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Recap: kernel PCA

Given a set of m-dimensional feature vectors x, ...,x, and a
kernel k(x,y), form the Gram matrix K = (k(x;,x;));; and
perform

» Solve the eigenvalue problem Ka; = A;na; for A; and a;

» Scale a; such that
alKa; = 1

The projection of a feature vector x onto the i-th principal
component in the implicit space of the ¢(x) is

(%) = D ayk(x,x))
i=1
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Centring and kernel PCA

» The derivation assumed that the implicitly defined
feature vectors ¢(x;) were centred. What if they are not?
» In the derivation we look at scalar products ¢(x;)T ¢(x;).

Centring in the implicit space leads to
T

(¢<xi> ) ¢<x,~>) (qs(xl) ) ¢<xj>) -
j=1 =
1 n 1 n 1 n n
Kil—;ZlKﬁ—gleﬂ =2 Zle
J= J= = m=

» Using the centring matrix J = I,, — =117, centring in the
n
implicit space is equivalent to transforming K as
K' =JKJ

> Algorithm is the same, apart from using K’ instead of K.



Dimension reduction while
preserving distances



Preserving distance

Like in cartography, the goal of dimension reduction can be
subject to different sub-criteria, e.g. PCA preserves the
directions of largest variance.

What if we want to preserve the distance while reducing the
dimension?

For given vectors x, ..., X,, € RP we want to find

Y1, > Yn € R™ where m < p such that

I1x: —xill2 = [lyi — vill2
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Distance matrices and the linear kernel

Given a data matrix X € R™*P, note that

T T
Xl Xl e Xl Xl’l
xx'=| : : |=K
T T
XpXp ot XpXy

which is also the Gram matrix K of the linear kernel.

Let D = (||x; — X,,||2)1m be the distance matrix in the Euclidean
norm. Note that

2 _ T T T
%) — Xl5 = X) X| — 2X) Xy + XXy
and (with element-wise exponentiation)

1 1 1
—EDZ =XXT — 51 diag(XXT) — > diag(XX™1T.

Through calculation it can be shown that withJ =1, — %IIT

— 1 2
K_J( 2D)J
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Finding an exact embedding

» Can be shown that if K is positive semi-definite then
there exists an exact embedding in
m = rank(K) < rank(X) < min(n, p) dimensions.
1. Perform PCA on K = UAUT
2. If m = rank(K), set

Y= (\//Tlul,...,1 [Apu,,) € R™™

3. The rows of Y are the sought-after embedding, i.e. for
y; =Y, it holds that

1% — x> = lly: — vull2

» Note: This is not guaranteed to lead to dimension
reduction, i.e. m = p possible. However, usually the
internal structure of the data is lower-dimensional and
m < p.
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Multi-dimensional scaling

» Keeping only the first ¢ < m components of y; is known
as classical scaling or multi-dimensional scaling (MDS)
and minimizes the so-called stress or strain

i#j

12
d(D,Y) = (Z(Dij —lyi — Yj||2)2>

» Results also hold for general distance matrices D as long
as 44, ..., 4,, > 0 for m = rank(K). This is called metric
MDS.
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Lower-dimensional data in a
high-dimensional space




A problematic geometry

Swiss roll (n = 1000) Ideal unrolled graph PCA
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What is the problem here?

» The data has an intrinsic structure that is quite simple
(2D) in itself, but much more complex in the
three-dimensional space

» To understand this data set properly we need to learn
about the local structure of the data

» PCAis a global method and will always look at all data

» kernel PCA is a local method but the chosen Gaussian
kernel does not represent the structure of the data well

» Classical scaling performs roughly like PCA

» What is the issue? All approaches measure distances in
the Euclidean norm in three dimensions.
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Data-driven distance measure (1)

We can create a local, data-driven distance measure by
looking at the k nearest neighbours of a data point.

Swiss roll (n = 1000) Nearest neighbours (k = 6)
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Data-driven distance measure (Il)

Computation

1. For a data point x; find the k nearest neighbours

2. Construct a graph between data points and their k
nearest neighbours, weighting each edge by the
Euclidean distance

3. To measure distance between data points measure their
geodesic distance, i.e. find the shortest path in the
weighted graph and sum up the weights

This creates a distance matrix D; between data points that is
more adapted to the actual geometry.

To embed the geometry in a lower-dimensional space, MDS
can be applied to Dg.

10/20



Isomap

The combination of geodesic, local distance measure and
classical scaling is called Isomap.

Isomap (knn = 6) Isomap (knn = 20)
: S
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Caveats of Isomap

» The distance between two vectors in Euclidean space can
always be measure, but it can happen that there is no
connection in the graph between two data points.

» When? If the graph of the data falls into two (or more)
components. Distance is considered infinite in these
cases.

» Implementations typically return a different embedding
for each component

» Isomap has problems with datasets that have varying
density

» Number of nearest neighbours has to be carefully tuned
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t-distributed Stochastic Neighbour Embedding (tSNE)

t-distributed stochastic neighbour embedding (tSNE) follows
a similar strategy as Isomap, in the sense that it measures
distances locally.

Idea: Measure distance of feature x; to another feature x;
proportional to the likelihood of x; under a Gaussian
distribution centred at x; with an isotropic covariance matrix.

13/20



Computation of tSNE

For feature vectors xy, ..., x,,, set

exp(—|Ix; — x;13/(251)) 2 = Dij + Py
¥ et exp(—[1%; — x¢[[3/(207) T
The variances ¢ are chosen such that the perplexity (here:

approximate number of close neighbours) of each marginal
distribution (the p;; for fixed I) is constant.

Dbip = pu=0

In the lower-dimensional embedding distance between yy,...,y, is
measured with a t-distribution with one degree of freedom or
Cauchy distribution

-1
o = 1+ lly: —will3)
il — -1
Dz A+ Ny —yil3)

To determine the y; the KL divergence between the distributions
P = (p;p)i; and Q = (g;1);; is minimized with gradient descent

KL(P||Q) = 3 pylog £it 14/20
i#l qi1

and qu =0



Revisiting the Swiss roll with tSNE

Swiss roll (n = 1000) Isomap (knn = 6) tSNE (perplexity = 30)
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» Results are similar to Isomap

» Slightly more condensed, but manages the main goal to
unroll data
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A more impressive example of tSNE

Isomap (knn = 20) tSNE (perplexity = 20)

Iso2
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Caveats of tSNE

tSNE is a powerful method but comes with some difficulties as
well

» Convergence to local minimum (i.e. repeated runs can
give different results)
» Perplexity is hard to tune (as with any tuning parameter)

Let's see what tSNE does to our old friend, the moons dataset.
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Influence of perplexity on tSNE

Transformed with tSNE
Varying perplexity
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tSNE multiple runs

Transformed with tSNE

Perplexity = 20, multiple runs

1 2 3 4 5
40
20
ANES RN %
\ - :
% 6 7 8 9 10
=40 {
20
. ‘\ ’/_.‘. f""‘\‘ /‘\
-20 /‘.\ ../ ('
20 0 20 -20 0 20 -20 0 20  -20 0 20  -20 0 20
{SNEL

19/20



Take-home message

» Dimension reduction has multiple sub-goals, like
preserving structure

» Data that has a lower-dimensional structure in a
high-dimensional room can be tricky to uncover

» Isomap and tSNE are powerful dimension reduction
techniques that also uncover structure, but be careful
about applying them blindly
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