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Administrative



Projects

▶ Great job with the projects so far!
▶ Remember that 7.5 credits means you signed up for a
part-time job (20 hours per week)

▶ 6 hours lectures/presentations
▶ 14 hours for projects and reiteration of lecture material

▶ Keep in mind:
▶ The projects are meant to be open and challenging to
allow for multiple angles on the same topic

▶ There is help if you need/want it: Office hours, mails,
lecture pauses, …

▶ Tell me beforehand if you are going to miss a project
presentation
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Exam

▶ Exam will be distributed on 24th May before the end of
the course. Why? So you have an easier time getting a
hold of us for questions.

▶ You have three weeks for the exam, but it is not meant to
take three weeks to write it

▶ Hard deadline: 14th June
▶ Two parts:

1. Project reports: Determine pass or fail, i. e. 3 at Chalmers,
G at GU

2. Extra exercises to get higher grades, i. e. 4 or 5 at
Chalmers, VG at GU

▶ You need to pass the project reports to pass the course.
Extra exercises are optional but determine if you get a
higher grade.
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Project reports

▶ Project reports have to include the following
1. If you realise during or after the presentations that you
did some part wrong, you have to fix it for the exam

2. Summarise the main take home messages of your topic
(strengths/limitations of a method or
challenges/solutions of a problem)

3. Write conclusions/concrete thoughts on future work
where you give a specific description of a path forward (i.e.
what could you do, why, and what are expected results)

▶ Formalities
▶ Reproduction of the presentation slides is not enough
▶ We want to see that you gained understanding
▶ One A4 page text per project
▶ Figures/tables separate, but don’t overdo it. Include what
is meaningful
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Back to NMF and dimension
reduction



Recap: Best SVD approximation

Assume 𝐗 ∈ ℝ𝑝×𝑛. The SVD of 𝐗 is

𝐗 = 𝐕𝐃𝐔𝑇 ,

where 𝐕 ∈ ℝ𝑝×𝑝, 𝐃 ∈ ℝ𝑝×𝑝 and diagonal, and 𝐔 ∈ ℝ𝑛×𝑝.

Using only the first 𝑞 < min(𝑝, 𝑛) columns of 𝐕 and 𝐔, and the
first q rows and columns of 𝐃, leads to

𝐗𝑞 = 𝐕𝑞𝐃𝑞𝐔𝑇
𝑞 ,

the best rank-𝑞-approximation of 𝐗.

This approximation is best in terms of the Frobenius norm, i.e.

𝐗𝑞 = arg min
rank(𝐌)=𝑞

‖𝐗 −𝐌‖2𝐹 =
𝑝
∑
𝑖=1

𝑛
∑
𝑙=1
(𝑋𝑖𝑙 −𝑀𝑖𝑙)2
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Recap: Non-negative matrix factorization (NMF)

A non-negative matrix factorisation of 𝐗 with rank 𝑞 solves

arg min
𝐖∈ℝ𝑝×𝑞,𝐇∈ℝ𝑞×𝑛

‖𝐗 −𝐖𝐇‖2𝐹 such that 𝐖 ≥ 0,𝐇 ≥ 0

▶ Sum of positive layers: 𝐗 ≈
𝑞
∑
𝑗=1

𝐖⋅𝑗𝐇𝑇
⋅𝑗

▶ Non-negativity constraint leads to sparsity in basis (in𝐖)
and coefficients (in 𝐇) [example on next slides]

▶ NP-hard problem, i.e. no general algorithm exists
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SVD vs NMF – Example: Reconstruction

MNIST-derived zip code digits (𝑛 = 1000, 𝑝 = 256)
100 samples are drawn randomly from each class to keep the
problem balanced.

NMF 1 NMF 2 NMF 3 NMF 4 NMF 5

PCA 1 PCA 2 PCA 3 PCA 4 PCA 5

Red-ish colours are for negative values, white is around zero
and dark stands for positive values
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SVD vs NMF – Example: Basis Components

Large difference between
SVD/PCA and NMF basis
components

NMF captures sparse
characteristic parts while
PCA components capture
more global features.

NMF 6 NMF 7 NMF 8 NMF 9 NMF 10

NMF 1 NMF 2 NMF 3 NMF 4 NMF 5

PCA 6 PCA 7 PCA 8 PCA 9 PCA 10

PCA 1 PCA 2 PCA 3 PCA 4 PCA 5
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SVD vs NMF – Example: Coefficients
SVD coefficients

NMF coefficients

Note the additional sparsity in the NMF coefficients. 8/27



How to solve the NMF problem?

The NMF problem we considered was

arg min
𝐖∈ℝ𝑝×𝑞,𝐇∈ℝ𝑞×𝑛

‖𝐗 −𝐖𝐇‖2𝐹 such that 𝐖 ≥ 0,𝐇 ≥ 0

Most algorithms use two-block coordinate descent and solve
𝐖(𝑡) = arg min

𝐖≥0
‖𝐗−𝐖𝐇(𝑡−1)‖2𝐹 and 𝐇(𝑡) = arg min

𝐇≥0
‖𝐗−𝐖(𝑡)𝐇‖2𝐹

iteratively. It holds that

‖𝐗 −𝐖𝐇‖2𝐹 =
𝑝
∑
𝑖=1

‖𝐗𝑖⋅ −𝐖𝑖⋅𝐇‖22

=
𝑝
∑
𝑖=1

𝐖𝑖⋅(𝐇𝐇𝑇)𝐖𝑇
𝑖⋅ − 2𝐖𝑖⋅(𝐇𝐗𝑖⋅)𝑇 + ‖𝐗𝑖⋅‖22

Therefore, the NMF problem in𝐖 (given 𝐇) can be seen as 𝑝
independent non-negative least squares (NNLS) problems.
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Some notes on solving the NMF problem

▶ The problem is symmetric in𝐖 and𝐇 since

‖𝐗 −𝐖𝐇‖2𝐹 = ‖𝐗𝑇 −𝐇𝑇𝐖𝑇‖2𝐹
No separate algorithms needed for𝐖 and 𝐇.

▶ Algorithms have two crucial parts:
1. Initialisation of𝐖(0) and 𝐇(0)

2. Update rule for𝐖(𝑡) given 𝐇(𝑡−1) and 𝐇(𝑡) given𝐖(𝑡)

▶ Other cost functions are possible.
▶ Note: Cost functions determine the distribution of noise
▶ Frobenius norm implies Gaussian distribution
▶ An alternative for Poisson distributed data

𝐷(𝐗||𝐖𝐇) =
𝑝
∑
𝑖=1

𝑛
∑
𝑗=1

(𝑋𝑖𝑗 log
𝑋𝑖𝑗

(𝐖𝐇)𝑖𝑗
− 𝑋𝑖𝑗 + (𝐖𝐇)𝑖𝑗)

Resembles the Kullback-Leibler divergence and the
log-likelihood of Poisson-distributed data with mean
(𝐖𝐇)𝑖𝑗 for 𝑋𝑖𝑗 . 10/27



Least squares updates for NMF

When using the Frobenius norm as a cost function, one
possible update rule is alternating least squares (ALS): Solve
the unconstrained least squares problem

𝐙(𝑡) = arg min
𝐙∈ℝ𝑝×𝑞

‖𝐗 − 𝐙𝐇(𝑡−1)‖2𝐹

and set elementwise𝐖(𝑡) = max(𝐙(𝑡), 0). Analogous for 𝐇(𝑡).

▶ The method is cheap but can have convergence issues.
▶ Can be useful for initialisation (some steps of ALS first,
then another algorithm)

▶ Alternating non-negative least squares (ANNLS) is an
alternative that solves the constrained least squares
problem exactly. More stable, but much slower.
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Multiplicative updates for NMF

Multiplicative updates (MU) have been popularized by Lee
and Seung (1999). Their form depends on the cost function. In
the following 𝐀 ∘ 𝐁 denotes elementwise multiplication of
matrices and division is also meant elementwise.

1. Frobenius norm:

𝐖←𝐖 ∘ 𝐗𝐇𝑇

𝐖𝐇𝐇𝑇 and 𝐇 ← 𝐇 ∘ 𝐖𝑇𝐗
𝐖𝑇𝐖𝐇

2. Divergence:

𝑊𝑖𝑘 ←𝑊𝑖𝑘
∑𝑛

𝑙=1𝐻𝑘𝑙𝑋𝑖𝑙/(𝐖𝐇)𝑖𝑙
∑𝑛

𝑙=1𝐻𝑘𝑙
and

𝐻𝑘𝑙 ← 𝐻𝑘𝑙
∑𝑝

𝑖=1𝑊𝑖𝑘𝑋𝑖𝑙/(𝐖𝐇)𝑖𝑙
∑𝑝

𝑖=1𝑊𝑖𝑘
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Multiplicative updates for NMF and gradient descent

Multiplicative updates are a special case of gradient descent.
Let 𝐹(𝐖,𝐇) = ‖𝐗 −𝐖𝐇‖2𝐹 then

∇𝐖𝐹 = 𝐖𝐇𝐇𝑇 − 𝐗𝐇𝑇

∇𝐇𝐹 = 𝐖𝑇𝐖𝐇−𝐖𝑇𝐗

Gradient descent in𝐖 for step-length 𝛼 performs

𝐖←𝐖− 𝛼∇𝐖𝐹

It can be shown that

𝛼 = 𝐖
𝐖𝐇𝐇𝑇

is an admissible step length and yields the MU for𝐖.
Note: Analogous results hold for the divergence.
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Initialising NMF

NMF can be initialised in multiple ways
▶ Random initialisation: Entries in𝐖 and 𝐇 are uniformly
distributed in [0, 1]

▶ Clustering techniques: e.g. run k-means with 𝑞 clusters
on data, store cluster centroids in𝐖) and 𝐻𝑘𝑙 ≠ 0 ⇔ 𝐗⋅𝑙
belongs to cluster 𝑘

▶ SVD: Determine best rank-𝑞-approximation∑𝑞
𝑖=1 𝑑𝑖𝑖𝐯𝑖𝐮𝑇𝑖 ,

note that
𝑑𝑖𝑖𝐮𝑖𝐯𝑇𝑖 = ([+𝑑𝑖𝑖𝐮𝑖]+[+𝐯𝑇𝑖 ]+ + [−𝑑𝑖𝑖𝐮𝑖]+[−𝐯𝑇𝑖 ]+)

− ([+𝑑𝑖𝑖𝐮𝑖]+[−𝐯𝑇𝑖 ]+) + [−𝑑𝑖𝑖𝐮𝑖]+[+𝐯𝑇𝑖 ]+)
and initialize NMF by summing only the positive parts or
the larger of the positive parts.
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Kernel-methods



Kernels

A kernel is a function 𝑘(𝐱, 𝐲) → ℝ that maps two elements of
the feature space to a real number, such that

𝑘(𝐱, 𝐲) = 𝑘(𝐲, 𝐱) and 𝑘(𝐱, 𝐲) ≥ 0
Can be seen as a (possibly non-linear) generalized inner
product without bilinearity.
Note: This is similar but not exactly the same as the kernels
used for kernel density estimation. There, 𝑘(𝐱) ∈ ℝ with

𝑘(𝐱) ≥ 0, ∫𝑘(𝐱)d𝐱 = 1,

𝑘((𝑥1, … , 𝑥𝑝)𝑇) =𝑘((−𝑥1, … , 𝑥𝑝)𝑇) = ⋯ = 𝑘((𝑥1, … , −𝑥𝑝)𝑇)
𝑘((𝑥1, … , 𝑥𝑝)𝑇) =𝑘((𝑥𝜍(1), … , 𝑥𝜍(𝑝))𝑇)

for any permutation 𝜎 of {1, … , 𝑝}.
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Examples of kernels

▶ Linear kernel 𝑘(𝐱, 𝐲) = 𝐱𝑇𝐲
▶ Polynomial kernel 𝑘(𝐱, 𝐲) = (𝛾𝐱𝑇𝐲 + 𝑟)𝑚
▶ Radial basis function (RBF) kernel
𝑘(𝐱, 𝐲) = exp (−‖𝐱 − 𝐲‖22

2𝜎2 )

▶ Laplacian kernel 𝑘(𝐱, 𝐲) = exp(−𝛼‖𝐱 − 𝐲‖22)

Note: There are kernels on more general spaces than ℝ𝑝, e.g.
on strings.
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Mercer/positive definite kernels

For a kernel 𝑘(𝐱, 𝐲), and a set of features 𝐱1, … , 𝐱𝑛 define the
so-called Gram matrix

𝐊 =
⎛
⎜⎜
⎝

𝑘(𝐱1, 𝐱1) ⋯ 𝑘(𝐱1, 𝐱𝑛)
⋮ ⋮

𝑘(𝐱𝑛, 𝐱1) ⋯ 𝑘(𝐱𝑛, 𝐱𝑛)

⎞
⎟⎟
⎠

If 𝐊 is positive-definite for any 𝑛 and all sets of features, then
𝑘(𝐱, 𝐲) is called a Mercer or positive definite kernel.
Note: All kernels shown before are positive definite.
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Importance of positive definite kernels

If the gram matrix is positive definite there is an orthogonal
matrix 𝐔 ∈ ℝ𝑛×𝑛 and a diagonal matrix 𝚲 ∈ ℝ𝑛×𝑛 such that

𝐊 = 𝐔𝑇𝚲𝐔.

Define 𝝓(𝐱𝑙) = 𝚲1/2𝐔⋅𝑙, then

𝐾𝑙𝑘 = 𝝓(𝐱𝑙)𝑇𝝓(𝐱𝑘)

A result known as Mercer’s theorem ensures that for every
positive definite kernel 𝑘(𝐱, 𝐲) there is a mapping 𝝓 from the
feature space to ℝ𝑝 (with 𝑝 = ∞ allowed) such that

𝑘(𝐱, 𝐲) = 𝝓(𝐱)𝑇𝝓(𝐲)
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Example of Mercer’s theorem

Consider the polynomial kernel for 𝛾 = 𝑟 = 1 and 𝑚 = 2 in a
two-dimensional feature space

𝑘(𝐱, 𝐲) = (𝐱𝑇𝐲 + 1)2 = (1 + 𝑥1𝑦1 + 𝑥2𝑦2)2

= 1 + 2𝑥1𝑦1 + 2𝑥2𝑦2 + (𝑥1𝑦1)2 + (𝑥2𝑦2)2 + 2𝑥1𝑦1𝑥2𝑦2

Define
𝝓(𝐱) = (1,√2𝑥1, √2𝑥2, 𝑥21 , 𝑥22 , √2𝑥1𝑥2)𝑇

then
𝑘(𝐱, 𝐲) = 𝝓(𝐱)𝑇𝝓(𝐲)

Using this kernel is therefore equivalent to working in a
six-dimensional feature space.
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Advantages of using kernels

Summary
Using a positive definite kernel to measure the similarity
between 𝑚-dimensional feature vectors is equivalent to

1. Using a (potentially non-linear) mapping to transform the
feature vectors to 𝝓(𝐱) ∈ ℝ𝑝 with 𝑝 ≥ 𝑚

2. Using the Euclidean scalar product to measure similarity
between transformed feature vectors 𝝓(𝐱)

The kernel-trick is to implicitly work in the
higher-dimensional space of the 𝝓(𝐱), but to only evaluate
kernels in the original feature space and therefore avoid
transformations to a high-dimensional space.
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Recap: PCA

Recall: In PCA, the goal was to find the directions of maximum
variance of the data matrix 𝐗 ∈ ℝ𝑛×𝑝 by decomposing the
covariance matrix (with 𝐕 ∈ ℝ𝑝×𝑝)

𝚺 = 𝐗𝑇𝐗
𝑛 = 𝐕𝚲𝐕𝑇

Goals are

▶ Dimension-reduction (e.g. for visualisation)
▶ Finding important directions in the data relevant to e.g.
classification or clustering
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Limitations of PCA

PCA is linear and cannot uncover non-linear structures
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Kernels and PCA (I)

Idea: Use the kernel-trick to define augmentations implicitly
and keep computations manageable.
Given a positive definite kernel 𝑘(𝐱, 𝐲), how can we perform
PCA in the space of 𝝓(𝐱)?
Assume we have access to 𝝓(𝐱𝑙) for 𝑙 = 1, … , 𝑛 and they are
centred. Then we can perform PCA

𝚺𝝓 = 1
𝑛

𝑛
∑
𝑙=1

𝝓(𝐱𝑙)𝝓(𝐱𝑙)𝑇 = 𝐔𝚲𝐔𝑇

where 𝐮𝑖 are the principal component axes and 𝜆𝑖 the
corresponding variances.
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Kernels and PCA (II)

Note that

𝚺𝝓𝐮𝑖 =
1
𝑛

𝑛
∑
𝑙=1

𝝓(𝐱𝑙)𝝓(𝐱𝑙)𝑇𝐮𝑖 = 𝜆𝑖𝐮𝑖

⇔ 𝐮𝑖 =
𝑛
∑
𝑙=1

𝝓(𝐱𝑙)𝑇𝐮𝑖
𝜆𝑖𝑛

𝝓(𝐱𝑙) =
𝑛
∑
𝑙=1

𝑎𝑖𝑙𝝓(𝐱𝑙)

Using this representation of 𝐮𝑖 in 𝝓(𝐱𝑘)𝑇𝚺𝝓𝐮𝑖 = 𝜆𝑖𝝓(𝐱𝑘)𝑇𝐮𝑖
leads to

1
𝑛

𝑛
∑
𝑙=1

𝝓(𝐱𝑘)𝑇𝝓(𝐱𝑙)⏟⎵⎵⏟⎵⎵⏟
=𝑘(𝐱𝑘,𝐱𝑙)

𝑛
∑
𝑗=1

𝑎𝑖𝑗 𝝓(𝐱𝑙)𝑇𝝓(𝐱𝑗)⏟⎵⎵⏟⎵⎵⏟
=𝑘(𝐱𝑙,𝐱𝑗)

= 𝜆𝑖
𝑛
∑
𝑙=1

𝑎𝑖𝑙 𝝓(𝐱𝑘)𝑇𝝓(𝐱𝑙)⏟⎵⎵⏟⎵⎵⏟
=𝑘(𝐱𝑘,𝐱𝑙)

Set 𝐚𝑖 = (𝑎𝑖𝑗)𝑗 and use the Gram matrix 𝐊 = (𝑘(𝐱𝑖, 𝐱𝑗))𝑖𝑗 , then
𝐊2𝐚𝑖 = 𝜆𝑖𝑛𝐊𝐚𝑖 ⇔ 𝐊𝐚𝑖 = 𝜆𝑖𝑛𝐚𝑖
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Kernels and PCA (III)

The coefficients 𝑎𝑖𝑗 to determine the principal component
directions 𝐮𝑖 in the high-dim. space of the 𝝓(𝐱𝑖) can therefore
be found by

▶ Solving the eigenvalue problem 𝐊𝐚𝑖 = 𝜆𝑖𝑛𝐚𝑖
▶ Requiring that

1 = 𝐮𝑇𝑖 𝐮𝑖 =
𝑛
∑
𝑙,𝑘=1

𝑎𝑖𝑙𝑎𝑖𝑘𝝓(𝐱𝑙)𝑇𝝓(𝐱𝑘) = 𝐚𝑇𝑖 𝐊𝐚𝑖

The 𝑖-th principal component projection of an arbitrary
mapped feature vector 𝝓(𝐱) is therefore

𝝓(𝐱)𝑇𝐮𝑖 =
𝑛
∑
𝑙=1

𝑎𝑖𝑙𝑘(𝐱, 𝐱𝑙)

This procedure is called kernel-PCA (kPCA).
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Example: kPCA
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Take-home message

▶ NMF is a powerful matrix factorisation technique offering
both sparsity and interpretability

▶ Kernels in combination with Mercer’s theorem are a
powerful tool to make high-dimensional computation
manageable

▶ kPCA is a first example demonstrating the power of
kernels
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