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A short recap



Goals of modelling

1. Predictive strength: How well can we reconstruct the
observed data? Has been most important so far.

2. Model/variable selection: Which variables are part of the
true model? This is about uncovering structure to allow
for mechanistic understanding.
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Feature selection

Feature selection can be addressed in multiple ways

» Filtering: Remove variables before the actual model for
the data is built
» Often crude but fast
» Typically only pays attention to one or two features at a
time (e.g. F-Score, MIC) or does not take the outcome
variable into consideration (e.g. PCA)
» Wrapping: Consider the selected features as an
additional hyper-parameter
» computationally very heavy
» most approximations are greedy algorithms
» Embedding: Include feature selection into parameter
estimation through penalisation of the model coefficients

» Naive form is equally computationally heavy as wrapping

» Soft-constraints create biased but useful approximations /
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Penalised regression

The optimization problem

1 .
argmin —[ly — Xg|l subjectto ||fllg <t
B

for g > 0 is equivalent to
. 1
B= arg Inin Slly = X85 + AllBlG

when g > 1.

» For g = 2 known as ridge regression for g = 1 known as
the lasso

» Constraints are convex for all g > 1 but not differentiable
inB=0forg=1
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Intuition for the penalties (1)

Assume the OLS solution By exists and set
r=y—XBors
it follows for the residual sum of squares (RSS) that

lly — X85 = |(XBors + 1) — XBI3
= ||(X(B — Bors) — I3
= (B— Bors) " X"X(B - Bors) — 2r"X(B— Bors) +1'r

which is an ellipse (at least in 2D) centred on Bo;s.
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Intuition for the penalties (11)

The least squares RSS is minimized for B . If @ constraint is
added (||8|| < t) then the RSS is minimized by the closest g

possible that fulfills the constraint.
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Intuition for the penalties (111)

Depending on g the
different constraints
lead to different
solutions. If Bog iSin
one of the coloured
areas or on a line, the
constrained solution
will be at the
corresponding dot.

Sparsity only forg <1
Convexity only for g > 1
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Shrinkage and effective degrees of freedom

When 2 is fixed, the shrinkage of the lasso estimate B,..,(1)
compared to the OLS estimate By is defined as

||ﬁlasso(/1)||1
) = [Dlassol 2/l
R TR
Note: s(1) € [0,1] with s(1) — 0 for increasing 1 and s(1) = 1 if

A=0
For ridge regression define

H() 1= X(XTX + AI,)'xT
and

P g2
df(2) := tr(H(L)) =Z i

the effective degrees of freedom.
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A regularisation path

Prostate cancer dataset (n = 67, p = 8)
Red dashed lines indicate the 2 selected by cross-validation

Ridge Lasso
0.75 0.75 ;
i
050 050 :
5 5 !
K 2 S
S 025 S 025
8 8 /4
o o 1
O 000 O o000 - -
|
|
0 2 4 6 8 0.00 0.25 0.50 0.75 1.00
Effective degrees of freedom
0.75
_ 050 e
= =
k] k]
=}
g o0 2
[ [
o o
O 0.00 o o .
-5 0 5 10
log(A)

8/31



Connection to classification



Recall: Regularised Discriminant Analysis (RDA)

Given training samples (ij, x;), quadratic DA models
p(x|i) = N(x|u;,%;) and p() =m;

Estimates fi;, ; and 7; are straight-forward to find,...

...but evaluating the normal density requires inversion of ;. If
it is (near-)singular, this can lead to numerical instability.

Penalisation can help here:

> Use & = S2P4 4 ASILDA for 1> 0

» Use LDA (i.e. T, =%)and £ = $*PA 4 1A for A > 0and a
diagonal matrix A
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Recall: Naive Bayes LDA

Naive Bayes LDA means that we assume that £ = A for a
diagonal matrix A. The diagonal elements are estimated as

K

22 _ 1 N

Ay ; ilz::i(xlj - i)’
which is the pooled within-class variance.
Classification is performed by evaluating the discriminant
functions

1 ~ A ~ A
§i(x) = _E(X — B)TAT (x — @) + log(7)

and by choosing

¢(x) = arg max 6;(x)

as the predicted class.
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Shrunken centroids (1)

In high-dimensional problems, centroids will

» contain noise
» be hard to interpret when all variables are active

As in regression, we would like to perform variable selection
and reduce noise.

Note: The class centroids solve
AN . 1
fi = argmin 5 3 [Ix — VI3
v i)=i
Nearest shrunken centroids performs variable selection and
stabilises centroid estimates by solving

(n —nyn;

N 1 ~ _ -
pi = arg min > 2. I@+so1,) 2 (x=v)|15+4 Iv—=rrlly
\4

ip=i
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Shrunken centroids (11)

Nearest shrunken centroids

(n —nyn;

~ . 1 ~ — A~
pi = arg min > 2 @ + sT,)"2(x—v)|3+4 IV—kr (1
A%

i=i

» Penalises distance of class centroid to the overall
centroid ur

» A+ soI, is the diagonal regularised within-class
covariance matrix. Leads to greater weights for variables
that are less variable across samples (interpretability)

» +/(n—n;)n;/n is only there for technical reasons

» If the predictors are centred (i = 0) this is a scaled lasso
problem
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Shrunken centroids (1)

The solution for component j can be derived using
subdifferentials as

PO B j—Br
= i+mi(A;;+59)ST (t; ;,A) where ¢, = ——
:ul,] :uT,] l( JjJ 0) ( i,j ) LJ mi(Ajj + SO)

1 1
andm; =,/ ——-.
n; n

Note: 1 is a tuning parameter and has to be determined
through e.g. cross-validation.

» Typically, misclassification rate improves first with
increasing A and declines for too high values

» The larger A the more components will be equal to the
respective component of the overall centroid.
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Application of nearest shrunken centroids (1)

A gene expression data set with n = 63 and p = 2308. There
are four classes (cancer subtypes) with ng;, = 8, ngws = 23,
nng = 12, and I’LRMS = 20.
06
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5-fold cross-validation curve and largest 1 that leads to minimal
misclassification rate
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Application of nearest shrunken centroids (1)
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General calculation of the lasso
estimates




Calculation of the lasso estimate

Last lecture: When XTX = I, and B s are the OLS estimates
then

Blasso, (D) = sign(Bors )(BoLs j| = D+ = ST(Bors, j» )
where x, = max(x,0) and the soft-thresholding operator ST.
What about the general case?

Coordinate Descent: The lasso problem
1
arg;nm Sy - XAI13 + Bl

can be written in coordinates (omitting terms not dependent
on any ;)

p
arg min% Z ] X;Bi5; — Z Z yixiBi + 4 Z 16l

1s5:5Pp i,j=1 I=1i=1
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Subderivative and subdifferential

Let f : I - R be a convex function in an open interval I and
Xo € I. Ac € R is called a subderivative of f at x, if
J(x) = fxo) 2 e(x — x)

It can be shown that for
a= lim F) = fx0) and b= lim fC) = f(xo)

X—=Xq X — xO x_>xg 26 = xO

all ¢ € [a, b] are subderivatives. Call §f(x,) := [a, b] the
subdifferential of f at x,.

Example: Let f(x) = |x|, then
{—1} X <0
6f(xo) =1[-1,1] x,=0

{+1} Xo >0
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Properties of subdifferentials

1. A convex function is differentiable at x,, if and only if its
subdifferential at x, contains only one point. This point is
the derivative.

2. Moreau-Rockafellar theorem: If f,g are convex with
subdifferentials 6 f and &g, then

o(f+g=4f+4dg

where 6f + g ={v, +v, : v, €58f,v, € 6g}

3. Stationarity condition: A point x, is a global minimum of
a convex function, if and only if 0 is contained in the
subdifferential at x,
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Coordinate Descent (1)

Idea: Use subdifferentials to find the global minimum B; for a
single coefficient 8 given the other coefficients B_y, i.e.

n p p
B = argﬁmm](ﬁk) = argﬁmln > Z X' xBiB— Y. D yixuBi+a ). |l
=01 =l i=1

i,j=1
Taking the subdifferential of J at 8 leads to
= rk {-1} Br <0
67(B) = —xL(y— 2 Bixi - 2 P Bixic) +A{[-1,1] f=0=
l;ék {+1} Bk >0

{—XZrk + 6kx£xk -1} Bk <O
= [—XZrk -, —XZI‘k +A] Bk =0
{—XZrk + kazxk +1} B >0
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Coordinate Descent ()

Subdifferential of J at Bx

{—X;I’k + 5kX£Xk — /1} ﬁk <0
ST(B) = V[—xpr — A, —xpr +A] B =0
{—Xgl‘k + 5kX£Xk + /1} ﬁk >0

Two cases:

1. Standard derivative for B, # 0, i.e.

xFry+A
kYk ar
81 w4
9B =0efe= XT’rckf/1 T
Xp Xj
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Coordinate Descent (l11)

Subdifferential of J at B

{—legl‘k + 6kX£Xk = /1} Bk <0
ST(Br) = y[—xfrp — A, —xir +A] P =0
{—Xgl‘k + ﬁkx£xk + l} ﬁk >0

Two cases:

2. Stationarity condition for 8, =0, i.e.

0€8J(0) e -A<xir, <2
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Coordinate Descent (IV)

In total we get the solution

xTrp +2
LS Xl < -2
Br(B-k) = 0 “A<xr <A = —_—
Xgl‘k—/l T kak
o X Iy > A
Xp Xk

the unique minimizer when all coefficients but 8, are fixed.
Multiple options for updating order

» Cyclic coordinate descent: Update one coordinate at a
time in a fixed order. Once every coordinate has been
updated, start over.

» Choose coordinate that leads to best decrease in total
target function value

Note: Coordinate descent is not guaranteed to converge if the

target function’s level curves are not smooth Y



Another algorithmic approach

» Cyclic coordinate descent is a popular approach (e.g. R
package glmnet) but is hard to parallelise due to its
sequential order

» Augmented Directions Method of Multipliers (ADMM)
re-formulates the lasso problem

1
arg/;"ﬂmglly—xﬁllﬁhlllﬁlll as
1
arg min S|ly — X3 + Alj6], suchthat o= g
B0

and (approximately) minimizes the augmented Lagragian

1
arg min 5 Ily = XBI + Alléll, +y* (8- 6) + gllﬁ— oll3

Iteratively solves for g and 6, then updates y
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Extensions of the lasso




The lasso and groups of highly correlated variables

» The lasso does not handle groups of highly correlated
variables well.
» Example: Two groups of highly correlated variables, e.g.

1.04 1 1

5, 0
X ~N(0,Z) where = g , 23 =1 1 104 1
! 1 1 1.04

and
y =3x; — 1.5x5 + ¢ where &~ N(0,4I,)

» The (very theoretical) irrepresentable condition from last
lecture tells us that the lasso will not be able to recover
the true model.

» What happens in practice?
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The lasso and groups of highly correlated variables in practice

Lasso Elastic net (o =0.3)

Coefficient

0.00 025 050 075 1.00 000 025 050 075 1.00
Shrinkage

» The lasso typically selects one variable from a group of
highly correlated variables, more or less randomly,
instead of distributing the coefficients evenly.

» The elastic net is an extension of the lasso, which “finds”
correlated groups of variables

» Note that the elastic net is not given explicit knowledge

of the groups of variables. 25/31



The elastic net (1)

The elastic net solves the problem

211113 + cllgl

1
arg min §||y — Xﬁ||% + /1(
B

striking a balance between lasso (variable selection) and
ridge regression (grouping of variables)

Lasso Elastic net (a =0.7)
B2 B2
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The elastic net (11)

The solution can be found through cyclic coordinate descent
and the coefficient updates are

ST(erk, Ax)

Ae(Bi) = xIx + (1 — )

» Note: o is an additional tuning parameter that should be
determined by cross-validation

» The lasso and ridge regression are special cases of the
elastic net (o = 1 and a = 0, respectively). The R package
glmnet is a popular implementation of the elastic net.
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The lasso and groups of variables

» The lasso in it’s original formulation considers each
variable separately
» Groups in data can form through e.g.
» Correlation
» Categorical variables in dummy encoding
» Domain-knowledge (e.g. genes in the same signal
pathway, signals that only appear in groups in a
compressed sensing problem,...)

» Ideally the whole group is either present or not

» The elastic net can find groups, but only does so for
highly correlated variables and without external
influence. Sometimes more control is necessary.
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The group lasso (1)

The group lasso solves the problem
K

.1
argmin |y — Xg|[3 + 4 > IBkll2
ﬁ k=1

where By, is a vector of coefficients §; for the k-th group. Note
that ||8;]|, = |8;| for singleton groups.

Lasso Group lasso
P2 B2
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The group lasso (11)

The solution can be similarly derived as for the lasso or the
elastic net, but on group level. This leads to the coefficient
update

=il

. A
B{ ™Y = [ XTX) + —— Xiri  when [ Xril; > 0

I
(i)||
B
|| k %

and 0 otherwise. Note that X; contains all predictors
belonging to group k and

e =y- 2, XB;
j=1
j#k
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Take-home message

» Penalisation methods are not only restricted to
regression, also applicable to classification

» Sparsity is a very important concept when interpretability
of models is important

» Many extensions to the lasso exist, which make it more
suitable for a variety of different situations
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