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Administrative

» There will be no project 5!
» Only projects 1-4 will be part of the exam.

» However, the topics discussed today and next week could
still be part of another exam question

» No office hours next week, but there will be some after
the course is over (dates and times to be announced)
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Short re-cap: Clustering

The goal of clustering is to find coherent groups in data.
Clusters are generally considered to be dense,
well-separated groups of data.

What shapes qualify as a cluster depends on the algorithm

» convex equally sized groups (e.g. k-means)

» convex or concave equally dense groups (e.g. DBSCAN,
single-linkage hierarchical clustering)

Clustering is typically distance-based, making it difficult to
use in high-dimensions
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High-dimensional clustering

Remember: Nothing is close in high-dimensional spaces
Assume vectors x € RP are uniformly distributed in the
hypercube [0,1]P. For 0 <t <1 consider

q=P(x; <t,.,xp <t)=tP = t=g"P
To ensure that g percent of vectors are contained in the cube
[0,¢]P means that t has to be chosen as

q=1% q=10%

t =01 t =0.32
t =022 t=046
0 t=032 t=0.56
00 (=063 t=0.79
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More than half of the unit cube needs to be covered to cover

1% of random vectors in high dimensions! 3z



Solutions for high-dimensional clustering

What can be done about this dilemma?

1. Feature selection: Deciding on a subset of the original
features

» There is no response in clustering, making it harder to
judge feature quality

» Variance or entropy-based methods remain, but typically
consider variance across all samples. Features very
relevant to only a subset might get filtered out

2. Feature transformation: Combining existing features
while reducing dimension

» e.g. PCA, Isomap, tSNE, ...

» Output is harder to interpret, e.g. what does it mean if
observations cluster on their first and second tSNE
coordinate?

» Since features are transformed, it is not guaranteed that

uninformative features are actually filtered out .



Subspace clustering




Data in many subspaces
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Subspace clustering

Instead of selecting single features, sometimes it would be
better if we could select whole subspaces of features.

How can these be found?

» Itis infeasible to look at all possible subspaces
> As in combinatorial clustering or stepwise selection
methods in regression there are two approaches
1. Top-down: Start with all dimensions and search for
relevant dimensions
2. Bottom-up: Start with a grid in each dimension and
combine them step-wise

Examples:

» CLIQUE: Bottom-up algorithm; grid-based and
density-based

» ProClus: Top-down algorithm; variant of k-medoids -



The CLIQUE algorithm

Apriori principle: A dense region in g dimensions should lead to
dense regions in every (g — 1)-dimensional projection.
Computational procedure
Input parameters: A positive integer mand 1>t >0

1. For 1D:

11 Partition each dimension i = 1,..., p into m intervals and

assign the one-dimensional projections of the data
1.2 Keep those with sample density > ¢

1.3 Among the remaining intervals, merge neighbouring ones
2. Moving from dimension g — 1 to g:
21 Create volumes in g dimensions by combining those found
in g — 1 dimensions.
2.2 Keep those with sample density > 7
2.3 Among the remaining volumes, merge neighbouring ones

3. Post-processing: Filter out remaining regions with low density

and try to enlarge found clusters as much as possible T



Subspace clustering: CLIQUE
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The ProClus algorithm

Computational procedure
Input parameters: The number of K and the average number of
dimensions d > 0 in which clusters reside

1. Initialising: Find M > K medoids in a greedy fashion and
randomly sample K of these

2. lterate: Until no change within some threshold

2.1 For each medoid: Find best dimensions (> 2) where data is
dense (dimensions in which average distance to the medoid is

smaller than the overall average distance)

2.2 Assign data points to medoids using the ¢; norm
restricted to the selected dimensions

2.3 Evaluate clustering quality and remove medoids with
small numbers of points. Replace them with others from
the initial set of medoids

3. Refining: Determine the best dimensions once more for each

medoid and assign points to clusters

Aggarwal et al. (1999) Fast algorithms for projected clustering. SIGMOD '99 Proceedings of the 1999 ACM SIGMOD
international conference on Management of data
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https://dl.acm.org/citation.cfm?id=304188
https://dl.acm.org/citation.cfm?id=304188

Subspace clustering: ProClus

dimo diml dim2

it Pravepy

owip

Twip

cuip

gwip

puip

10/27



Notes on subspace clustering

» Pro: Can deal with complex structures and
high-dimensions

» Pro: The variable selection/subspace discovery that is
performed per cluster can lead to mechanistic insight
into a problem

» Con: Hard to tune in high-dimensions since it is difficult
to get an understanding for the data (e.g. grid-size,
average number of subspace dimensions, ...)

» Some adaptive algorithms exist to e.g. estimate optimal
grid-size from data

11/27



Spectral methods




Starting point

» Many clustering methods focus on global behaviour of
the data (e.g. GMM, k-means, hierarchical clustering with
complete linkage)

» To adapt to local behaviour hierarchical clustering with
single linkage and the group of density-based algorithms
(e.g. DBSCAN, OPTICS) showed some success

» In dimension reduction building a graph of the data
based on k nearest neighbours helped to capture local
behaviour

» Idea: Build a graph representing local behaviour in the
data and find good cut points to partition the graph into
K clusters.
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A graph from data

Recall: In the first step of Isomap, a weighted undirected
graph was built based on the k nearest neighbours of a data
point.

A weighted undirected graph can be constructed from a
weighted adjacency matrix W.

1. For a data point x;, find the k nearest neighbours.

2. Set wy, = g(|lx; — xy,l>) where g is a non-negative
monotone function and X, i=1,..,k are the neighbours
of x;. In addition, set all wy,, = 0 for m & {I, ..., i} (in
particular wy; = 0).

3. Construct a graph where each node represents a data
point x; and there is a weighted edge between x; and x,,
if wy,, > 0.

In Isomap: g(z) = z. In the following: g(z) = exp(—z?/c), which

for ¢ = oo is interpreted as g(0) = 0 and g(z) =1 forz > 0. B



Node degree and the graph Laplacian

Given the weighted adjacency matrix W, the degree of node |
describes how well-connected a node is

n
d= ) wyy
m=1

and the degree matrix is D = diag(d;, ..., d,,).
Define now the graph Laplacian as

L=D-W

Interpretation: If heat were to be distributed from node to
node with flow speed described by W, then L takes the role of
the discretised Laplacian operator V? in the heat equation for
the heat distribution ¢

dé + kL =0

dt
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Graph cutting

A good separation of the graph into two parts A and B is one

where flow between the parts is minimized and neither is
chosen too small, i.e.

1 1 ‘
(Vol(A) + vol(B)) Z Wiy, — min

leA,meB
where
n
VOI(A) = Z Z Wi = Z dl
leAm=1 leA
Raw data and graph Graph edge weights Clustering result
P —— H.: 5 is
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Finding good cut points

Finding the best cut point would require to check all possible
cuts and is an NP-hard problem.

Observations and theorem

1. The graph Laplacian is symmetric and positive
semi-definite, since y’Ly = Z?J.zl w;; (; — ¥)>

2. If there are K connected components of the graph, then
the set of eigenvectors of L with eigenvalue 0 is spanned
by 1,, fork=1,..,K, where 1, = (10 € Ay));.

In practice

» There will not be K separate connected components

» However, if K clusters exist, the smallest K eigenvalues
will be near zero and the and corresponding eigenvalues
close to indicator vectors.
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Spectral Clustering

1. Determine the weighted adjacency matrix W and the graph

Laplacian L

2. Find the K smallest eigenvalues of L that are near zero and

well separated from the others

3. Find the corresponding eigenvectors U = (uy, ..., ug) € R™K
and use k-means on the rows of U to determine cluster

membership

Raw data (n = 500
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Laplacian Eigenmaps for dimension reduction

» In addition to clustering, the eigenvectors of the Laplacian can
also be used for dimension reduction.

» For each component, use the g eigenvectors corresponding to
the g smallest non-zero eigenvalues as an embedding of the
original data.

» Laplacian Eigenmaps can be shown to optimally preserve the
local behaviour on average, but not necessarily global

behaviour.
S curve (n = 2000) Laplacian Eigenmaps Isomap
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Network graphs




Network Graphs

Some common network graphs that are estimated from data on one
set of variables (the nodes) are

» Correlation graph: Undirected edges weighted by the
correlation between variables.
Caveat: Correlation can be due to a common ancestor.

» Partial correlation graph: Undirected edges weighted by the
correlation between variables given all other variables. This
measures how much correlation is left once all other variables
are controlled for.

» Directed acyclic graphs: Weighted directed egdes without
cycles. Can describe causality but are much harder to estimate.

As in the linear models class, note that

Correlation does not imply causality.
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Partial correlation graphs

Let each feature/variable denote a node in a graph, e.g.
X1, ..., Xp for feature vectors x € R?.
The weight of the edge between variables x; and x; is the
partial correlation

Corr(x;, Xj|x, k # 1, j) = pij = pji

» If p;; = 0 there is no edge between x; and x;.

> p;j captures the information left after controlling for x;
for k # 1, j, i.e. the correlation that cannot be explained
through a common ancestor or connection
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Partial correlation and the normal distribution

Assume that feature vectors are distributed as
x ~ N(0,X)
them Q = =71 is called the precision matrix. It can be shown
Wi

> o= ————

» With x_; = (X1, . s Xj_1, Xit1, w3 Xp)

CU. . 1
p(x;|x_;) =N (—Z w—l.J_xj, w—)
12

j#i
It is therefore enough to estimate the precision matrix and

shows that if 0 = w;; = p;; then there is no dependence of x;
on x;, and vice versa.
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Estimating the precision matrix

It can be shown that the likelihood of the precision matrix Q
given the empirical covariance matrix

1(Q) = log(|Q|) — tr(EQ)

» Can be used to estimate Q with iterative methods.

» In general, all entries will be non-zero and therefore all
edges will be present in the resulting network.
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Precision matrix and graph structure

1. For a known graph structure I where T;; € {0, 1} the
constrained problem

argmin —1(Q) subjectto w;; =0 %;=0
Q

can be solved.
2. If the graph structure is unknown lasso regularisation can

help to remove some edges. This leads to

arg min —[(Q) + 4 Z 21

Q i<j

which can be solved with neighbourhood
regression-based lasso or gradient-based lasso. This is
called the Graphical lasso (glasso).

Note: In the R packages they use p for the regularisation

parameter
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Example of network estimation

Assume the following (made-up) empirical covariance matrix
and graph structure

10 1 5 4 1 1 01

PN 1 10 2 6 1 1 1 0

Y= and T'=
5 2 10 3 01 1 1
4 6 3 10 1 01 1

Direct estimate Known graph structure Estimated graph structur
A=1
(] ()

— W
Partial correlation-1 90 -05 00 05 1.0 2427



Graphical lasso: More advanced example

A=0 A=5
Protein flow
cytometry data
(n = 7466 cells, Eomreration
p = 11 proteins) I1<°
0.5

Network was estimated
repeatedly from the
covariance matrix to
show the effect of
regularisation on
structure estimation
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Notes on Graphical lasso

» As with any lasso method, the two main caveats are
1. If too many variables are highly correlated, the network
graph cannot be identified
2. Is the true data generating process sparse?
» Bootstrapping and re-running the network estimation
often can help to get more stable results
» If data is too high-dimensional, pre-processing such as
filtering can be necessary
» Another approach for big-n: If a network graph has fallen
into K components for a certain 4,, then the Graphical
lasso can be run on each component separately for
A> Ao
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Take-home message

» Subspace clustering is class of algorithms that try to find
clusters that live in subspaces of features

» Spectral embedding and clustering uses similar ideas to
Isomap but exploits the spectral/eigenvalue
decomposition of the graph Laplacian

» Graph structures are highly versatile and can be used in
different contexts

» Graphical lasso is one of many network estimation
algorithms using the lasso to find a sparse network
structure
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