Lecture 10: Regularized/penalized regression (cont'd)

Felix Held, Mathematical Sciences

MSA220/MVE440 Statistical Learning for Big Data

2nd May 2019

UNIVERSITY OF GOTHENBURG

A short recap

- 1. **Predictive strength:** How well can we reconstruct the observed data? Has been most important so far.
- Model/variable selection: Which variables are part of the true model? This is about uncovering structure to allow for mechanistic understanding.

Feature selection

Feature selection can be addressed in multiple ways

- Filtering: Remove variables before the actual model for the data is built
 - Often crude but fast
 - Typically only pays attention to one or two features at a time (e.g. F-Score, MIC) or does not take the outcome variable into consideration (e.g. PCA)
- Wrapping: Consider the selected features as an additional hyper-parameter
 - computationally very heavy
 - most approximations are greedy algorithms
- Embedding: Include feature selection into parameter estimation through penalisation of the model coefficients
 - ► Naive form is equally computationally heavy as wrapping
 - Soft-constraints create biased but useful approximations

Penalised regression

The optimization problem

$$\underset{\boldsymbol{\beta}}{\arg\min} \frac{1}{2} \|\mathbf{y} - \mathbf{X}\boldsymbol{\beta}\|_{2}^{2} \text{ subject to } \|\boldsymbol{\beta}\|_{q}^{q} \leq t$$

for q > 0 is equivalent to

$$\hat{\boldsymbol{\beta}} = \operatorname*{arg\,min}_{\boldsymbol{\beta}} \frac{1}{2} ||\mathbf{y} - \mathbf{X}\boldsymbol{\beta}||_{2}^{2} + \lambda ||\boldsymbol{\beta}||_{q}^{q}$$

when $q \ge 1$.

- For q = 2 known as ridge regression for q = 1 known as the lasso
- Constraints are convex for all q ≥ 1 but not differentiable in β = 0 for q = 1

Assume the OLS solution \pmb{eta}_{OLS} exists and set

$$\mathbf{r} = \mathbf{y} - \mathbf{X} \boldsymbol{\beta}_{\text{OLS}}$$

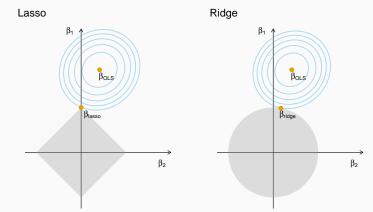
it follows for the residual sum of squares (RSS) that

$$\begin{aligned} \|\mathbf{y} - \mathbf{X}\boldsymbol{\beta}\|_{2}^{2} &= \|(\mathbf{X}\boldsymbol{\beta}_{\text{OLS}} + \mathbf{r}) - \mathbf{X}\boldsymbol{\beta}\|_{2}^{2} \\ &= \|(\mathbf{X}(\boldsymbol{\beta} - \boldsymbol{\beta}_{\text{OLS}}) - \mathbf{r}\|_{2}^{2} \\ &= (\boldsymbol{\beta} - \boldsymbol{\beta}_{\text{OLS}})^{T}\mathbf{X}^{T}\mathbf{X}(\boldsymbol{\beta} - \boldsymbol{\beta}_{\text{OLS}}) - 2\mathbf{r}^{T}\mathbf{X}(\boldsymbol{\beta} - \boldsymbol{\beta}_{\text{OLS}}) + \mathbf{r}^{T}\mathbf{r} \end{aligned}$$

which is an **ellipse** (at least in 2D) centred on β_{OLS} .

Intuition for the penalties (II)

The least squares RSS is minimized for β_{OLS} . If a constraint is added ($||\beta||_q^q \le t$) then the RSS is minimized by the closest β possible that fulfills the constraint.

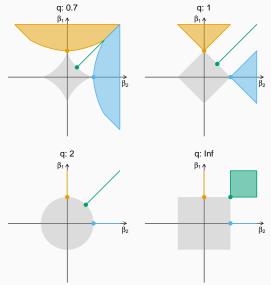


The blue lines are the contour lines for the RSS.

Intuition for the penalties (III)

Depending on q the different constraints lead to different solutions. If β_{OLS} is in one of the coloured areas or on a line, the constrained solution will be at the corresponding dot.

Sparsity only for $q \le 1$ **Convexity** only for $q \ge 1$



Shrinkage and effective degrees of freedom

When λ is fixed, the **shrinkage** of the lasso estimate $\beta_{\text{lasso}}(\lambda)$ compared to the OLS estimate β_{OLS} is defined as

$$s(\lambda) = \frac{\|\boldsymbol{\beta}_{\text{lasso}}(\lambda)\|_1}{\|\boldsymbol{\beta}_{\text{OLS}}\|_1}$$

Note: $s(\lambda) \in [0,1]$ with $s(\lambda) \to 0$ for increasing λ and $s(\lambda) = 1$ if $\lambda = 0$

For ridge regression define

$$\mathbf{H}(\lambda) := \mathbf{X}(\mathbf{X}^T \mathbf{X} + \lambda \mathbf{I}_p)^{-1} \mathbf{X}^T$$

and

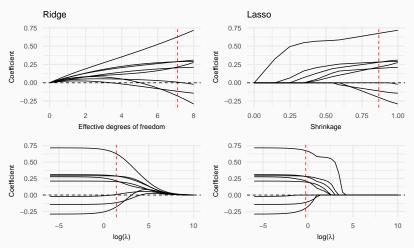
$$\mathrm{df}(\lambda) := \mathrm{tr}(\mathbf{H}(\lambda)) = \sum_{j=1}^{p} \frac{d_{j}^{2}}{d_{j}^{2} + \lambda},$$

the effective degrees of freedom.

A regularisation path

Prostate cancer dataset (n = 67, p = 8)

Red dashed lines indicate the λ selected by cross-validation



Connection to classification

Given training samples (i_l, \mathbf{x}_l) , quadratic DA models

 $p(\mathbf{x}|i) = N(\mathbf{x}|\boldsymbol{\mu}_i, \boldsymbol{\Sigma}_i) \text{ and } p(i) = \pi_i$

Estimates $\widehat{\mu}_i$, $\widehat{\Sigma}_i$ and $\widehat{\pi}_i$ are straight-forward to find,...

...but evaluating the normal density requires inversion of $\widehat{\Sigma}_i$. If it is (near-)singular, this can lead to **numerical instability**.

Penalisation can help here:

• Use
$$\widehat{\Sigma}_i = \widehat{\Sigma}_i^{\text{QDA}} + \lambda \widehat{\Sigma}^{\text{LDA}}$$
 for $\lambda > 0$

• Use LDA (i.e. $\Sigma_i = \Sigma$) and $\widehat{\Sigma} = \widehat{\Sigma}^{\text{LDA}} + \lambda \Delta$ for $\lambda > 0$ and a diagonal matrix Δ

Recall: Naive Bayes LDA

Naive Bayes LDA means that we assume that $\widehat{\Sigma} = \widehat{\Delta}$ for a diagonal matrix $\widehat{\Delta}$. The diagonal elements are estimated as

$$\widehat{\Delta}_{jj}^2 = \frac{1}{n-K} \sum_{i=1}^K \sum_{i_l=i}^K (x_{lj} - \widehat{\mu}_{i,j})^2$$

which is the **pooled within-class variance**.

Classification is performed by evaluating the **discriminant functions**

$$\delta_i(\mathbf{x}) = -\frac{1}{2}(\mathbf{x} - \widehat{\boldsymbol{\mu}}_i)^T \widehat{\boldsymbol{\Delta}}^{-1}(\mathbf{x} - \widehat{\boldsymbol{\mu}}_i) + \log(\widehat{\pi}_i)$$

and by choosing

$$c(\mathbf{x}) = \arg\max_i \delta_i(\mathbf{x})$$

as the predicted class.

Shrunken centroids (I)

In high-dimensional problems, centroids will

- contain noise
- be hard to interpret when all variables are active

As in regression, we would like to perform **variable selection** and **reduce noise**.

Note: The class centroids solve

$$\widehat{\boldsymbol{\mu}}_i = \operatorname*{arg\,min}_{\mathbf{v}} \frac{1}{2} \sum_{i_l=i} \|\mathbf{x}_l - \mathbf{v}\|_2^2$$

Nearest shrunken centroids performs variable selection and stabilises centroid estimates by solving

$$\widehat{\boldsymbol{\mu}}_{i}^{s} = \operatorname*{arg\,min}_{\mathbf{v}} \frac{1}{2} \sum_{i_{l}=i} \| (\widehat{\boldsymbol{\Delta}} + s_{0} \mathbf{I}_{p})^{-1/2} (\mathbf{x}_{l} - \mathbf{v}) \|_{2}^{2} + \lambda \sqrt{\frac{(n-n_{i})n_{i}}{n}} \| \mathbf{v} - \widehat{\boldsymbol{\mu}}_{T} \|_{1}$$

Nearest shrunken centroids

$$\widehat{\boldsymbol{\mu}}_{i}^{s} = \operatorname*{arg\,min}_{\mathbf{v}} \frac{1}{2} \sum_{i_{l}=i} \|(\widehat{\boldsymbol{\Delta}} + s_{0}\mathbf{I}_{p})^{-1/2}(\mathbf{x}_{l} - \mathbf{v})\|_{2}^{2} + \lambda \sqrt{\frac{(n - n_{i})n_{i}}{n}} \|\mathbf{v} - \widehat{\boldsymbol{\mu}}_{T}\|_{1}$$

- Penalises distance of class centroid to the overall centroid μ_T
- ► Â + s₀I_p is the diagonal regularised within-class covariance matrix. Leads to greater weights for variables that are less variable across samples (interpretability)
- $\sqrt{(n-n_i)n_i/n}$ is only there for technical reasons
- If the predictors are centred ($\hat{\mu}_T = 0$) this is a scaled lasso problem

Shrunken centroids (III)

The solution for component *j* can be derived using subdifferentials as

$$\widehat{\mu}_{i,j}^{s} = \widehat{\mu}_{T,j} + m_i(\Delta_{jj} + s_0) \operatorname{ST}(t_{i,j}, \lambda) \quad \text{where} \quad t_{i,j} = \frac{\widehat{\mu}_{i,j} - \widehat{\mu}_{T,j}}{m_i(\Delta_{jj} + s_0)}$$

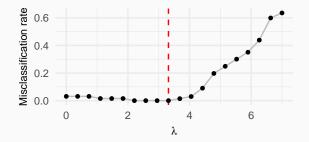
and $m_i = \sqrt{\frac{1}{n_i} - \frac{1}{n}}$.

Note: λ is a tuning parameter and has to be determined through e.g. cross-validation.

- Typically, misclassification rate improves first with increasing λ and declines for too high values
- The larger λ the more components will be equal to the respective component of the overall centroid.

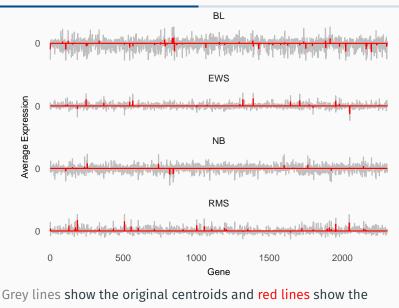
Application of nearest shrunken centroids (I)

A gene expression data set with n = 63 and p = 2308. There are four classes (cancer subtypes) with $n_{\rm BL} = 8$, $n_{\rm EWS} = 23$, $n_{\rm NB} = 12$, and $n_{\rm RMS} = 20$.



5-fold cross-validation curve and largest λ that leads to minimal misclassification rate

Application of nearest shrunken centroids (II)



shrunken centroids

General calculation of the lasso estimates

Last lecture: When $\mathbf{X}^T \mathbf{X} = \mathbf{I}_p$ and $\boldsymbol{\beta}_{\mathrm{OLS}}$ are the OLS estimates then

$$\widehat{\beta}_{\text{lasso},j}(\lambda) = \text{sign}(\beta_{\text{OLS},j})(|\beta_{\text{OLS},j}| - \lambda)_+ = \text{ST}(\beta_{\text{OLS},j},\lambda)$$

where $x_{+} = \max(x, 0)$ and the **soft-thresholding operator** ST.

What about the general case?

Coordinate Descent: The lasso problem

$$\underset{\boldsymbol{\beta}}{\arg\min} \frac{1}{2} \|\mathbf{y} - \mathbf{X}\boldsymbol{\beta}\|_{2}^{2} + \lambda \|\boldsymbol{\beta}\|_{1}$$

can be written in coordinates (omitting terms not dependent on any β_i)

$$\underset{\beta_1,\dots,\beta_p}{\operatorname{arg\,min}} \frac{1}{2} \sum_{i,j=1}^{p} \mathbf{x}_i^T \mathbf{x}_j \beta_i \beta_j - \sum_{l=1}^{n} \sum_{i=1}^{p} y_l x_{li} \beta_i + \lambda \sum_{i=1}^{p} |\beta_i|$$

Let $f : I \to \mathbb{R}$ be a convex function in an open interval I and $x_0 \in I$. A $c \in \mathbb{R}$ is called a **subderivative** of f at x_0 if

$$f(x) - f(x_0) \ge c(x - x_0)$$

It can be shown that for

$$a = \lim_{x \to x_0^-} \frac{f(x) - f(x_0)}{x - x_0}$$
 and $b = \lim_{x \to x_0^+} \frac{f(x) - f(x_0)}{x - x_0}$

all $c \in [a, b]$ are subderivatives. Call $\delta f(x_0) := [a, b]$ the **subdifferential** of f at x_0 .

Example: Let f(x) = |x|, then

$$\delta f(x_0) = \begin{cases} \{-1\} & x_0 < 0\\ [-1,1] & x_0 = 0\\ \{+1\} & x_0 > 0 \end{cases}$$

Properties of subdifferentials

- A convex function is differentiable at x₀, if and only if its subdifferential at x₀ contains only one point. This point is the derivative.
- 2. Moreau-Rockafellar theorem: If f, g are convex with subdifferentials δf and δg , then

$$\delta(f+g) = \delta f + \delta g$$

where $\delta f + \delta g = \{v_1 + v_2 : v_1 \in \delta f, v_2 \in \delta g\}$

 Stationarity condition: A point x₀ is a global minimum of a convex function, if and only if 0 is contained in the subdifferential at x₀

Coordinate Descent (I)

Idea: Use subdifferentials to find the global minimum $\hat{\beta}_k$ for a single coefficient β_k given the other coefficients β_{-k} , i.e.

$$\widehat{\beta}_k = \operatorname*{arg\,min}_{\beta_k} J(\beta_k) = \operatorname*{arg\,min}_{\beta_k} \frac{1}{2} \sum_{i,j=1}^p \mathbf{x}_i^T \mathbf{x}_j \beta_i \beta_j - \sum_{l=1}^n \sum_{i=1}^p y_l x_{li} \beta_i + \lambda \sum_{i=1}^p |\beta_i|$$

Taking the subdifferential of J at β_k leads to

$$\delta J(\beta_k) = -\mathbf{x}_k^T \left(\overbrace{\mathbf{y} - \sum_{\substack{i=1\\i \neq k}}^{i=1} \beta_i \mathbf{x}_i}^{=:\mathbf{r}_k} - \beta_k \mathbf{x}_k \right) + \lambda \begin{cases} \{-1\} & \beta_k < 0\\ [-1,1] & \beta_k = 0 \\ \{+1\} & \beta_k > 0 \end{cases}$$

$$=\begin{cases} \{-\mathbf{x}_{k}^{T}\mathbf{r}_{k}+\beta_{k}\mathbf{x}_{k}^{T}\mathbf{x}_{k}-\lambda\} & \beta_{k}<0\\ [-\mathbf{x}_{k}^{T}\mathbf{r}_{k}-\lambda,-\mathbf{x}_{k}^{T}\mathbf{r}_{k}+\lambda] & \beta_{k}=0\\ \{-\mathbf{x}_{k}^{T}\mathbf{r}_{k}+\beta_{k}\mathbf{x}_{k}^{T}\mathbf{x}_{k}+\lambda\} & \beta_{k}>0 \end{cases}$$

Coordinate Descent (II)

Subdifferential of J at β_k

$$\delta J(\beta_k) = \begin{cases} \{-\mathbf{x}_k^T \mathbf{r}_k + \beta_k \mathbf{x}_k^T \mathbf{x}_k - \lambda\} & \beta_k < 0 \\ [-\mathbf{x}_k^T \mathbf{r}_k - \lambda, -\mathbf{x}_k^T \mathbf{r}_k + \lambda] & \beta_k = 0 \\ \{-\mathbf{x}_k^T \mathbf{r}_k + \beta_k \mathbf{x}_k^T \mathbf{x}_k + \lambda\} & \beta_k > 0 \end{cases}$$

Two cases:

1. Standard derivative for $\beta_k \neq 0$, i.e.

$$\frac{\partial J}{\partial \beta_k} = 0 \Leftrightarrow \beta_k = \begin{cases} \frac{\mathbf{x}_k^T \mathbf{r}_k + \lambda}{\mathbf{x}_k^T \mathbf{x}_k} & \mathbf{x}_k^T \mathbf{r}_k < -\lambda \\ \frac{\mathbf{x}_k^T \mathbf{r}_k - \lambda}{\mathbf{x}_k^T \mathbf{x}_k} & \mathbf{x}_k^T \mathbf{r}_k > +\lambda \end{cases}$$

Subdifferential of J at β_k

$$\delta J(\beta_k) = \begin{cases} \{-\mathbf{x}_k^T \mathbf{r}_k + \beta_k \mathbf{x}_k^T \mathbf{x}_k - \lambda\} & \beta_k < 0 \\ [-\mathbf{x}_k^T \mathbf{r}_k - \lambda, -\mathbf{x}_k^T \mathbf{r}_k + \lambda] & \beta_k = 0 \\ \{-\mathbf{x}_k^T \mathbf{r}_k + \beta_k \mathbf{x}_k^T \mathbf{x}_k + \lambda\} & \beta_k > 0 \end{cases}$$

Two cases:

2. Stationarity condition for $\beta_k = 0$, i.e.

$$0 \in \delta J(0) \Leftrightarrow -\lambda \leq \mathbf{x}_k^T \mathbf{r}_k \leq \lambda$$

Coordinate Descent (IV)

In total we get the solution

$$\widehat{\beta}_{k}(\boldsymbol{\beta}_{-k}) = \left\{ \begin{array}{ll} \frac{\mathbf{x}_{k}^{T}\mathbf{r}_{k}+\lambda}{\mathbf{x}_{k}^{T}\mathbf{x}_{k}} & \mathbf{x}_{k}^{T}\mathbf{r}_{k} < -\lambda \\ 0 & -\lambda \leq \mathbf{x}_{k}^{T}\mathbf{r}_{k} \leq \lambda \\ \frac{\mathbf{x}_{k}^{T}\mathbf{r}_{k}-\lambda}{\mathbf{x}_{k}^{T}\mathbf{x}_{k}} & \mathbf{x}_{k}^{T}\mathbf{r}_{k} > \lambda \end{array} \right\} = \frac{\mathrm{ST}(\mathbf{x}_{k}^{T}\mathbf{r}_{k},\lambda)}{\mathbf{x}_{k}^{T}\mathbf{x}_{k}}$$

the unique minimizer when all coefficients but β_k are fixed. Multiple options for updating order

- Cyclic coordinate descent: Update one coordinate at a time in a fixed order. Once every coordinate has been updated, start over.
- Choose coordinate that leads to best decrease in total target function value

Note: Coordinate descent is not guaranteed to converge if the target function's level curves are not smooth

Another algorithmic approach

- Cyclic coordinate descent is a popular approach (e.g. R package glmnet) but is hard to parallelise due to its sequential order
- Augmented Directions Method of Multipliers (ADMM) re-formulates the lasso problem

$$\underset{\boldsymbol{\beta}}{\operatorname{arg\,min}} \frac{1}{2} ||\mathbf{y} - \mathbf{X}\boldsymbol{\beta}||_{2}^{2} + \lambda ||\boldsymbol{\beta}||_{1} \quad \text{as}$$
$$\underset{\boldsymbol{\beta},\boldsymbol{\theta}}{\operatorname{arg\,min}} \frac{1}{2} ||\mathbf{y} - \mathbf{X}\boldsymbol{\beta}||_{2}^{2} + \lambda ||\boldsymbol{\theta}||_{1} \quad \text{such that} \quad \boldsymbol{\theta} = \boldsymbol{\beta}$$

and (approximately) minimizes the **augmented Lagragian** $\underset{\boldsymbol{\beta},\boldsymbol{\theta}}{\arg\min} \frac{1}{2} \|\mathbf{y} - \mathbf{X}\boldsymbol{\beta}\|_{2}^{2} + \lambda \|\boldsymbol{\theta}\|_{1} + \mathbf{y}^{T}(\boldsymbol{\beta} - \boldsymbol{\theta}) + \frac{\rho}{2} \|\boldsymbol{\beta} - \boldsymbol{\theta}\|_{2}^{2}$

Iteratively solves for $\boldsymbol{\beta}$ and $\boldsymbol{\theta}$, then updates \mathbf{y}

Extensions of the lasso

The lasso and groups of highly correlated variables

- The lasso does not handle groups of highly correlated variables well.
- **Example:** Two groups of highly correlated variables, e.g.

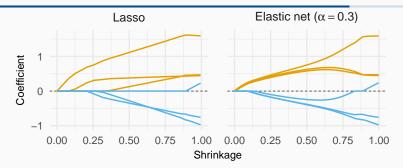
$$\mathbf{X} \sim N(\mathbf{0}, \mathbf{\Sigma})$$
 where $\mathbf{\Sigma} = \begin{pmatrix} \mathbf{\Sigma}_1 & \mathbf{0} \\ \mathbf{0} & \mathbf{\Sigma}_1 \end{pmatrix}$, $\mathbf{\Sigma}_1 = \begin{pmatrix} 1.04 & 1 & 1 \\ 1 & 1.04 & 1 \\ 1 & 1 & 1.04 \end{pmatrix}$

and

 $\mathbf{y} = 3\mathbf{x}_1 - 1.5\mathbf{x}_5 + \boldsymbol{\varepsilon}$ where $\boldsymbol{\varepsilon} \sim N(\mathbf{0}, 4\mathbf{I}_n)$

- The (very theoretical) irrepresentable condition from last lecture tells us that the lasso will not be able to recover the true model.
- What happens in practice?

The lasso and groups of highly correlated variables in practice



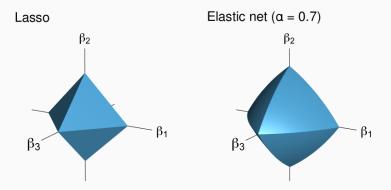
- The lasso typically selects one variable from a group of highly correlated variables, more or less randomly, instead of distributing the coefficients evenly.
- The elastic net is an extension of the lasso, which "finds" correlated groups of variables
- Note that the elastic net is not given explicit knowledge of the groups of variables.

The elastic net (I)

The elastic net solves the problem

$$\arg\min_{\boldsymbol{\beta}} \frac{1}{2} \|\mathbf{y} - \mathbf{X}\boldsymbol{\beta}\|_{2}^{2} + \lambda \left(\frac{1-\alpha}{2} \|\boldsymbol{\beta}\|_{2}^{2} + \alpha \|\boldsymbol{\beta}\|_{1}\right)$$

striking a balance between lasso (**variable selection**) and ridge regression (**grouping of variables**)



The solution can be found through **cyclic coordinate descent** and the coefficient updates are

$$\widehat{\beta}_{k}(\boldsymbol{\beta}_{-k}) = \frac{\operatorname{ST}(\mathbf{x}_{k}^{T}\mathbf{r}_{k}, \lambda\alpha)}{\mathbf{x}_{k}^{T}\mathbf{x}_{k} + \lambda(1-\alpha)}$$

- Note: α is an additional tuning parameter that should be determined by cross-validation
- The lasso and ridge regression are special cases of the elastic net ($\alpha = 1$ and $\alpha = 0$, respectively). The R package glmnet is a popular implementation of the elastic net.

The lasso and groups of variables

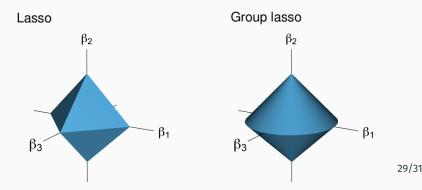
- The lasso in it's original formulation considers each variable separately
- Groups in data can form through e.g.
 - Correlation
 - Categorical variables in dummy encoding
 - Domain-knowledge (e.g. genes in the same signal pathway, signals that only appear in groups in a compressed sensing problem,...)
- Ideally the whole group is either present or not
- The elastic net can find groups, but only does so for highly correlated variables and without external influence. Sometimes more control is necessary.

The group lasso (I)

The group lasso solves the problem

$$\underset{\boldsymbol{\beta}}{\operatorname{arg\,min}} \frac{1}{2} \|\mathbf{y} - \mathbf{X}\boldsymbol{\beta}\|_{2}^{2} + \lambda \sum_{k=1}^{K} \|\mathbf{B}_{k}\|_{2}$$

where \mathbf{B}_k is a vector of coefficients β_i for the *k*-th group. Note that $||\beta_i||_2 = |\beta_i|$ for singleton groups.



The group lasso (II)

The solution can be similarly derived as for the lasso or the elastic net, but on group level. This leads to the coefficient update

$$\mathbf{B}_{k}^{(i+1)} = \left(\mathbf{X}_{k}^{T}\mathbf{X}_{k} + \frac{\lambda}{\left\|\mathbf{B}_{k}^{(i)}\right\|_{2}}\mathbf{I}\right)^{-1}\mathbf{X}_{k}\mathbf{r}_{k} \text{ when } \|\mathbf{X}_{k}\mathbf{r}_{k}\|_{2} > 0$$

and 0 otherwise. Note that \mathbf{X}_k contains all predictors belonging to group k and

$$\mathbf{r}_k = \mathbf{y} - \sum_{\substack{j=1\\j \neq k}} \mathbf{X}_j \mathbf{B}_j$$

- Penalisation methods are not only restricted to regression, also applicable to classification
- Sparsity is a very important concept when interpretability of models is important
- Many extensions to the lasso exist, which make it more suitable for a variety of different situations