Lecture 15: Large-scale methods for data analysis

Felix Held, Mathematical Sciences

MSA220/MVE440 Statistical Learning for Big Data

23rd May 2019

UNIVERSITY OF GOTHENBURG

The take-home exam will be distributed on Monday morning, 27th May

- At that point we will also publish the remaining project presentation summaries
- …and announce office hours!

Challenges in large-scale data

- ▶ Large-scale data can be both big-*n* and big-*p*
- When doing regression in n ≫ p typically all p-values go to zero, i.e. statistical testing tells us that every coefficient, (almost) no matter how small its effect size, has statistical significance
- Not very surprising, but be careful to not confuse statistical significance with practical relevance
- Focus should be on confidence intervals and effect size. Point predictions and p-values have deficiencies even in small sample datasets.
- Another major issue is computability. When data grows large, standard computations can get infeasibly slow

Low-rank approximations for matrices

Low-rank approximations

Low-rank approximations of matrices become very important to make large-scale data manageable

 $\mathbf{X}_{n \times p} \approx \mathbf{A}_{n \times r} \cdot \mathbf{B}_{r \times p}$

- Algorithms to determine A and B discussed in the lecture: Low-rank SVD and low-rank NMF
- ► Works best if original data in X is approximately of rank q ≪ min(n, p)
- Use-cases: X could be a really large data matrix, but it could also come from an intermediate calculation, e.g. the Gram matrix of a kernel or a distance matrix
- ▶ What if *n* and *p* are large?
- Idea: Determine an approximate low-dimensional basis for the range of X and perform the matrix-factorisation in the low-dimensional space.

How can we find an approximate low-dimensional basis for the range of **X**?

We will use **random projections**: Let ω_i for i = 1, ..., q be random vectors (e.g. with standard normal entries). The vectors

$$\mathbf{y}_i = \mathbf{X}\boldsymbol{\omega}_i$$

are called random projections.

- Random vectors are independent with high probability
- The y_i are independent randomly weighted linear combinations of the columns of X

Motivation:

Johnson-Lindenstrauss lemma (1984)

Given $0 < \varepsilon < 1$ and an integer n let

$$q \geq \frac{4\log(n)}{\varepsilon^2/2 - \varepsilon^3/3}$$

be an integer. For every set of points $\mathbf{x}_1, ..., \mathbf{x}_n$ in \mathbb{R}^p , there is a mapping $f : \mathbb{R}^p \mapsto \mathbb{R}^q$ such that for any $\mathbf{x}_i, \mathbf{x}_j$

$$(1-\varepsilon) \|\mathbf{x}_i - \mathbf{x}_j\|_2^2 \le \|f(\mathbf{x}_i) - f(\mathbf{x}_j)\|_2^2 \le (1+\varepsilon) \|\mathbf{x}_i - \mathbf{x}_j\|_2^2$$

Note: The result is **independent of** *p*.

Johnson-Lindenstrauss lemma (II)

п	ε	$q_{ m min}$
50	0.05	12950
	0.1	3353
100	0.05	15 244
	0.1	3947
1000	0.05	22867
	0.1	5920

Note: In practice, the dimension of the data is reduced to any useful dimension. However, be aware that the theoretical guarantees potentially are lost.

Random projection

There are multiple possibilities how the map f in the **Johnson-Lindenstrauss theorem** can be found.

Let $\mathbf{X} \in \mathbb{R}^{n \times p}$ be a data matrix and q the target dimension.

Gaussian random projection: Set

$$\Omega_{ij} \sim N\left(0, \frac{1}{q}\right)$$
 for $i = 1, \dots, p, j = 1, \dots, q$

▶ **Sparse random projection:** For a given *s* > 0 set

$$\Omega_{ij} = \sqrt{\frac{s}{q}} \begin{cases} -1 & 1/(2s) \\ 0 & \text{with probability} & 1 - 1/s \\ 1 & 1/(2s) \end{cases}$$

for i = 1, ..., p, j = 1, ..., q where often s = 3(Achlioptas, 2003) or $s = \sqrt{p}$ (Li et al., 2006)

then $\mathbf{Y} = \mathbf{X} \mathbf{\Omega} \in \mathbb{R}^{n \times q}$ is a random projection for **X**.

Finding a low-dimensional basis (III)

Back on track: How can we find an approximate low-dimensional basis for the range of $\mathbf{X} \in \mathbb{R}^{n \times p}$?

Assume $q < \min(n, p)$, $\Omega \in \mathbb{R}^{p \times q}$ is a random projection matrix and $\mathbf{Y} = \mathbf{X}\Omega$.

A q-dimensional subspace of the range of \mathbf{X} can be found by orthonormalising \mathbf{Y} using e.g. the **QR-decomposition**

 $\mathbf{Y} = \mathbf{Q}\mathbf{R}$

where $\mathbf{Q} \in \mathbb{R}^{n \times q}$ has orthogonal columns and $\mathbf{R} \in \mathbb{R}^{q \times q}$ is upper-triangular.

It can be shown that

$\mathbf{X} \approx \mathbf{Q} \mathbf{Q}^T \mathbf{X}$

where $\mathbf{Q}\mathbf{Q}^{T}$ is a projection matrix to a *q*-dimensional space.

Original goal: Apply SVD in cases where both *n* and *p* are large. **Idea:** Determine an approximate low-dimensional basis for the range of **X** and perform the matrix-factorisation in the low-dimensional space.

- Using a random projection $\mathbf{X} \approx \mathbf{Q}\mathbf{Q}^T\mathbf{X} = \mathbf{Q}\mathbf{T}$
- ▶ Note that $\mathbf{T} \in \mathbb{R}^{q \times p}$
- Calculate the SVD of $\mathbf{T} = \mathbf{U}_0 \cdot \mathbf{D} \cdot \mathbf{V}^T$

```
q \times q \quad q \times q \quad q \times q
```

• Set $\mathbf{U} = \mathbf{Q}\mathbf{U}_0 \in \mathbb{R}^{n \times q}$, then $\mathbf{X} \approx \mathbf{U}\mathbf{D}\mathbf{V}^T$

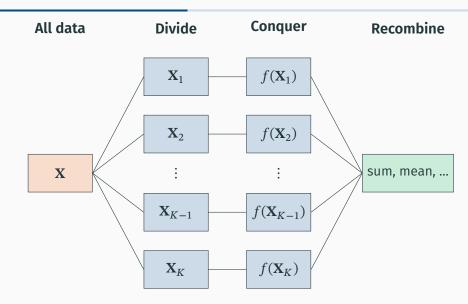
The SVD of \mathbf{X} can therefore be found by random projection into a q-dimensional subspace of the range of \mathbf{X} , performing SVD in the lower-dimensional subspace and subsequent reconstruction of the vectors into the original space.

Notes on randomized low-rank SVD

- If p > n consider \mathbf{X}^T instead
- In practice the matrix X will most-likely not have rank q but rather a continuous spectrum of eigenvalues that go towards zero
- Possible solutions:
 - Oversampling: Create a random projection matrix of size p×(q + k) where k is a small integer. Setting k = 5 or 10 is often enough in practice
 - Power iterations: Instead of Y = XΩ consider Y = (XX^T)^lXΩ for some integer *l*. This ensures that small eigenvalues of X are forced to zero and only large eigenvalues are dominant.
- The idea of randomized computation can be applied to other algorithms as well, e.g. PCA, eigenvalues, ...
- Implemented in R package rsvd or Python's sklearn (as randomized_svd)
 ^{10/27}

Divide and conquer

Divide and conquer



Example: Divide and Conquer for linear regression

In linear regression, we want to find the regression coefficients $\hat{\beta}$, which can be calculated as

$$\hat{\boldsymbol{\beta}} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}$$

Divide the data into K parts $X_1, ..., X_K$, such that X is the row concatenation of its parts. Then estimate (conquer)

$$\hat{\boldsymbol{\beta}}_k = (\mathbf{X}_k^T \mathbf{X}_k)^{-1} \mathbf{X}_k^T \mathbf{y}_k$$

To recombine the parts, consider that

$$\hat{\boldsymbol{\beta}} = \left(\sum_{k} \mathbf{X}_{k}^{T} \mathbf{X}_{k}\right)^{-1} \left(\sum_{k} \mathbf{X}_{k}^{T} \mathbf{X}_{k} \hat{\boldsymbol{\beta}}_{k}\right)$$

This means that $\hat{\beta}_k$ and $\mathbf{X}_k^T \mathbf{X}_k \in \mathbb{R}^{p \times p}$ have to be returned from each batch.

Note: Since $Cov(\hat{\beta}_k) = \sigma^2(\mathbf{X}_k^T \mathbf{X}_k)$ the recombination is a weighted average of the batch estimates.

12/27

Example: Divide and Conquer for general estimation problems

In a **general estimation problem** (regression or MLE) there is often a need to solve the **score equation**

$$\sum_{l=1}^{n} \Psi(y_l; \mathbf{x}_l, \boldsymbol{\theta}) = \mathbf{0}$$

where y_l is a response, \mathbf{x}_l a vector of predictors, and $\boldsymbol{\theta}$ a vector of parameters.

Examples:

• Normal equations in linear regression $\sum_{l=1}^{n} (y_l - \mathbf{x}_l^T \boldsymbol{\beta}) \mathbf{x}_l = \mathbf{0}$

• Maximum likelihood estimation
$$\sum_{l=1}^{n} \frac{\partial \log f(y_l; \mathbf{x}_l, \theta)}{\partial \theta} = \mathbf{0}$$

To apply **Divide and Conquer** to this problem, divide the data into *K* subsets *S_k* and solve the subproblems

$$\mathbf{M}_{k}(\boldsymbol{\theta}) = \sum_{l \in S_{k}} \Psi(y_{l}; \mathbf{x}_{l}, \boldsymbol{\theta}) = \mathbf{0}$$

Per batch, the estimate is $\hat{\theta}_k$.

Compute

$$\mathbf{A}_{k}(\boldsymbol{\theta}) := -\frac{\mathrm{d}\mathbf{M}_{k}(\boldsymbol{\theta})}{\mathrm{d}\boldsymbol{\theta}} = -\sum_{l \in S_{k}} \frac{\partial \Psi(y_{l}; \mathbf{x}_{l}, \boldsymbol{\theta})}{\partial \boldsymbol{\theta}}$$

and use the 1st order Taylor expansion of \mathbf{M}_k in $\hat{\mathbf{ heta}}_k$ to get

$$\mathbf{M}_{k}(\boldsymbol{\theta}) \approx \mathbf{A}_{k}(\hat{\boldsymbol{\theta}}_{k}) \left(\boldsymbol{\theta} - \hat{\boldsymbol{\theta}}_{k}\right)$$

Advanced example (III)

Returning to the full problem of solving the score equation

$$\mathbf{0} = \sum_{l=1}^{n} \Psi(y_l; \mathbf{x}_l, \theta) = \sum_{k=1}^{K} \mathbf{M}_k(\theta) \approx \sum_{k=1}^{K} \mathbf{A}_k(\hat{\theta}_k) \left(\theta - \hat{\theta}_k\right)$$

The solution to the approximation is then given by

$$\hat{\theta} = \left(\sum_{k=1}^{K} \mathbf{A}_{k}(\hat{\theta}_{k})\right)^{-1} \left(\sum_{k=1}^{K} \mathbf{A}_{k}(\hat{\theta}_{k})\hat{\theta}_{k}\right)$$

Note: For this approximation the per-batch covariance matrices $\mathbf{X}_k^T \mathbf{X}_k$ are replaced by the matrices $\mathbf{A}_k(\hat{\theta}_k)$. In case of the MLE example

$$\mathbf{A}_{k}(\hat{\theta}_{k}) = -\sum_{l \in S_{k}} \frac{\partial^{2} \log f(y_{l}; \mathbf{x}_{l}, \theta)}{\partial \theta^{2}}$$

which is the observed Fisher information.

Sampling methods for big-*n*

Recap: Random Forests

Computational procedure:

- 1. Given training data $\mathbf{X} \in \mathbb{R}^{n \times p}$, do for b = 1, ..., B
 - 1.1 Draw a **bootstrap sample of size** *n* from training data (with replacement)
 - 1.2 Grow a tree T_b until nodes are pure or reach minimal node size n_{\min}
 - 1.2.1 Randomly select m variables out of p variables
 - 1.2.2 Find best splitting variable among these m
 - 1.2.3 Split the node
- 2. For a new \mathbf{x} predict

Regression:
$$\hat{f}_{rf}(\mathbf{x}) = \frac{1}{B} \sum_{b=1}^{B} T_b(\mathbf{x})$$

Classification: Majority vote at \mathbf{x} across trees

For big-*n***:** In principal all trees can be grown in parallel. However, this requires *B* bootstrap samples of size *n* which can be infeasibly large in a big-*n* scenario.

The *m*-out-of-*n* bootstrap

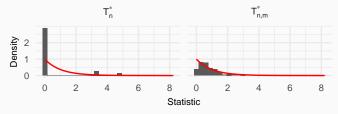
Instead of drawing a bootstrap sample of n samples with replacement (as in the standard bootstrap), a smaller sample of size m < n is drawn with replacement.

- Note: If m < n samples are drawn without replacement, then this is called subsampling.
- Surprisingly, the *m*-out-of-*n* bootstrap (moon bootstrap) works even in situations where the standard bootstrap fails
- For the theoretical guarantees to hold, it is required that when $m, n \to \infty$ then $m/n \to 0$
- $m = 2\sqrt{n}$ is a possible choice

Example: *m***-out-of**-*n* **bootstrap**

- Let $x_1, ..., x_n \sim \text{Uniform}(0, \theta)$ and $\hat{\theta}_n = \max_i x_i$.
- Consider the statistics
 - $T_n = n(\theta \hat{\theta}_n)$, the statistic to be approximated
 - ► $T_n^* = n(\hat{\theta}_n \hat{\theta}_n^*)$ where $\hat{\theta}_n^* = \max_i x_i^*$ for a standard bootstrap sample x_1^*, \dots, x_n^*
 - ► $T_{n,m}^* = m(\hat{\theta}_n \hat{\theta}_{n,m}^*)$ where $\hat{\theta}_{n,m}^* = \max_i x_i^*$ for a standard bootstrap sample x_1^*, \dots, x_m^*
- Simulated data with n = 1000, $m = 2\sqrt{1000} \approx 64$,

$$B=10000$$
, and $heta=1$



The red line is the density of T_n given the true θ .

A two-stage bootstrapping technique

- Draw K subsets of size m < n from original data (with or without replacement)
- 2. For each subset
 - 2.1 Draw *B* set of weights $(n_1, ..., n_m) \sim \text{Multinomial}(n, 1/m)$ (oversampling)
 - 2.2 Estimate the statistic of interest from the *B* weighted samples
 - 2.3 Combine values of the statistic for each subset, e.g. by averaging
- 3. Recombine statistics from each subset, e.g. by averaging

This is known as the **bag of little bootstraps (BLB)** (Kleiner et al. 2014)

- One of the computational burdens of the standard bootstrap is having to create resamples of size n
- The BLB circumvents that by resampling from a limited amount of samples and thereby being able to use weights instead of a full sample
- ► Typically $m \ge n^{\gamma}$ for $\gamma \in [0.5, 1]$ works well (e.g. for $\gamma = 0.6$: when $n = 10^6$ choose m = 3982)
- The BLB is easier to parallelise, since less data has to be propagated to each batch.
- Fits well within the **Divide and Conquer** framework

Instead of the standard RF with normal bootstrapping, multiple strategies can be taken

- Subsampling (once): Take a subsample of size m and grow RF from there. Very simple to implement, but difficult to ensure that the subsample is representative.
- m-out-of-n sampling: Instead of standard bootstrapping, draw repeatedly m samples and grow a tree on each subsample. Recombine trees in the usual fashion.
- BLB sampling: Grow a forest on each subset by repeatedly oversampling to n samples.
- Divide and Conquer: Split original data in K parts and grow a random forest on each.

Subsampling for big-*n*

Problem: Representativeness

How can we ensure that a subsample is still representative?

We need **additional information** about the samples. Consider the special case of linear regression and n >> p.

Recall: For least squares predictions it holds that

$$\hat{\mathbf{y}} = \mathbf{X}\hat{\boldsymbol{\beta}} = \mathbf{X}(\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T\mathbf{y} = \mathbf{H}\mathbf{y}$$

with the **hat-matrix** $\mathbf{H} = \mathbf{X}(\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T$.

Specifically $\hat{y}_i = \sum_{j=1}^n H_{ij} y_j$, which means that H_{ii} influences its own fitted values.

Element H_{ii} is called the **leverage** of the observation. Leverage captures if the observation *i* is close or far from the centre of the data in feature space. **Goal:** Subsample the data, but make the **more influential** data points, those with **high leverage**, more likely to be sampled.

Computational approach

Weight sample i by

$$\pi_i = \frac{H_{ii}}{\sum_{j=1}^n H_{jj}}$$

- Draw a weighted subsample of size $m \ll n$
- Use the subsample to solve the regression problem

This procedure is called **Leveraging** (Ma and Sun, 2013).

Problem: How to perform regression?

- Ordinary least squares: Biased with regard to the full sample estimate, due to subsampling, but unbiased with respect to the true coefficients and generally small variance
- 2. Weighted least squares: Use the inverse sampling weights $1/\pi_i$ as weights during the regression. Unstable for very small weights, i.e. high variance. Weights can be stabilized by using

$$\tau_i = \alpha \pi_i + (1 - \alpha) \frac{1}{n}$$

instead of π_i for α recommended at 0.8–0.9.

Problem: How should the diagonal entries of the hat matrix be determined without having to solve the original regression problem?

Let $\mathbf{X} = \mathbf{U}\mathbf{D}\mathbf{V}^T$ be the SVD of the data matrix, then

 $\mathbf{H} = \mathbf{X}(\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T = \mathbf{U} \mathbf{U}^T$

and therefore, with \mathbf{u}_i being the *i*-th row of \mathbf{U} ,

 $H_{ii} = \|\mathbf{u}_i\|_2^2$

Using e.g. randomized SVD or other fast computational approaches, this is feasible for very large data.

- Pro: Fast and simple approach to make subsampling more focused on the important samples
- Pro: Smaller datasets are easier to use computationally, but also visualisations get feasible again
- Caveat: Careful with outliers! These often have large leverage, but are misrepresentative of the actual shape of the data.

- Large-scale data brings its own challenges, many of which are computational
- Randomization can help to speed up classical algorithms in practice
- Divide and Conquer can help in n >> p and big-n scenarios; can be non-trivial to determine how to recombine
- Subsampling/clever bootstrapping can reduce the necessary computational load tremendously