝑓(𝑥) − 𝑓(𝑥0)
𝑥 − 𝑥0

and 𝑏 = lim
𝑥→𝑥+0

𝑓(𝑥) − 𝑓(𝑥0)
𝑥 − 𝑥0

all 𝑐 ∈ [𝑎, 𝑏] are subderivatives. Call 𝛿𝑓(𝑥0) ∶= [𝑎, 𝑏] the
subdifferential of 𝑓 at 𝑥0.

Example: Let 𝑓(𝑥) = |𝑥|, then

𝛿𝑓(𝑥0) =
⎧⎪
⎨⎪
⎩

{−1} 𝑥0 < 0
[−1, 1] 𝑥0 = 0
{+1} 𝑥0 > 0
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Properties of subdifferentials

1. A convex function is differentiable at 𝑥0, if and only if its
subdifferential at 𝑥0 contains only one point. This point is
the derivative.

2. Moreau-Rockafellar theorem: If 𝑓, 𝑔 are convex with
subdifferentials 𝛿𝑓 and 𝛿𝑔, then

𝛿(𝑓 + 𝑔) = 𝛿𝑓 + 𝛿𝑔

where 𝛿𝑓 + 𝛿𝑔 = {𝑣1 + 𝑣2 ∶ 𝑣1 ∈ 𝛿𝑓, 𝑣2 ∈ 𝛿𝑔}
3. Stationarity condition: A point 𝑥0 is a global minimum of
a convex function, if and only if 0 is contained in the
subdifferential at 𝑥0
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Coordinate Descent (I)

Idea: Use subdifferentials to find the global minimum 𝛽𝑘 for a
single coefficient 𝛽𝑘 given the other coefficients 𝜷−𝑘, i.e.

𝛽𝑘 = arg min
𝛽𝑘

𝐽(𝛽𝑘) = arg min
𝛽𝑘

1
2

𝑝
∑
𝑖,𝑗=1

𝐱𝑇𝑖 𝐱𝑗𝛽𝑖𝛽𝑗−
𝑛
∑
𝑙=1

𝑝
∑
𝑖=1

𝑦𝑙𝑥𝑙𝑖𝛽𝑖+𝜆
𝑝
∑
𝑖=1

|𝛽𝑖|

Taking the subdifferential of 𝐽 at 𝛽𝑘 leads to

𝛿𝐽(𝛽𝑘) = −𝐱𝑇𝑘 (
=∶𝐫𝑘

⏞⎴⎴⏞⎴⎴⏞𝐲 −∑
𝑖=1
𝑖≠𝑘

𝛽𝑖𝐱𝑖 −𝛽𝑘𝐱𝑘) + 𝜆
⎧⎪
⎨⎪
⎩

{−1} 𝛽𝑘 < 0
[−1, 1] 𝛽𝑘 = 0
{+1} 𝛽𝑘 > 0

=

=
⎧⎪
⎨⎪
⎩

{−𝐱𝑇𝑘 𝐫𝑘 + 𝛽𝑘𝐱𝑇𝑘𝐱𝑘 − 𝜆} 𝛽𝑘 < 0
[−𝐱𝑇𝑘 𝐫𝑘 − 𝜆,−𝐱𝑇𝑘 𝐫𝑘 + 𝜆] 𝛽𝑘 = 0
{−𝐱𝑇𝑘 𝐫𝑘 + 𝛽𝑘𝐱𝑇𝑘𝐱𝑘 + 𝜆} 𝛽𝑘 > 0
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Coordinate Descent (II)

Subdifferential of 𝐽 at 𝛽𝑘

𝛿𝐽(𝛽𝑘) =
⎧⎪
⎨⎪
⎩

{−𝐱𝑇𝑘 𝐫𝑘 + 𝛽𝑘𝐱𝑇𝑘𝐱𝑘 − 𝜆} 𝛽𝑘 < 0
[−𝐱𝑇𝑘 𝐫𝑘 − 𝜆,−𝐱𝑇𝑘 𝐫𝑘 + 𝜆] 𝛽𝑘 = 0
{−𝐱𝑇𝑘 𝐫𝑘 + 𝛽𝑘𝐱𝑇𝑘𝐱𝑘 + 𝜆} 𝛽𝑘 > 0

Two cases:

1. Standard derivative for 𝛽𝑘 ≠ 0, i.e.

𝜕𝐽
𝜕𝛽𝑘

= 0 ⇔ 𝛽𝑘 =
⎧
⎨
⎩

𝐱𝑇𝑘𝐫𝑘+𝜆
𝐱𝑇𝑘𝐱𝑘

𝐱𝑇𝑘 𝐫𝑘< −𝜆
𝐱𝑇𝑘𝐫𝑘−𝜆
𝐱𝑇𝑘𝐱𝑘

𝐱𝑇𝑘 𝐫𝑘> +𝜆
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Coordinate Descent (III)

Subdifferential of 𝐽 at 𝛽𝑘

𝛿𝐽(𝛽𝑘) =
⎧⎪
⎨⎪
⎩

{−𝐱𝑇𝑘 𝐫𝑘 + 𝛽𝑘𝐱𝑇𝑘𝐱𝑘 − 𝜆} 𝛽𝑘 < 0
[−𝐱𝑇𝑘 𝐫𝑘 − 𝜆,−𝐱𝑇𝑘 𝐫𝑘 + 𝜆] 𝛽𝑘 = 0
{−𝐱𝑇𝑘 𝐫𝑘 + 𝛽𝑘𝐱𝑇𝑘𝐱𝑘 + 𝜆} 𝛽𝑘 > 0

Two cases:

2. Stationarity condition for 𝛽𝑘 = 0, i.e.

0 ∈ 𝛿𝐽(0) ⇔ −𝜆 ≤ 𝐱𝑇𝑘 𝐫𝑘 ≤ 𝜆
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Coordinate Descent (IV)
In total we get the solution

𝛽𝑘(𝜷−𝑘) =
⎧⎪
⎨⎪
⎩

𝐱𝑇𝑘𝐫𝑘+𝜆
𝐱𝑇𝑘𝐱𝑘

𝐱𝑇𝑘 𝐫𝑘 < −𝜆
0 −𝜆 ≤ 𝐱𝑇𝑘 𝐫𝑘 ≤ 𝜆

𝐱𝑇𝑘𝐫𝑘−𝜆
𝐱𝑇𝑘𝐱𝑘

𝐱𝑇𝑘 𝐫𝑘 > 𝜆

⎫⎪
⎬⎪
⎭

= ST(𝐱𝑇𝑘 𝐫𝑘, 𝜆)
𝐱𝑇𝑘𝐱𝑘

the unique minimizer when all coefficients but 𝛽𝑘 are fixed.
Multiple options for updating order

▶ Cyclic coordinate descent: Update one coordinate at a
time in a fixed order. Once every coordinate has been
updated, start over.

▶ Choose coordinate that leads to best decrease in total
target function value

Note: Coordinate descent is not guaranteed to converge if the
target function’s level curves are not smooth 22/31



Another algorithmic approach

▶ Cyclic coordinate descent is a popular approach (e.g. R
package glmnet) but is hard to parallelise due to its
sequential order

▶ Augmented Directions Method of Multipliers (ADMM)
re-formulates the lasso problem

arg min
𝜷

1
2‖𝐲 − 𝐗𝜷‖22 + 𝜆‖𝜷‖1 as

arg min
𝜷,𝜽

1
2‖𝐲 − 𝐗𝜷‖22 + 𝜆‖𝜽‖1 such that 𝜽 = 𝜷

and (approximately) minimizes the augmented Lagragian

arg min
𝜷,𝜽

1
2‖𝐲 − 𝐗𝜷‖22 + 𝜆‖𝜽‖1 + 𝐲𝑇(𝜷 − 𝜽) + 𝜌

2‖𝜷 − 𝜽‖22

Iteratively solves for 𝜷 and 𝜽, then updates 𝐲
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Extensions of the lasso



The lasso and groups of highly correlated variables

▶ The lasso does not handle groups of highly correlated
variables well.

▶ Example: Two groups of highly correlated variables, e.g.

𝐗 ∼ 𝑁(𝟎, 𝚺) where 𝚺 = (𝚺1 𝟎
𝟎 𝚺1

) , 𝚺1 =
⎛
⎜⎜
⎝

1.04 1 1
1 1.04 1
1 1 1.04

⎞
⎟⎟
⎠

and
𝐲 = 3𝐱1 − 1.5𝐱5 + 𝜺 where 𝜺 ∼ 𝑁(𝟎, 4𝐈𝑛)

▶ The (very theoretical) irrepresentable condition from last
lecture tells us that the lasso will not be able to recover
the true model.

▶ What happens in practice?
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The lasso and groups of highly correlated variables in practice
Lasso Elastic net (α = 0.3)
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▶ The lasso typically selects one variable from a group of
highly correlated variables, more or less randomly,
instead of distributing the coefficients evenly.

▶ The elastic net is an extension of the lasso, which “finds”
correlated groups of variables

▶ Note that the elastic net is not given explicit knowledge
of the groups of variables. 25/31



The elastic net (I)

The elastic net solves the problem

arg min
𝜷

1
2‖𝐲 − 𝐗𝜷‖22 + 𝜆 (1 − 𝛼

2 ‖𝜷‖22 + 𝛼‖𝜷‖1)

striking a balance between lasso (variable selection) and
ridge regression (grouping of variables)
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The elastic net (II)

The solution can be found through cyclic coordinate descent
and the coefficient updates are

𝛽𝑘(𝜷−𝑘) =
ST(𝐱𝑇𝑘 𝐫𝑘, 𝜆𝛼)

𝐱𝑇𝑘𝐱𝑘 + 𝜆(1 − 𝛼)

▶ Note: 𝛼 is an additional tuning parameter that should be
determined by cross-validation

▶ The lasso and ridge regression are special cases of the
elastic net (𝛼 = 1 and 𝛼 = 0, respectively). The R package
glmnet is a popular implementation of the elastic net.
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The lasso and groups of variables

▶ The lasso in it’s original formulation considers each
variable separately

▶ Groups in data can form through e.g.
▶ Correlation
▶ Categorical variables in dummy encoding
▶ Domain-knowledge (e.g. genes in the same signal
pathway, signals that only appear in groups in a
compressed sensing problem,…)

▶ Ideally the whole group is either present or not
▶ The elastic net can find groups, but only does so for
highly correlated variables and without external
influence. Sometimes more control is necessary.
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The group lasso (I)

The group lasso solves the problem

arg min
𝜷

1
2‖𝐲 − 𝐗𝜷‖22 + 𝜆

𝐾
∑
𝑘=1

‖𝐁𝑘‖2

where 𝐁𝑘 is a vector of coefficients 𝛽𝑖 for the 𝑘-th group. Note
that ‖𝛽𝑖‖2 = |𝛽𝑖| for singleton groups.
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The group lasso (II)

The solution can be similarly derived as for the lasso or the
elastic net, but on group level. This leads to the coefficient
update

𝐁(𝑖+1)𝑘 = (𝐗𝑇
𝑘𝐗𝑘 +

𝜆
‖
‖𝐁

(𝑖)
𝑘
‖
‖2
𝐈)

−1

𝐗𝑘𝐫𝐤 when ‖𝐗𝑘𝐫𝑘‖2 > 0

and 0 otherwise. Note that 𝐗𝑘 contains all predictors
belonging to group 𝑘 and

𝐫𝑘 = 𝐲 − ∑
𝑗=1
𝑗≠𝑘

𝐗𝑗𝐁𝑗
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Take-home message

▶ Penalisation methods are not only restricted to
regression, also applicable to classification

▶ Sparsity is a very important concept when interpretability
of models is important

▶ Many extensions to the lasso exist, which make it more
suitable for a variety of different situations
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