
Lecture 15: Large-scale methods for data analysis

Felix Held, Mathematical Sciences

MSA220/MVE440 Statistical Learning for Big Data

23rd May 2019

Administrative

▶ The take-home exam will be distributed on
Monday morning, 27th May

▶ At that point we will also publish the remaining project
presentation summaries

▶ …and announce office hours!

1/27

Challenges in large-scale data

▶ Large-scale data can be both big-𝑛 and big-𝑝
▶ When doing regression in 𝑛 ≫ 𝑝 typically all p-values go
to zero, i.e. statistical testing tells us that every
coefficient, (almost) no matter how small its effect size,
has statistical significance

▶ Not very surprising, but be careful to not confuse
statistical significance with practical relevance

▶ Focus should be on confidence intervals and effect size.
Point predictions and p-values have deficiencies even in
small sample datasets.

▶ Another major issue is computability. When data grows
large, standard computations can get infeasibly slow

2/27

Low-rank approximations for
matrices

Low-rank approximations

▶ Low-rank approximations of matrices become very
important to make large-scale data manageable

𝐗
𝑛×𝑝

≈ 𝐀
𝑛×𝑟

⋅ 𝐁
𝑟×𝑝

▶ Algorithms to determine 𝐀 and 𝐁 discussed in the lecture:
Low-rank SVD and low-rank NMF

▶ Works best if original data in 𝐗 is approximately of rank
𝑞 ≪ min(𝑛, 𝑝)

▶ Use-cases: 𝐗 could be a really large data matrix, but it
could also come from an intermediate calculation, e.g.
the Gram matrix of a kernel or a distance matrix

▶ What if 𝑛 and 𝑝 are large?
▶ Idea: Determine an approximate low-dimensional basis
for the range of 𝐗 and perform the matrix-factorisation in
the low-dimensional space. 3/27

Finding a low-dimensional basis (I)

How can we find an approximate low-dimensional basis for
the range of 𝐗?
We will use random projections: Let 𝝎𝑖 for 𝑖 = 1, … , 𝑞 be
random vectors (e.g. with standard normal entries). The
vectors

𝐲𝑖 = 𝐗𝝎𝑖
are called random projections.

▶ Random vectors are independent with high probability
▶ The 𝐲𝑖 are independent randomly weighted linear
combinations of the columns of 𝐗

4/27

Johnson-Lindenstrauss lemma (I)

Motivation:
Johnson-Lindenstrauss lemma (1984)
Given 0 < 𝜀 < 1 and an integer 𝑛 let

𝑞 ≥ 4 log(𝑛)
𝜀2/2 − 𝜀3/3

be an integer. For every set of points 𝐱1, … , 𝐱𝑛 in ℝ𝑝, there is
a mapping 𝑓 ∶ ℝ𝑝 ↦ ℝ𝑞 such that for any 𝐱𝑖 , 𝐱𝑗

(1 − 𝜀)‖𝐱𝑖 − 𝐱𝑗‖22 ≤ ‖𝑓(𝐱𝑖) − 𝑓(𝐱𝑗)‖22 ≤ (1 + 𝜀)‖𝐱𝑖 − 𝐱𝑗‖22

Note: The result is independent of 𝑝.

5/27

Johnson-Lindenstrauss lemma (II)

The exact result is mainly of interest for 𝑝 ≫ 𝑛

𝑛 𝜀 𝑞min

50 0.05 12950
0.1 3353

100 0.05 15 244
0.1 3947

1000 0.05 22867
0.1 5920

Note: In practice, the dimension of the data is reduced to any
useful dimension. However, be aware that the theoretical
guarantees potentially are lost.

6/27

Random projection

There are multiple possibilities how the map 𝑓 in the
Johnson-Lindenstrauss theorem can be found.
Let 𝐗 ∈ ℝ𝑛×𝑝 be a data matrix and 𝑞 the target dimension.

▶ Gaussian random projection: Set

Ω𝑖𝑗 ∼ 𝑁 (0, 1𝑞) for 𝑖 = 1, … , 𝑝, 𝑗 = 1,… , 𝑞

▶ Sparse random projection: For a given 𝑠 > 0 set

Ω𝑖𝑗 =√
𝑠
𝑞
⎧
⎨
⎩

−1 1/(2𝑠)
0 with probability 1 − 1/𝑠
1 1/(2𝑠)

for 𝑖 = 1, … , 𝑝, 𝑗 = 1,… , 𝑞 where often 𝑠 = 3
(Achlioptas, 2003) or 𝑠 = √𝑝 (Li et al., 2006)

then 𝐘 = 𝐗𝛀 ∈ ℝ𝑛×𝑞 is a random projection for 𝐗. 7/27

Finding a low-dimensional basis (III)

Back on track: How can we find an approximate
low-dimensional basis for the range of 𝐗 ∈ ℝ𝑛×𝑝?
Assume 𝑞 < min(𝑛, 𝑝), 𝛀 ∈ ℝ𝑝×𝑞 is a random projection matrix
and 𝐘 = 𝐗𝛀.
A 𝑞-dimensional subspace of the range of 𝐗 can be found by
orthonormalising 𝐘 using e.g. the QR-decomposition

𝐘 = 𝐐𝐑
where 𝐐 ∈ ℝ𝑛×𝑞 has orthogonal columns and 𝐑 ∈ ℝ𝑞×𝑞 is
upper-triangular.
It can be shown that

𝐗 ≈ 𝐐𝐐𝑇𝐗
where 𝐐𝐐𝑇 is a projection matrix to a 𝑞-dimensional space.

8/27

Randomized low-rank SVD

Original goal: Apply SVD in cases where both 𝑛 and 𝑝 are large.
Idea: Determine an approximate low-dimensional basis for
the range of 𝐗 and perform the matrix-factorisation in the
low-dimensional space.

▶ Using a random projection 𝐗 ≈ 𝐐𝐐𝑇𝐗 = 𝐐𝐓
▶ Note that 𝐓 ∈ ℝ𝑞×𝑝

▶ Calculate the SVD of 𝐓 = 𝐔0
𝑞×𝑞

⋅ 𝐃
𝑞×𝑞

⋅ 𝐕𝑇
𝑞×𝑝

▶ Set 𝐔 = 𝐐𝐔0 ∈ ℝ𝑛×𝑞, then 𝐗 ≈ 𝐔𝐃𝐕𝑇

The SVD of 𝐗 can therefore be found by random projection
into a 𝑞-dimensional subspace of the range of 𝐗, performing
SVD in the lower-dimensional subspace and subsequent
reconstruction of the vectors into the original space.

9/27

Notes on randomized low-rank SVD

▶ If 𝑝 > 𝑛 consider 𝐗𝑇 instead
▶ In practice the matrix 𝐗 will most-likely not have rank 𝑞
but rather a continuous spectrum of eigenvalues that go
towards zero

▶ Possible solutions:
▶ Oversampling: Create a random projection matrix of size
𝑝 × (𝑞 + 𝑘) where 𝑘 is a small integer. Setting 𝑘 = 5 or 10 is
often enough in practice

▶ Power iterations: Instead of 𝐘 = 𝐗𝛀 consider
𝐘 = (𝐗𝐗𝑇)𝑙𝐗𝛀 for some integer 𝑙. This ensures that small
eigenvalues of 𝐗 are forced to zero and only large
eigenvalues are dominant.

▶ The idea of randomized computation can be applied to
other algorithms as well, e.g. PCA, eigenvalues, …

▶ Implemented in R package rsvd or Python’s sklearn (as
randomized_svd) 10/27

Divide and conquer

Divide and conquer

𝐗 ⋮

𝐗2

𝐗1

𝐗𝐾−1

𝐗𝐾

⋮

𝑓(𝐗2)

𝑓(𝐗1)

𝑓(𝐗𝐾−1)

𝑓(𝐗𝐾)

sum, mean, …

DivideAll data Conquer Recombine

11/27

Example: Divide and Conquer for linear regression

In linear regression, we want to find the regression
coefficients ̂𝜷, which can be calculated as

̂𝜷 = (𝐗𝑇𝐗)−1𝐗𝑇𝐲
Divide the data into 𝐾 parts 𝐗1, … , 𝐗𝐾 , such that 𝐗 is the row
concatenation of its parts. Then estimate (conquer)

̂𝜷𝑘 = (𝐗𝑇
𝑘𝐗𝑘)−1𝐗𝑇

𝑘𝐲𝑘
To recombine the parts, consider that

̂𝜷 = (∑
𝑘
𝐗𝑇
𝑘𝐗𝑘)

−1

(∑
𝑘
𝐗𝑇
𝑘𝐗𝑘 ̂𝜷𝑘)

This means that ̂𝜷𝑘 and 𝐗𝑇
𝑘𝐗𝑘 ∈ ℝ𝑝×𝑝 have to be returned

from each batch.
Note: Since Cov(̂𝜷𝑘) = 𝜎2(𝐗𝑇

𝑘𝐗𝑘) the recombination is a
weighted average of the batch estimates. 12/27

Example: Divide and Conquer for general estimation problems

In a general estimation problem (regression or MLE) there is
often a need to solve the score equation

𝑛
∑
𝑙=1

𝚿(𝑦𝑙; 𝐱𝑙, 𝜽) = 𝟎

where 𝑦𝑙 is a response, 𝐱𝑙 a vector of predictors, and 𝜽 a vector
of parameters.

Examples:

▶ Normal equations in linear regression
𝑛
∑
𝑙=1
(𝑦𝑙 − 𝐱𝑇𝑙 𝜷)𝐱𝑙 = 𝟎

▶ Maximum likelihood estimation
𝑛
∑
𝑙=1

𝜕 log𝑓(𝑦𝑙; 𝐱𝑙, 𝜽)
𝜕𝜽 = 𝟎

13/27

Advanced example (II)

To apply Divide and Conquer to this problem, divide the data
into 𝐾 subsets 𝑆𝑘 and solve the subproblems

𝐌𝑘(𝜽) = ∑
𝑙∈𝑆𝑘

Ψ(𝑦𝑙; 𝐱𝑙, 𝜽) = 𝟎

Per batch, the estimate is ̂𝜃𝑘.

Compute

𝐀𝑘(𝜽) ∶= −d𝐌𝑘(𝜽)
d𝜽 = − ∑

𝑙∈𝑆𝑘

𝜕𝚿(𝑦𝑙; 𝐱𝑙, 𝜽)
𝜕𝜽

and use the 1st order Taylor expansion of𝐌𝑘 in ̂𝜽𝑘 to get

𝐌𝑘(𝜽) ≈ 𝐀𝑘(̂𝜽𝑘) (𝜽 − ̂𝜽𝑘)

14/27

Advanced example (III)

Returning to the full problem of solving the score equation

𝟎 =
𝑛
∑
𝑙=1

𝚿(𝑦𝑙; 𝐱𝑙, 𝜽) =
𝐾
∑
𝑘=1

𝐌𝑘(𝜽) ≈
𝐾
∑
𝑘=1

𝐀𝑘(̂𝜽𝑘) (𝜽 − ̂𝜽𝑘)

The solution to the approximation is then given by

̂𝜽 = (
𝐾
∑
𝑘=1

𝐀𝑘(̂𝜽𝑘))
−1

(
𝐾
∑
𝑘=1

𝐀𝑘(̂𝜽𝑘) ̂𝜽𝑘)

Note: For this approximation the per-batch covariance
matrices 𝐗𝑇

𝑘𝐗𝑘 are replaced by the matrices 𝐀𝑘(̂𝜽𝑘).
In case of the MLE example

𝐀𝑘(̂𝜽𝑘) = − ∑
𝑙∈𝑆𝑘

𝜕2 log𝑓(𝑦𝑙; 𝐱𝑙, 𝜽)
𝜕𝜽2

which is the observed Fisher information. 15/27

Sampling methods for big-𝑛

Recap: Random Forests

Computational procedure:
1. Given training data 𝐗 ∈ ℝ𝑛×𝑝, do for 𝑏 = 1,… , 𝐵

1.1 Draw a bootstrap sample of size 𝑛 from training data (with
replacement)

1.2 Grow a tree 𝑇𝑏 until nodes are pure or reach minimal node
size 𝑛min
1.2.1 Randomly select𝑚 variables out of 𝑝 variables
1.2.2 Find best splitting variable among these𝑚
1.2.3 Split the node

2. For a new 𝐱 predict
Regression: 𝑓𝑟𝑓(𝐱) =

1
𝐵
∑𝐵

𝑏=1 𝑇𝑏(𝐱)
Classification: Majority vote at 𝐱 across trees

For big-𝑛: In principal all trees can be grown in parallel.
However, this requires 𝐵 bootstrap samples of size 𝑛 which
can be infeasibly large in a big-𝑛 scenario. 16/27

Big-𝑛 and the bootstrap

The𝑚-out-of-𝑛 bootstrap
Instead of drawing a bootstrap sample of 𝑛 samples with
replacement (as in the standard bootstrap), a smaller
sample of size 𝑚 < 𝑛 is drawn with replacement.

▶ Note: If 𝑚 < 𝑛 samples are drawn without replacement,
then this is called subsampling.

▶ Surprisingly, the 𝑚-out-of-𝑛 bootstrap (moon bootstrap)
works even in situations where the standard bootstrap
fails

▶ For the theoretical guarantees to hold, it is required that
when 𝑚, 𝑛 → ∞ then 𝑚/𝑛 → 0

▶ 𝑚 = 2√𝑛 is a possible choice

17/27

Example: 𝑚-out-of-𝑛 bootstrap

▶ Let 𝑥1, … , 𝑥𝑛 ∼ Uniform(0, 𝜃) and ̂𝜃𝑛 = max𝑖 𝑥𝑖 .
▶ Consider the statistics

▶ 𝑇𝑛 = 𝑛(𝜃 − ̂𝜃𝑛), the statistic to be approximated
▶ 𝑇∗𝑛 = 𝑛(̂𝜃𝑛 − ̂𝜃∗𝑛) where ̂𝜃∗𝑛 = max𝑖 𝑥∗𝑖 for a standard
bootstrap sample 𝑥∗1 , … , 𝑥∗𝑛

▶ 𝑇∗𝑛,𝑚 = 𝑚(̂𝜃𝑛 − ̂𝜃∗𝑛,𝑚) where ̂𝜃∗𝑛,𝑚 = max𝑖 𝑥∗𝑖 for a standard
bootstrap sample 𝑥∗1 , … , 𝑥∗𝑚

▶ Simulated data with 𝑛 = 1000, 𝑚 = 2√1000 ≈ 64,
𝐵 = 10000, and 𝜃 = 1

Tn
∗ Tn,m

∗

0 2 4 6 8 0 2 4 6 8
0

1

2

Statistic

D
en

si
ty

The red line is the density of 𝑇𝑛 given the true 𝜃. 18/27

Bag of little bootstraps (BLB)

A two-stage bootstrapping technique

1. Draw 𝐾 subsets of size 𝑚 < 𝑛 from original data (with or
without replacement)

2. For each subset
2.1 Draw 𝐵 set of weights (𝑛1, … , 𝑛𝑚) ∼ Multinomial(𝑛, 1/𝑚)

(oversampling)
2.2 Estimate the statistic of interest from the 𝐵 weighted

samples
2.3 Combine values of the statistic for each subset, e.g. by

averaging
3. Recombine statistics from each subset, e.g. by averaging

This is known as the bag of little bootstraps (BLB) (Kleiner et
al. 2014)

19/27

Notes on the BLB

▶ One of the computational burdens of the standard
bootstrap is having to create resamples of size 𝑛

▶ The BLB circumvents that by resampling from a limited
amount of samples and thereby being able to use weights
instead of a full sample

▶ Typically 𝑚 ≥ 𝑛𝛾 for 𝛾 ∈ [0.5, 1] works well (e.g. for 𝛾 = 0.6:
when 𝑛 = 106 choose 𝑚 = 3982)

▶ The BLB is easier to parallelise, since less data has to be
propagated to each batch.

▶ Fits well within the Divide and Conquer framework

20/27

Random forests for big-𝑛

Instead of the standard RF with normal bootstrapping,
multiple strategies can be taken

▶ Subsampling (once): Take a subsample of size 𝑚 and
grow RF from there. Very simple to implement, but
difficult to ensure that the subsample is representative.

▶ 𝑚-out-of-𝑛 sampling: Instead of standard bootstrapping,
draw repeatedly 𝑚 samples and grow a tree on each
subsample. Recombine trees in the usual fashion.

▶ BLB sampling: Grow a forest on each subset by
repeatedly oversampling to 𝑛 samples.

▶ Divide and Conquer: Split original data in 𝐾 parts and
grow a random forest on each.

21/27

Subsampling for big-𝑛

Leverage

Problem: Representativeness
How can we ensure that a subsample is still representative?

We need additional information about the samples. Consider
the special case of linear regression and 𝑛 >> 𝑝.

Recall: For least squares predictions it holds that
�̂� = 𝐗 ̂𝜷 = 𝐗(𝐗𝑇𝐗)−1𝐗𝑇𝐲 = 𝐇𝐲

with the hat-matrix 𝐇 = 𝐗(𝐗𝑇𝐗)−1𝐗𝑇 .

Specifically ̂𝑦𝑖 = ∑𝑛
𝑗=1𝐻𝑖𝑗𝑦𝑗 , which means that 𝐻𝑖𝑖 influences

its own fitted values.

Element 𝐻𝑖𝑖 is called the leverage of the observation.
Leverage captures if the observation 𝑖 is close or far from the
centre of the data in feature space. 22/27

Leveraging (I)

Goal: Subsample the data, but make the more influential data
points, those with high leverage, more likely to be sampled.

Computational approach

▶ Weight sample 𝑖 by

𝜋𝑖 =
𝐻𝑖𝑖

∑𝑛
𝑗=1𝐻𝑗𝑗

▶ Draw a weighted subsample of size 𝑚 ≪ 𝑛
▶ Use the subsample to solve the regression problem

This procedure is called Leveraging (Ma and Sun, 2013).

23/27

Leveraging (II)

Problem: How to perform regression?

1. Ordinary least squares: Biased with regard to the full
sample estimate, due to subsampling, but unbiased with
respect to the true coefficients and generally small
variance

2. Weighted least squares: Use the inverse sampling
weights 1/𝜋𝑖 as weights during the regression. Unstable
for very small weights, i.e. high variance. Weights can be
stabilized by using

𝜏𝑖 = 𝛼𝜋𝑖 + (1 − 𝛼) 1𝑛
instead of 𝜋𝑖 for 𝛼 recommended at 0.8–0.9.

24/27

Leveraging (III)

Problem: How should the diagonal entries of the hat matrix
be determined without having to solve the original regression
problem?

Let 𝐗 = 𝐔𝐃𝐕𝑇 be the SVD of the data matrix, then

𝐇 = 𝐗(𝐗𝑇𝐗)−1𝐗𝑇 = 𝐔𝐔𝑇

and therefore, with 𝐮𝑖 being the 𝑖-th row of 𝐔,

𝐻𝑖𝑖 = ‖𝐮𝑖‖22

Using e.g. randomized SVD or other fast computational
approaches, this is feasible for very large data.

25/27

Notes on leveraging

▶ Pro: Fast and simple approach to make subsampling
more focused on the important samples

▶ Pro: Smaller datasets are easier to use computationally,
but also visualisations get feasible again

▶ Caveat: Careful with outliers! These often have large
leverage, but are misrepresentative of the actual shape of
the data.

26/27

Take-home message

▶ Large-scale data brings its own challenges, many of which
are computational

▶ Randomization can help to speed up classical algorithms
in practice

▶ Divide and Conquer can help in 𝑛 ≫ 𝑝 and big-𝑛
scenarios; can be non-trivial to determine how to
recombine

▶ Subsampling/clever bootstrapping can reduce the
necessary computational load tremendously

27/27

	Low-rank approximations for matrices
	Divide and conquer
	Sampling methods for big-n
	Subsampling for big-n

