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Recap: Elnet and group lasso

▶ The lasso sets variables exactly to zero either on a corner (all
but one) or along an edge (fewer).

▶ The elastic net similarly sets variables exactly to zero on a
corner or along an edge. In addition, the curved edges
encourage coefficients to be closer together.

▶ The group lasso has actual information about groups of
variables. It encourages whole groups to be zero
simultaneously. Within a group, it encourages the coefficients
to be as similar as possible. 1/23



The lasso and bias (I)

One problem with penalisation methods is the bias that is
introduced by shrinkage.
Remember: For orthogonal predictors, i.e. 𝐗𝑇𝐗 = 𝐈𝑝 we have

𝛽lasso,𝑗 = ST(𝛽OLS,𝑗, 𝜆)
The least squares estimates are unbiased (i.e. 𝔼[𝜷OLS] = 𝜷true)
and therefore any non-linear transformation (like
soft-thresholding) creates biased estimates.
Shrinkage is good for variable/model selection but can
decrease predictive performance.
Ideal case: Oracle procedure (Fan and Li, 2001) Assume the
true subset of non-zero coefficients is 𝒜 = {𝑗 ∶ 𝛽true = 0}

1. Identifies the right variables, i.e. {𝑗 ∶ 𝛽𝑗 ≠ 0} = 𝒜
2. Optimal estimation rate: √𝑛( ̂𝜷 − 𝜷true)

𝑑−→ 𝑁(𝟎, 𝚺) 2/23



The lasso and bias (II)

▶ We saw that if the irrepresentable condition is fulfilled
(i.e. correlation between relevant and unrelevant
predictors is small), then the lasso does a good job in
uncovering the true subset of variables

▶ The lasso however introduces bias that will not vanish
asymptotically. It therefore produces inconsistent
estimates (i.e. ̂𝜷lasso ↛ 𝜷true for 𝑛 → ∞)

▶ Solution: Different penalty function? An ideal penalty
would be

▶ singular at zero, leading to sparsity
▶ no penalty for large coefficients, leading to unbiased
estimates away from zero

▶ convex and differentiable
▶ The smoothly clipped absolute deviation (SCAD) penalty
combines all these apart from convexity 3/23



Smoothly clipped absolute deviation (SCAD)

The penalty is defined by its derivative

𝑝′𝜆,𝑎(𝜃) = 𝜆 (1(𝜃 ≤ 𝜆) + (𝑎𝜆 − 𝜃)+
(𝑎 − 1)𝜆 1(𝜃 > 𝜆))

for 𝜃 > 0, 𝜆 ≥ 0, and 𝑎 > 2. This integrates to

𝑝𝜆,𝑎(𝜃) =
⎧⎪
⎨⎪
⎩
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SCAD and bias (I)

The SCAD penalty is applied to each coefficient of 𝜷 and (in
case of orthonormal predictors) leads to the estimate

𝛽SCAD,𝑗 =
⎧⎪
⎨⎪
⎩

ST(𝛽OLS,𝑗, 𝜆) |𝛽OLS,𝑗| ≤ 2𝜆
(𝑎−1)𝛽OLS,𝑗−sign(𝛽OLS,𝑗)𝑎𝜆

𝑎−2
2𝜆 < |𝛽OLS,𝑗| ≤ 𝑎𝜆

𝛽OLS,𝑗 |𝛽OLS,𝑗| > 𝑎𝜆
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SCAD and bias (II)

▶ Good news: The SCAD penalty gets rid of bias for larger
coefficients, but also creates sparsity

▶ It can be shown theoretically that if 𝜆𝑛 → 0 and
√𝑛𝜆𝑛 →∞ when 𝑛 → ∞, then the SCAD penalty leads to
an oracle procedure

▶ Bad news: The penalty is not convex and the standard
optimization approaches cannot be used. The authors of
the method (Fan and Li, 2001) proposed an algorithm
based on local approximations.

▶ Is there a way to stay in the realm of convex functions?
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Adaptive Lasso (I)

Consider the weighted lasso problem

̂𝜷ada = arg min
𝜷

1
2‖𝐲 − 𝐗𝜷‖22 + 𝜆

𝑝
∑
𝑗=1

𝑤𝑗|𝛽𝑗|

where 𝑤𝑗 ≥ 0 for all 𝑗. This is called the adaptive lasso.
Surprisingly, it turns out that the right choice of weights can
turn this procedure into an oracle procedure, i.e.

▶ large coefficients are unbiased
▶ the convergence rate is optimal
▶ the right variables are identified
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Adaptive Lasso (II)

Let 𝜷∗ be a √𝑛-consistent estimate of 𝜷true, i.e. 𝜷∗ − 𝜷true
converges (in probability) to 𝟎 at rate 𝑛−1/2, e.g. ̂𝜷OLS or ̂𝜷ridge.
Computation:

▶ For 𝛾 > 0 set 𝑤∗
𝑗 = 1/|𝛽∗𝑗 |𝛾 and 𝐗∗ = diag(𝐰∗)−1𝐗.

▶ Solve the unweighted lasso problem for 𝐗∗ to get 𝜷∗lasso.
▶ Set ̂𝜷ada = diag(𝐰∗)−1𝜷∗lasso, which is the solution.

It can be shown (Zou, 2006), that if 𝜷∗ is a √𝑛-consistent
estimate, 𝜆𝑛/√𝑛 → 0, and 𝜆𝑛𝑛(𝛾−1)/2 →∞, then the adaptive
lasso is an oracle procedure.
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Penalisation in GLMs

Penalisation can also be used in generalised linear models
(GLMs), e.g. to perform sparse logistic regression.

Given 𝑝(𝑦|𝜷, 𝐱) the log-likelihood of the model is

ℒ(𝜷|𝐲, 𝐗) =
𝑛
∑
𝑙=1

log(𝑝(𝑦𝑙|𝜷, 𝐱𝑙))

Instead of penalising the minimisation of the residual sum of
squares (RSS), the minimisation of the negative log-likelihood
is penalized, i.e.

arg min
𝜷

−ℒ(𝜷|𝐲, 𝐗) + 𝜆‖𝜷‖1

Note: If 𝑝(𝑦|𝜷, 𝐱) is Gaussian and the linear model 𝐲 = 𝐗𝜷 + 𝜺
is assumed, this is equivalent to RSS minimisation.
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Sparse logistic regression

Recall: For logistic regression with 𝑖𝑙 ∈ {0, 1} it holds that

𝑝(1|𝜷, 𝐱) = exp(𝐱𝑇𝜷)
1 + exp(𝐱𝑇𝜷) and 𝑝(0|𝜷, 𝐱) = 1

1 + exp(𝐱𝑇𝜷)
and the penalised minimisation problem becomes

arg min
𝜷

−
𝑛
∑
𝑙=1

(𝑖𝑙𝐱𝑇𝑙 𝜷 − log (1 + exp(𝐱𝑇𝜷))) + 𝜆‖𝜷‖1

▶ The minimisation problem is still convex, but non-linear
in 𝜷. Iterative quadratic approximations combined with
coordinate descent can be used to solve this problem.

▶ Another way to perform sparse classification (like e.g.
nearest shrunken centroids)
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Sparse multi-class logistic regression

In multi-class logistic regression with 𝑖𝑙 ∈ {1, … , 𝐾}, there is a
matrix of coefficients 𝐁 ∈ ℝ𝑝×(𝐾−1) and it holds for
𝑖 = 1, … , 𝐾 − 1 that

𝑝(𝑖|𝐁, 𝐱) = exp(𝐱𝑇𝜷𝑖)
∑𝐾−1

𝑗=1 exp(𝐱𝑇𝜷𝑗)
and 𝑝(𝐾|𝐁, 𝐱) = 1

∑𝐾−1
𝑗=1 exp(𝐱𝑇𝜷𝑗)

▶ As in two-class case, the absolute value of each entry in 𝐁
can be penalised.

▶ Another possibility is to use the group lasso on all
coefficients for one variable, i.e. penalise with ‖𝐁𝑗⋅‖2 for
𝑗 = 1,… , 𝑝.
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Example for sparse multi-class logistic regression

MNIST-derived zip code digits (𝑛 = 7291, 𝑝 = 256)
Sparse multi-class logistic regression was applied to the whole data
set and the penalisation parameter was selected by 10-fold CV.

5 6 7 8 9

0 1 2 3 4

Orange tiles show positive coefficients and blue tiles show negative
coefficients. The numbers below are the class averages. 12/23



The lasso and significance testing
▶ Calculating p-values or performing significance testing on
sparse coefficient vectors is tricky

▶ Probabilistic point-of-view: Sparsity and exact zeros create a
point mass at zero, but otherwise coefficients have an
approximately Gaussian distribution (spike-and-slab
distribution)

▶ In practice: Naive bootstrap is not going to work well since
small changes in the data can change a coefficient from exact
zero to non-zero

▶ Some other approaches (Wasserman and Roeder, 2009;
Meinshausen et al., 2009) split the data once or multiple times
into two subsets, perform variable selection on one part and
use the other to perform least squares on the selected
variables

▶ Still an active research topic, but the R package hdi contains
some recent approaches 13/23



Data representations



Goals of data representation

Dimension reduction while retaining important aspects of
the data

Goals can be

▶ Visualisation
▶ Interpretability/Variable selection
▶ Data compression
▶ Finding a representation of the data that is more suitable
to the posed question

Let us start with linear dimension reduction.
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Short re-cap: SVD

The singular value decomposition (SVD) of a matrix 𝐗 ∈ ℝ𝑛×𝑝,
𝑛 ≥ 𝑝, is

𝐗 = 𝐔𝐃𝐕𝑇

where 𝐔 ∈ ℝ𝑛×𝑝 and 𝐕 ∈ ℝ𝑝×𝑝 with

𝐔𝑇𝐔 = 𝐈𝑝 and 𝐕𝑇𝐕 = 𝐕𝐕𝑇 = 𝐈𝑝

and 𝐃 ∈ ℝ𝑝×𝑝 is diagonal. Usually

𝑑11 ≥ 𝑑22 ≥ ⋯ ≥ 𝑑𝑝𝑝

holds for the diagonal elements of 𝐃.
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SVD and best rank-𝑞-approximation (I)

Write 𝐮𝑗 and 𝐯𝑗 for the columns of 𝐔 and 𝐕, respectively. Then

𝐗 = 𝐔𝐃𝐕𝑇 =
𝑝
∑
𝑗=1

𝑑𝑗𝑗 𝐮𝑗𝐯𝑇𝑗⏟
rank-1-matrix

Best rank-𝑞-approximation: For 𝑞 < 𝑝

𝐗𝑞 =
𝑞
∑
𝑗=1

𝑑𝑗𝑗𝐮𝑗𝐯𝑇𝑗

with approximation error

‖
‖𝐗 − 𝐗𝑞

‖
‖
2

𝐹
=
‖
‖‖‖

𝑝
∑

𝑗=𝑞+1
𝑑𝑗𝑗𝐮𝑗𝐯𝑇𝑗

‖
‖‖‖

2

𝐹

=
𝑝
∑

𝑗=𝑞+1
𝑑2𝑗
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SVD and best rank-𝑞-approximation (II)

Notes

▶ 𝐗𝑞 =
𝑞
∑
𝑗=1

𝑑𝑗𝑗𝐮𝑗𝐯𝑇𝑗 approximates 𝐗 as a sum of layers

▶ This is the best possible rank-𝑞-approximations
▶ How to choose 𝑞? Possibility: Look at singular values and
decide a cut-off

▶ Interpretation is difficult since layers both add and
subtract information

▶ 𝐔 and 𝐕 are not unique and could be made sparse
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Alternative view of best rank-𝑞-approximation

The matrix 𝐗𝑞 is the unique solution to the following
minimization problem (see notes on SVD on website)

arg min
rank(𝐌)=𝑞

‖𝐗 −𝐌‖2𝐹

Alternative view:
Assume 𝐗 stores samples as columns, i.e. 𝐗 ∈ ℝ𝑝×𝑛.
Set 𝐇 ∶= 𝐃𝑞𝐔𝑇

𝑞 ∈ ℝ𝑞×𝑛 and𝐖 = 𝐕𝑞 ∈ ℝ𝑝×𝑞, where 𝐃𝑞, 𝐔𝑞,
and 𝐕𝑞 contain only the first 𝑞 columns.
Then 𝐗𝑞 = 𝐖𝐇 is a solution of

arg min
𝐖∈ℝ𝑝×𝑞,𝐇∈ℝ𝑞×𝑛

‖𝐗 −𝐖𝐇‖2𝐹

Note: Whereas 𝐗𝑞 is the unique minimizer for the upper
minimisation problem, the matrices𝐖 and 𝐇 are not unique.
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Low-rank matrix factorisation

Let 𝑞 < min(𝑝, 𝑛)

arg min
𝐖∈ℝ𝑝×𝑞,𝐇∈ℝ𝑞×𝑛

‖𝐗 −𝐖𝐇‖2𝐹

Interpretation

▶ The columns of𝐖 can be seen as basis vectors or
coordinates of a subspace in feature space

▶ The columns of 𝐇 provide coefficients that combine the
basis vectors in𝐖 to the closest 𝑞-dimensional
approximation of the respective observation

▶ In the framework of factor analysis the columns of𝐖 are
called factors and the columns of 𝐇 are called loadings
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Notes on factor analysis

▶ Originated mostly in psychometrics with the idea that
factors could describe unobservable (latent) properties
(e.g. intelligence)

▶ Typically assumes that𝐖 is orthogonal
▶ Even orthogonality of𝐖 does not ensure identifiability
since for a orthogonal matrix 𝐑 ∈ ℝ𝑞×𝑞

𝐖′𝐇′ ∶= (𝐖𝐑)(𝐑𝑇𝐇) = 𝐖𝐇
and𝐖′ is orthogonal if𝐖 is

▶ Every orthogonal matrix describes a rotation and when
applied to factors and loadings it is called a factor
rotation

▶ Can be used to make either factors (varimax rotation) or
loadings (quartimax rotation) sparse
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Non-negative Matrix Factorization (NMF)

Idea: We can add constraints to the low-rank matrix
factorisation problem.

Non-negative matrix factorisation (NMF): Let 𝑞 < min(𝑝, 𝑛)
arg min

𝐖∈ℝ𝑝×𝑞,𝐇∈ℝ𝑞×𝑛
‖𝐗 −𝐖𝐇‖2𝐹 such that 𝐖 ≥ 0, 𝐇 ≥ 0

▶ 𝐖 and 𝐇 are again not uniquely identifiable.
▶ No analytic solution (the numerical problem is actually
NP-hard in general)

▶ Choice of 𝑞 not as straight-forward as for SVD
▶ Not directly applicable to data matrices with negative
entries (can be solved through translation)

▶ So, why even bother?
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Advantages of NMF

▶ Interpretability: As in the case of truncated SVD we are
adding layers, but now all layers are positive and each
layer adds information

▶ Clustering interpretation:
▶ The columns of𝐖 can be interpreted as cluster centroids
▶ Cluster membership of each observation is determined by
the columns of 𝐇

▶ Observation 𝑗 is assigned to the cluster 𝑘 such that
𝐻𝑘𝑗 > 𝐻𝑖𝑗 for all 𝑖 ≠ 𝑘
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Take-home message

▶ Bias in lasso estimates can be bad for predictive strength.
Using modified penalties can help

▶ Linear dimension reduction helps to factorise matrices
into more interpretable components

▶ By adding non-negativity constraints to the matrix
factorisation problem, NMF creates more interpretable
results and can be used for clustering at the same time
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