
Lecture 16: Summary and outlook

Felix Held, Mathematical Sciences

MSA220/MVE440 Statistical Learning for Big Data

24th May 2019

The big topics

1. Statistical Learning
2. Supervised learning

▶ Classification
▶ Regression

3. Unsupervised learning
▶ Clustering

4. Data representations and dimension reduction
5. Large scale methods

1/58

The big data paradigms

▶ Small to medium sized data
▶ “Good old stats”
▶ Typical methods: 𝑘-nearest neighbour (kNN), linear and
quadratic discriminant analysis (LDA and QDA), Gaussian
mixture models, …

▶ High-dimensional data
▶ big-𝑝 paradigm
▶ Typical methods: Feature selection, penalized regression
and classification (Lasso, ridge regression, shrunken
centroids, …), low-rank approximations (SVD, NMF), …

▶ Curse of dimensionality
▶ Large scale data

▶ big-𝑛 paradigm (sometimes in combination with big-𝑝)
▶ Typical methods: Random forests (with its big-𝑛
extensions), subspace clustering, low-rank
approximations (randomized SVD), … 2/58

Statistical Learning

What is Statistical Learning?

Learn a model from data by minimizing expected prediction
error determined by a loss function.

▶ Model: Find a model that is suitable for the data
▶ Data: Data with known outcomes is needed
▶ Expected prediction error: Focus on quality of prediction
(predictive modelling)

▶ Loss function: Quantifies the discrepancy between
observed data and predictions

3/58

Statistical Learning for Regression

▶ Theoretically best regression function for squared error
loss

𝑓(𝐱) = 𝔼𝑝(𝑦|𝐱)[𝑦]
▶ Approximate (1) or make model-assumptions (2)

1. k-nearest neighbour regression

𝔼𝑝(𝑦|𝐱)[𝑦] ≈
1
𝑘 ∑

𝐱𝑖𝑙∈𝑁𝑘(𝐱)
𝑦𝑖𝑙

2. linear regression (viewpoint: generalized linear models
(GLM))

𝔼𝑝(𝑦|𝐱)[𝑦] ≈ 𝐱𝑇𝜷

4/58

Statistical Learning for Classification

▶ Theoretically best classification rule for 0-1 loss and 𝐾
possible classes (Bayes rule)

̂𝑐(𝐱) = arg max
1≤𝑖≤𝐾

𝑝(𝑖|𝐱)

▶ Approximate (1) or make model-assumptions (2)
1. k-nearest neighbour classification

𝑝(𝑖|𝐱) ≈ 1
𝑘 ∑

𝐱𝑙∈𝑁𝑘(𝐱)
1(𝑖𝑙 = 𝑖)

2. Multi-class logistic regression

𝑝(𝑖|𝐱) = 𝑒𝐱𝑇𝜷(𝑖)

1 +∑𝐾−1
𝑙=1 𝑒𝐱𝑇𝜷(𝑙)

and 𝑝(𝐾|𝐱) = 1
1 +∑𝐾−1

𝑙=1 𝑒𝐱𝑇𝜷(𝑙)

5/58

Empirical error rates (I)

▶ Training error

𝑅𝑡𝑟 = 1
𝑛

𝑛
∑
𝑙=1

𝐿(𝑦𝑙, 𝑓(𝐱𝑙|𝒯))

where
𝒯 = {(𝑦𝑙, 𝐱𝑙) ∶ 1 ≤ 𝑙 ≤ 𝑛}

▶ Test error
𝑅𝑡𝑒 = 1

𝑚
𝑚
∑
𝑙=1

𝐿(̃𝑦𝑙, 𝑓(�̃�𝑙|𝒯))

where (̃𝑦𝑙, �̃�𝑙) for 1 ≤ 𝑙 ≤ 𝑚 are new samples from the
same distribution as 𝒯, i.e. 𝑝(𝒯).

6/58

Splitting up the data

▶ Holdout method: If we have a lot of samples, randomly
split available data into training set and test set

▶ 𝑐-fold cross-validation: If we have few samples
1. Randomly split available data into 𝑐 equally large subsets,
so-called folds.

2. By taking turns, use 𝑐 − 1 folds as the training set and the
last fold as the test set

7/58

Approximations of expected prediction error

▶ Use test error for hold-out method, i.e.

𝑅𝑡𝑒 = 1
𝑚

𝑚
∑
𝑙=1

𝐿(̃𝑦𝑙, 𝑓(�̃�𝑙|𝒯))

where (̃𝑦𝑙, �̃�𝑙) for 1 ≤ 𝑙 ≤ 𝑚 are the elements in the test set.
▶ Use average test error for c-fold cross-validation, i.e.

𝑅𝑐𝑣 = 1
𝑛

𝑐
∑
𝑗=1

∑
(𝑦𝑙,𝐱𝑙)∈ℱ𝑗

𝐿(𝑦𝑙, 𝑓(𝐱𝑙|ℱ−𝑗))

where ℱ𝑗 is the 𝑗-th fold and ℱ−𝑗 is all data except fold 𝑗.

Note: For 𝑐 = 1 this is called leave-one-out cross validation
(LOOCV)

8/58

Careful data splitting

▶ Note: For the approximations to be justifiable, test and
training sets need to be identically distributed

▶ Splitting has to be done randomly
▶ If data is unbalanced, then stratification is necessary.
Examples:

▶ Class imbalance
▶ Continuous outcome is observed more often in some
intervals than others (e.g. high values more often than low
values)

9/58

Bias-Variance Tradeoff

Bias-Variance Decomposition
𝑅 = 𝔼𝑝(𝒯,𝐱,𝑦) [(𝑦 − 𝑓(𝐱))2] Total expected prediction error

= 𝜎2 Irreducible Error
+ 𝔼𝑝(𝐱) [(𝑓(𝐱) − 𝔼𝑝(𝒯) [𝑓(𝐱)])

2
] Bias2 averaged over 𝐱

+ 𝔼𝑝(𝐱) [Var𝑝(𝒯) [𝑓(𝐱)]] Variance of 𝑓 averaged over 𝐱

𝑅

Underfit Overfit

Model complexity

Er
ro
r

Bias2 Variance

Irred
ucib

le Er
ror

10/58

Classification

Overview

1. 𝑘-nearest neighbours (Lecture 1)
2. 0-1 regression (Lecture 2)

▶ just an academic example - do not use in practice
3. Logistic regression (Lecture 2, both binary and
multi-class; Lecture 11 for sparse case)

4. Nearest Centroids (Lecture 2) and shrunken centroids
(Lecture 10)

5. Discriminant analysis (Lecture 2)
▶ Many variants: linear (LDA), quadratic (QDA),
diagonal/Naive Bayes, regularized (RDA; Lecture 5),
Fisher’s LDA/reduced-rank LDA (Lecture 6), mixture DA
(Lecture 8)

6. Classification and Regression trees (CART) (Lecture 4)
7. Random Forests (Lecture 5 & 15)

11/58

Multiple angles on the same problem

1. Bayes rule: Approximate 𝑝(𝑖|𝐱) and choose largest
▶ e.g. kNN or logistic regression

2. Model of the feature space: Assume models for 𝑝(𝐱|𝑖) and
𝑝(𝑖) separately

▶ e.g. discriminant analysis
3. Partitioning methods: Create explicit partitions of the
feature space and assign each a class

▶ e.g. CART or Random Forests

12/58

Finding the parameters of DA

▶ Notation: Write 𝑝(𝑖) = 𝜋𝑖 and consider them as unknown
parameters

▶ Given data (𝑖𝑙, 𝐱𝑙) the likelihood maximization problem is

arg max
𝝁,𝚺,𝝅

𝑛
∏
𝑙=1

𝑁(𝐱𝑙|𝝁𝑖𝑙 , 𝚺𝑖𝑙)𝜋𝑖𝑙 subject to
𝐾
∑
𝑖=1

𝜋𝑖 = 1.

▶ Can be solved using a Lagrange multiplier (try it!) and
leads to

𝜋𝑖 =
𝑛𝑖
𝑛 , with 𝑛𝑖 =

𝑛
∑
𝑙=1

1(𝑖𝑙 = 𝑖)

𝝁𝑖 =
1
𝑛𝑖

∑
𝑖𝑙=𝑖

𝑥𝑙

𝚺𝑖 =
1

𝑛𝑖 − 1 ∑𝑖𝑙=𝑖
(𝑥𝑙 − 𝝁𝑖)(𝑥𝑙 − 𝝁𝑖)𝑇

13/58

Performing classification in DA

Bayes’ rule implies the classification rule

𝑐(𝐱) = arg max
1≤𝑖≤𝐾

𝑁(𝐱|𝝁𝑖, 𝚺𝑖)𝜋𝑖

Note that since log is strictly increasing this is equivalent to

𝑐(𝐱) = arg max
1≤𝑖≤𝐾

𝛿𝑖(𝐱)

where

𝛿𝑖(𝐱) = log𝑁(𝐱|𝝁𝑖, 𝚺𝑖) + log𝜋𝑖
= log𝜋𝑖 −

1
2(𝐱 − 𝝁𝑖)𝑇𝚺−1𝑖 (𝐱 − 𝝁𝑖) −

1
2 log |𝚺𝑖| (+𝐶)

This is a quadratic function in 𝐱.

14/58

Different levels of complexity

▶ This method is called Quadratic Discriminant Analysis
(QDA)

▶ Problem: Many parameters that grow quickly with
dimension

▶ 𝐾 − 1 for all 𝜋𝑖
▶ 𝑝 ⋅ 𝐾 for all 𝝁𝑖
▶ 𝑝(𝑝 + 1)/2 ⋅ 𝐾 for all 𝚺𝑖 (most costly)

▶ Solution: Replace covariance matrices 𝚺𝑖 by a pooled
estimate

�̂� =
𝐾
∑
𝑖=1

�̂�𝑖
𝑛𝑖 − 1
𝑛 − 𝐾 = 1

𝑛 − 𝐾
𝐾
∑
𝑖=1

∑
𝑖𝑙=𝑖

(𝑥𝑙 − 𝝁𝑖)(𝑥𝑙 − 𝝁𝑖)𝑇

▶ Simpler correlation and variance structure: All classes
are assumed to have the same correlation structure
between features

15/58

Performing classification in the simplified case

As before, consider

𝑐(𝐱) = arg max
1≤𝑖≤𝐾

𝛿𝑖(𝐱)

where

𝛿𝑖(𝐱) = log𝜋𝑖 + 𝐱𝑇𝚺−1𝝁𝑖 −
1
2𝝁

𝑇
𝑖 𝚺−1𝝁𝑖 (+𝐶)

This is a linear function in 𝐱. The method is therefore called
Linear Discriminant Analysis (LDA).

16/58

Even more simplifications

Other simplifications of the correlation structure are possible

▶ Ignore all correlations between features but allow
different variances, i.e. 𝚺𝑖 = 𝚲𝑖 for a diagonal matrix 𝚲𝑖
(Diagonal QDA or Naive Bayes’ Classifier)

▶ Ignore all correlations and make feature variances equal,
i.e. 𝚺𝑖 = 𝚲 for a diagonal matrix 𝚲 (Diagonal LDA)

▶ Ignore correlations and variances, i.e. 𝚺𝑖 = 𝜎2𝐈𝑝×𝑝
(Nearest Centroids adjusted for class frequencies 𝜋𝑖)

17/58

Classification and Regression Trees (CART)

▶ Complexity of partitioning:
Arbitrary
Partition

> Rectangular
Partition

> Partition from a
sequence of binary splits

▶ Classification and Regression Trees create a sequence of
binary axis-parallel splits in order to reduce variability of
values/classes in each region

11
1 1

1
1 00 00 00

1
1 1

1
11 0

0 00
00

00 00 00 0
0 0 0

00

00 0
0 0

0 00
00 00

0
0 0

0
00 00

0
0 00

1

2

3

4

2 4 6
x1

x 2

x2 >= 2.2

x1 >= 3.5
0

1.00 .00
60%

0
1.00 .00

20%

1
.00 1.00

20%

yes no

18/58

Bootstrap aggregation (bagging)

1. Given a training sample (𝑦𝑙, 𝐱𝑙) or (𝑖𝑙, 𝐱𝑙), we want to fit a
predictive model 𝑓(𝐱)

2. For 𝑏 = 1,… , 𝐵, form bootstrap samples of the training
data and fit the model, resulting in 𝑓𝑏(𝐱)

3. Define

𝑓bag(𝐱) =
1
𝐵

𝐵
∑
𝑏=1

𝑓𝑏(𝐱)

where 𝑓𝑏(𝐱) is a continuous value for a regression
problem or a vector of class probabilities for a
classification problem

Majority vote can be used for classification problems instead
of averaging

19/58

Random Forests

Computational procedure
1. Given a training sample with 𝑝 features, do for 𝑏 = 1,… , 𝐵

1.1 Draw a bootstrap sample of size 𝑛 from training data (with
replacement)

1.2 Grow a tree 𝑇𝑏 until each node reaches minimal node size
𝑛min
1.2.1 Randomly select𝑚 variables from the 𝑝 available
1.2.2 Find best splitting variable among these𝑚
1.2.3 Split the node

2. For a new 𝐱 predict
Regression: 𝑓𝑟𝑏(𝐱) =

1
𝐵
∑𝐵

𝑏=1 𝑇𝑏(𝐱)
Classification: Majority vote at 𝐱 across trees

Note: Step 1.2.1 leads to less correlation between trees built
on bootstrapped data.

20/58

Regression and feature selection

Overview

1. 𝑘-nearest neighbours (Lecture 1)
2. Linear regression (Lecture 1)
3. Filtering (Lecture 9)

▶ F-score, mutual information, RF variable importance, …
4. Wrapping (Lecture 9)

▶ Forward-, backward-, and best subset selection
5. Penalized regression and variable selection

▶ Ridge regression and lasso (Lecture 9), group lasso and
elastic net (Lecture 10), adaptive lasso and SCAD
(Lecture 11)

6. Computation of the lasso (Lecture 10)
7. Applications of penalisation

▶ For Discriminant Analysis: Shrunken centroids (Lecture 10)
▶ For GLM: sparse multi-class logistic regression (Lecture 11)
▶ For networks: Graphical lasso (Lecture 14)

21/58

Intuition for the penalties

The least squares RSS is minimized for 𝜷OLS. If a constraint is
added (‖𝜷‖𝑞𝑞 ≤ 𝑡) then the RSS is minimized by the closest 𝜷
possible that fulfills the constraint.

β1

β2

βOLS

●

●

βlasso

Lasso

β1

β2

βOLS

●

●

βridge

Ridge

The blue lines are the contour lines for the RSS. 22/58

A regularisation path

Prostate cancer dataset (𝑛 = 67, 𝑝 = 8)
Red dashed lines indicate the 𝜆 selected by cross-validation

−0.25

0.00

0.25

0.50

0.75

0 2 4 6 8

Effective degrees of freedom

C
oe

ffi
ci

en
t

Ridge

−0.25

0.00

0.25

0.50

0.75

0.00 0.25 0.50 0.75 1.00

Shrinkage

C
oe

ffi
ci

en
t

Lasso

−0.25

0.00

0.25

0.50

0.75

−5 0 5 10

log(λ)

C
oe

ffi
ci

en
t

−0.25

0.00

0.25

0.50

0.75

−5 0 5 10

log(λ)

C
oe

ffi
ci

en
t

23/58

Potential caveats of the lasso

▶ Sparsity of the true model:
▶ The lasso only works if the data is generated from a
sparse process.

▶ However, a dense process with many variables and not
enough data or high correlation between predictors can
be unidentifiable either way

▶ Correlations: Many non-relevant variables correlated
with relevant variables can lead to the selection of the
wrong model, even for large 𝑛

▶ Irrepresentable condition: Split 𝐗 such that 𝐗1 contains
all relevant variables and 𝐗2 contains all irrelevant
variables. If

|(𝐗𝑇
2𝐗1)(𝐗𝑇

1 𝐗1)−1| < 1 − 𝜼
for some 𝜼 > 0 then the lasso is (almost) guaranteed to
pick the true model 24/58

Elnet and group lasso

▶ The lasso sets variables exactly to zero either on a corner (all
but one) or along an edge (fewer).

▶ The elastic net similarly sets variables exactly to zero on a
corner or along an edge. In addition, the curved edges
encourage coefficients to be closer together.

▶ The group lasso has actual information about groups of
variables. It encourages whole groups to be zero
simultaneously. Within a group, it encourages the coefficients
to be as similar as possible. 25/58

Clustering

Overview

1. Combinatorial Clustering (Lecture 6)
2. k-means (Lecture 6)
3. Partion around medoids (PAM)/k-medoids (Lecture 7)
4. Cluster count selection (Lecture 7 & 8)

▶ Ellbow heuristic, Silhouette Width, Cluster Strength
Prediction, Bayesian Information Criterion (BIC) for GMM

5. Hiearchical clustering (Lecture 7)
6. Gaussian Hierarchical Models (GMM; Lecture 8)
7. DBSCAN (Lecture 8)
8. Non-negative matrix factorisation (NMF; Lecture 11)
9. Subspace clustering (Lecture 14)

▶ In particular, CLIQUE and ProClus
10. Spectral clustering (Lecture 14)

26/58

k-means and the assumption of spherical geometry

●

●● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●
●

●
●

●
●

●

●

●

● ●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●●

●●
●●

●

●

●
●

●

● ●
●

●●

●

●

●●

●

●
●

●

●

●

●

●

●
●

●
● ●

●

●●

●

●

●
●

●

●

●

●

●●

●

●

●

●● ●

●

●●

●
●●

●
●

●
●

●●

●

●
●

●

●

●

●

●●

●
●

●

●
●●

●

●●

●
●

●

● ● ● ●

●

●

●

●
●

●
●

●●

●

● ●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●
●●

●● ●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●●
●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

−2

−1

0

1

2

−2 −1 0 1 2

x

y

Simulated

●

●● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●
●

●
●

●
●

●

●

●

● ●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●●

●●
●●

●

●

●
●

●

● ●
●

●●

●

●

●●

●

●
●

●

●

●

●

●

●
●

●
● ●

●

●●

●

●

●
●

●

●

●

●

●●

●

●

●

●● ●

●

●●

●
●●

●
●

●
●

●●

●

●
●

●

●

●

●

●●

●
●

●

●
●●

●

●●

●
●

●

● ● ● ●

●

●

●

●
●

●
●

●●

●

● ●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●
●●

●● ●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●●
●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

−3

0

3

−3 0 3

x

y

k−means directly on data

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

−1

0

1

−1 0 1

r

θ

Polar−coordinates

●

●● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●
●

●
●

●
●

●

●

●

● ●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●●

●●
●●

●

●

●
●

●

● ●
●

●●

●

●

●●

●

●
●

●

●

●

●

●

●
●

●
● ●

●

●●

●

●

●
●

●

●

●

●

●●

●

●

●

●● ●

●

●●

●
●●

●
●

●
●

●●

●

●
●

●

●

●

●

●●

●
●

●

●
●●

●

●●

●
●

●

● ● ● ●

●

●

●

●
●

●
●

●●

●

● ●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●
●●

●● ●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●●
●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

−2

−1

0

1

2

−2 −1 0 1 2

x

y

k−means on polar coord

27/58

Spectral Clustering

1. Determine the weighted adjacency matrix𝐖 and the graph
Laplacian 𝐋

2. Find the 𝐾 smallest eigenvalues of 𝐋 that are near zero and
well separated from the others

3. Find the corresponding eigenvectors 𝐔 = (𝐮1, … , 𝐮𝐾) ∈ ℝ𝑛×𝐾

and use k-means on the rows of 𝐔 to determine cluster
membership

●

●

●

●
●

● ●
●

●

●

●

●
●

●●
●

●

●

●
●

●

●
●

●

●

●
●

●

●
●●

●

●

●

●

● ●

●
●●

●
●

●

●●

●

●

●

●
●

● ●

●

●

●

●

●

●

●
●

●
●

●●

●

●

●

●●

●
●●

●

●

● ●
●

●
●

●

● ●

●●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

● ●

●

●

●

●
●

●

●●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

Raw data (n = 500

●

●

●

●
●

● ●
●

●

●

●

●
●

●●
●

●

●

●
●

●

●
●

●

●

●
●

●

●
●●

●

●

●

●

● ●

●
●●

●
●

●

●●

●

●

●

●
●

● ●

●

●

●

●

●

●

●
●

●
●

●●

●

●

●

●●

●
●●

●

●

● ●
●

●
●

●

● ●

●●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●●

Spectral clustering

28/58

Hierarchical Clustering

Procedural idea:

1. Initialization: Let each observation 𝐱𝑙 be in its own
cluster 𝑔0𝑙 for 𝑙 = 1, … , 𝑛

2. Joining: In step 𝑖, join the two clusters 𝑔𝑖−1𝑙 and 𝑔𝑖−1𝑚 that
are closest to each other resulting in 𝑛 − 𝑖 clusters

3. After 𝑛 − 1 steps all observations are in one big cluster

Subjective choices:

▶ How do we measure distance between observations?
▶ What is closeness for clusters?

29/58

Linkage

Cluster-cluster distance is called linkage

Distance between clusters 𝑔 and ℎ

1. Average Linkage:

𝑑(𝑔, ℎ) = 1
|𝑔| ⋅ |ℎ| ∑

𝐱𝑙∈𝑔
𝐱𝑚∈ℎ

𝐃𝑙,𝑚

2. Single Linkage
𝑑(𝑔, ℎ) = min𝐱𝑙∈𝑔

𝐱𝑚∈ℎ
𝐃𝑙,𝑚

3. Complete Linkage
𝑑(𝑔, ℎ) = max𝐱𝑙∈𝑔

𝐱𝑚∈ℎ
𝐃𝑙,𝑚

30/58

Dendrograms

Hierarchical clustering applied to iris dataset
0

1
2

3
4

5
6

Complete Linkage

H
ei

gh
t

● ●

▶ Leaf colours represent iris type: setosa, versicolor and virginica
▶ Height is the distance between clusters
▶ The tree can be cut at a certain height to achieve a final
clustering. Long branches mean large increase in within cluster
scatter at join 31/58

Remember QDA

In Quadratic Discriminant Analysis (QDA) we assumed

𝑝(𝐱|𝑖) = 𝑁 (𝐱|𝝁𝑖, 𝚺𝑖) and 𝑝(𝑖) = 𝜋𝑖

This is known as a Gaussian Mixture Model (GMM) for 𝐱 where

𝑝(𝐱) =
𝐾
∑
𝑖=1

𝑝(𝑖)𝑝(𝐱|𝑖) =
𝐾
∑
𝑖=1

𝜋𝑖𝑁 (𝐱|𝝁𝑖, 𝚺𝑖)

QDA used that the classes 𝑖𝑙 and feature vectors 𝐱𝑙 of the
observations were known to calculate 𝜋𝑖 , 𝝁𝑖 and 𝚺𝑖 .

What if we only know the features 𝐱𝑙?

32/58

Expectation-Maximization for GMMs

Finding the MLE for parameters 𝜽 in GMMs results in an
iterative process called Expectation-Maximization (EM)

1. Initialize 𝜽
2. E-Step: Update

𝜂𝑙𝑖 =
𝜋𝑖𝑁(𝐱𝑙|𝝁𝑖, 𝚺𝑖)

∑𝐾
𝑗=1 𝜋𝑗𝑁(𝐱𝑙|𝝁𝑗, 𝚺𝑗)

3. M-Step: Update

𝝁𝑖 =
∑𝑛

𝑙=1 𝜂𝑙𝑖𝐱𝑙
∑𝑛

𝑙=1 𝜂𝑙𝑖
𝜋𝑖 =

∑𝑛
𝑙=1 𝜂𝑙𝑖
𝑛

𝚺𝑖 =
1

∑𝑛
𝑙=1 𝜂𝑙𝑖

𝑛
∑
𝑙=1

𝜂𝑙𝑖(𝐱𝑙 − 𝝁𝑖)(𝐱𝑙 − 𝝁𝑖)𝑇

4. Repeat steps 2 and 3 until convergence
33/58

Density-based clusters

A cluster 𝐶 is a set of points in 𝐷 s.th.

1. If 𝑝 ∈ 𝐶 and 𝑞 is density-reachable from 𝑝 then 𝑞 ∈ 𝐶
(maximality)

2. For all 𝑝, 𝑞 ∈ 𝐶: 𝑝 and 𝑞 are density-connected
(connectivity)

This leads to three types of points

1. Core points: Part of a cluster and at least 𝑛min points in
neighbourhood

2. Border points: Part of a cluster but not core points
3. Noise: Not part of any cluster

Note: Border points can have non-unique cluster assignments

34/58

Density-based clusters

A cluster 𝐶 is a set of points in 𝐷 s.th.

1. If 𝑝 ∈ 𝐶 and 𝑞 is density-reachable from 𝑝 then 𝑞 ∈ 𝐶
(maximality)

2. For all 𝑝, 𝑞 ∈ 𝐶: 𝑝 and 𝑞 are density-connected
(connectivity)

This leads to three types of points

1. Core points: Part of a cluster and at least 𝑛min points in
neighbourhood

2. Border points: Part of a cluster but not core points
3. Noise: Not part of any cluster

Note: Border points can have non-unique cluster assignments

34/58

Density-based clusters

A cluster 𝐶 is a set of points in 𝐷 s.th.

1. If 𝑝 ∈ 𝐶 and 𝑞 is density-reachable from 𝑝 then 𝑞 ∈ 𝐶
(maximality)

2. For all 𝑝, 𝑞 ∈ 𝐶: 𝑝 and 𝑞 are density-connected
(connectivity)

This leads to three types of points

1. Core points: Part of a cluster and at least 𝑛min points in
neighbourhood

2. Border points: Part of a cluster but not core points
3. Noise: Not part of any cluster

Note: Border points can have non-unique cluster assignments

34/58

Density-based clusters

A cluster 𝐶 is a set of points in 𝐷 s.th.

1. If 𝑝 ∈ 𝐶 and 𝑞 is density-reachable from 𝑝 then 𝑞 ∈ 𝐶
(maximality)

2. For all 𝑝, 𝑞 ∈ 𝐶: 𝑝 and 𝑞 are density-connected
(connectivity)

This leads to three types of points

1. Core points: Part of a cluster and at least 𝑛min points in
neighbourhood

2. Border points: Part of a cluster but not core points
3. Noise: Not part of any cluster

Note: Border points can have non-unique cluster assignments

34/58

Density-based clusters

A cluster 𝐶 is a set of points in 𝐷 s.th.

1. If 𝑝 ∈ 𝐶 and 𝑞 is density-reachable from 𝑝 then 𝑞 ∈ 𝐶
(maximality)

2. For all 𝑝, 𝑞 ∈ 𝐶: 𝑝 and 𝑞 are density-connected
(connectivity)

This leads to three types of points

1. Core points: Part of a cluster and at least 𝑛min points in
neighbourhood

2. Border points: Part of a cluster but not core points
3. Noise: Not part of any cluster

Note: Border points can have non-unique cluster assignments

34/58

DBSCAN algorithm

Computational procedure:

1. Go through each point 𝑝 in the dataset 𝐷
2. If it has already been processed take the next one
3. Else determine its 𝜀-neighbourhood. If less than 𝑛min
points in neighbourhood, label as noise. Otherwise, start
a new cluster.

4. Find all points that are density-reachable from 𝑝 and add
them to the cluster.

35/58

Dependence on 𝑛min

▶ Controls how easy it is to connect components in a
cluster

▶ Too small and most points are core points, creating many
small clusters

▶ Too large and few points are core points, leading to many
noise labelled observations

▶ A cluster has by definition at least 𝑛min points
▶ Choice of 𝑛min is very dataset dependent
▶ Tricky in high-dimensional data (curse of dimensionality,
everything is far apart)

36/58

Dependence on 𝜀

▶ Controls how much of the data will be
clustered

▶ Too small and small gaps in clusters
cannot be bridged, leading to isolated
islands in the data

▶ Too large and everything is connected
▶ Choice of 𝜀 is also dataset dependent
but there is a decision tool

▶ Determine distance to the 𝑘 nearest
neighbours for each point in the
dataset

▶ Inside clusters, increasing 𝑘 should
not lead to a large increase of 𝑑

▶ The optimal 𝜀 is supposed to be
roughly at the knee

0 500 1000 1500 2000

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

Points (sample) sorted by distance

4−
N

N
 d

is
ta

nc
e

37/58

Dimension reduction and data
representation

Overview

1. Principal Component Analysis (PCA; Lecture 5)
2. Singular Value Decomposition (SVD; Lecture 5, 11 & 15)
3. Factor Analysis (Lecture 11)
4. Non-negative matrix factorization (NMF; Lecture 11 & 12)
5. Kernel-PCA (kPCA; Lecture 12)
6. Multi-dimensional scaling (MDS; Lecture 13)

▶ Classical scaling and metric MDS for general distance
matrices

7. Isomap (Lecture 13)
8. t-distributed Stochastic Neighbour Embedding (tSNE;
Lecture 13)

9. Laplacian Eigenmaps (Lecture 14)

38/58

Principal Component Analysis (PCA)

Computational Procedure:

1. Centre and standardize the columns of the data matrix
𝐗 ∈ ℝ𝑛×𝑝

2. Calculate the empirical covariance matrix 𝚺 = 1
𝑛 − 1𝐗

𝑇𝐗
3. Determine the eigenvalues 𝜆𝑗 and corresponding
orthonormal eigenvectors 𝐫𝑗 of 𝚺 for 𝑗 = 1,… , 𝑝 and order
them such that

𝜆1 ≥ 𝜆2 ≥ ⋯ ≥ 𝜆𝑝 ≥ 0
4. The vectors 𝐫𝑗 give the direction of the principal
components (PC) 𝐫𝑇𝑗 𝐱 and the eigenvalues 𝜆𝑗 are the
variances along the PC directions

Note: Set 𝐑 = (𝐫1, … , 𝐫𝑝) and 𝐃 = diag(𝜆1, … , 𝜆𝑝) then
𝚺 = 𝐑𝐃𝐑𝑇 and 𝐑𝑇𝐑 = 𝐑𝐑𝑇 = 𝐈𝑝 39/58

PCA and Dimension Reduction

Recall: For a matrix 𝐀 ∈ ℝ𝑘×𝑘 with eigenvalues 𝜆1, … , 𝜆𝑘 it
holds that

tr(𝐀) =
𝑘
∑
𝑗=1

𝜆𝑗

For the empirical covariance matrix 𝚺 and the variance of the
𝑗-th feature Var[𝑥𝑗]

tr(𝚺) =
𝑝
∑
𝑗=1

Var[𝑥𝑗] =
𝑝
∑
𝑗=1

𝜆𝑗

is called the total variation.
Using only the first 𝑚 < 𝑝 principal components leads to

𝜆1 +⋯+ 𝜆𝑚
𝜆1 +⋯+ 𝜆𝑝

⋅ 100% of explained variance
40/58

Better data projection for classification?

Idea: Find directions along which projections result in
minimal within-class scatter and maximal between-class
separation.

Projection onto
first principal component

Projection onto
first discriminant

LDA decision
boundary

PC
1

LD1

41/58

Non-negative matrix factorization (NMF)

A non-negative matrix factorisation of 𝐗 with rank 𝑞 solves

arg min
𝐖∈ℝ𝑝×𝑞,𝐇∈ℝ𝑞×𝑛

‖𝐗 −𝐖𝐇‖2𝐹 such that 𝐖 ≥ 0,𝐇 ≥ 0

▶ Sum of positive layers: 𝐗 ≈
𝑞
∑
𝑗=1

𝐖⋅𝑗𝐇𝑇
⋅𝑗

▶ Non-negativity constraint leads to sparsity in basis (in𝐖)
and coefficients (in 𝐇) [example on next slides]

▶ NP-hard problem, i.e. no general algorithm exists

42/58

SVD vs NMF – Example: Reconstruction

MNIST-derived zip code digits (𝑛 = 1000, 𝑝 = 256)
100 samples are drawn randomly from each class to keep the
problem balanced.

NMF 1 NMF 2 NMF 3 NMF 4 NMF 5

PCA 1 PCA 2 PCA 3 PCA 4 PCA 5

Red-ish colours are for negative values, white is around zero
and dark stands for positive values

43/58

SVD vs NMF – Example: Basis Components

Large difference between
SVD/PCA and NMF basis
components

NMF captures sparse
characteristic parts while
PCA components capture
more global features.

NMF 6 NMF 7 NMF 8 NMF 9 NMF 10

NMF 1 NMF 2 NMF 3 NMF 4 NMF 5

PCA 6 PCA 7 PCA 8 PCA 9 PCA 10

PCA 1 PCA 2 PCA 3 PCA 4 PCA 5

44/58

SVD vs NMF – Example: Coefficients
SVD coefficients

NMF coefficients

Note the additional sparsity in the NMF coefficients. 45/58

t-distributed Stochastic Neighbour Embedding (tSNE)

t-distributed stochastic neighbour embedding (tSNE) follows
a similar strategy as Isomap, in the sense that it measures
distances locally.
Idea: Measure distance of feature 𝐱𝑙 to another feature 𝐱𝑖
proportional to the likelihood of 𝐱𝑖 under a Gaussian
distribution centred at 𝐱𝑙 with an isotropic covariance matrix.

46/58

Computation of tSNE

For feature vectors 𝐱1, … , 𝐱𝑛, set

𝑝𝑖|𝑙 =
exp(−‖𝐱𝑙 − 𝐱𝑖‖22/(2𝜎2𝑙))

∑𝑘≠𝑙 exp(−‖𝐱𝑙 − 𝐱𝑘‖22/(2𝜎2𝑙))
and 𝑝𝑖𝑙 =

𝑝𝑖|𝑙 + 𝑝𝑙|𝑖
2𝑛 , 𝑝𝑙𝑙 = 0

The variances 𝜎2𝑖 are chosen such that the perplexity (here:
approximate number of close neighbours) of each marginal
distribution (the 𝑝𝑖|𝑙 for fixed 𝑙) is constant.
In the lower-dimensional embedding distance between 𝐲1, … , 𝐲𝑛 is
measured with a t-distribution with one degree of freedom or
Cauchy distribution

𝑞𝑖𝑙 =
(1 + ‖𝐲𝑖 − 𝐲𝑙‖22)

−1

∑𝑘≠𝑗 (1 + ‖𝐲𝑘 − 𝐲𝑗‖22)
−1 and 𝑞𝑙𝑙 = 0

To determine the 𝐲𝑙 the KL divergence between the distributions
𝑃 = (𝑝𝑖𝑙)𝑖𝑙 and 𝑄 = (𝑞𝑖𝑙)𝑖𝑙 is minimized with gradient descent

KL(𝑃||𝑄) = ∑
𝑖≠𝑙

𝑝𝑖𝑙 log 𝑝𝑖𝑙𝑞𝑖𝑙
47/58

Caveats of tSNE

tSNE is a powerful method but comes with some difficulties as
well

▶ Convergence to local minimum (i.e. repeated runs can
give different results)

▶ Perplexity is hard to tune (as with any tuning parameter)

Let’s see what tSNE does to our old friend, the moons dataset.

●

●

●

●

●

●

●

●

● ●

●

●

●

● ●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●
●

●

●

●

●
●
●

● ●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

● ● ●

●

●●

●
●

●

●

● ●

●●●

●

●

●

●

●

●

●
●

●

●

●● ●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●
●

●

●

● ●

●

●

●

●

●

●
● ●

●●

●

●

●

●

●

●

●

●
●

●

● ●

●

●
●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●
●●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●●

●

●

●

●

●

●

● ● ●●● ●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●● ●
●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

● ●

●

●

●●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●
● ●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●
●●

●

●●

●

●

●

●●

●

●

●

●
●

●
●

●
●

●●

●−2

0

2

−4 −2 0 2 4 6

x

y

48/58

Influence of perplexity on tSNE

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●● ●●

●

●●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●
●

●
●

●●
●

●●
●

●

●
●

●
●

●

●

●
●

●

●●

●

●

●

●
●

●

●

●

●

●●

●● ●

●

●

●

●●
●

●

●

●

●●

●●

●

●
●

●
●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●●●

●

●

●
●●

●●

●
●

●

●●

●

●

●
●

●
●

●

●

●

●

●

●

●●●

●●

●

●●●●●
●

●

●

●●

●●
●●

●
●

●

●

●●
●

●
●

●

●
●

●

●●

●
●

●

●

●

●

●●

●

●
●●

●
●

●

●

●●

●●

●

●●
●●
●

●

●

●

●
●

●●

●

●

●

●
●

●●●

●
●

●

●

●

●●●

●

●

●

●
●

●

●
●

●
●

●

●
●

●

●
●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●●

●

●
●●●

●
●

●●●●
●

●
●●

●

●

●

●

●●

●
●

●

●

●
●

●

●

●●●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●●●

●

●

●●

●

●

●

●
●

●

●
●

●

●●

●

●

●
●

●●

●●●

●
●●

●
●

●
●●

●

●●

●●

●

●

●

●

●
●

●

●

●
●●

●
●

●

●●

●

●

●●

●
●

●

●

●

●●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●●

●
●

●
●

●
●

●

●

●
●

●
● ●

●

●

●●

●

●

●
●

●

●

●
●●

●●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●●

●

●

●
●

●

●●

●●

●
●●

●

●
●

●

●
●

●●

●●●

●

●●

●
●●

●

●

●●
●●●

●

●
●

●●

●

●●

●
●

●●●●

●

●

●

●●

●●

●

●●●

●

●●

●

●

●
●●●

●
●

●
●

●

●

●●

●●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●
●
●

●●

●
● ●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

● ●
●

●

●
●●

●

●
●

●

●

●

●

●●

●

●
●

●

●

●

●
●

●

●

●

●

●

● ●
●

●

● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●●

● ●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●
●●

●

●

●●

●

●

●

●
●

●

●

●
●

● ●

●

●

●

●

●●

●
●

●
●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●
●●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●
●

●●

●

●

●

●

●
●

●
●

●
●

●

●

●
●

● ●●●

●

●
●

●
● ●

●

●

●

●

●

●

●
●

●

●

●

● ●●

●

●

●

●●

●
●

●

●
● ●

●

●
●

●

●
●

●●
●●

●

●

●

●

●

● ●

●
●

●

●●

●
●
●●
●

●●●●

●
●

●
●●

●

●●

●

●●
●

●
●

●●
● ●

●

●
●●

●●
●

●

●

●

●●
●●

●

●

●●

●●●
●

●

● ●●

●

●

●
●

●

●

●
●

●
●

●

●

●

●
●

●●

●
●●●

●
●

●●●
●●

●●

●

●●

●

●
●

●
●●●

●

●
●

●

●
●●●

●●

●

●●●
●●●

●

●

●●

●●●●

●●

●

●

●●
●

●●

●

●●●

●●

●●

●
●

●

●

●●

●
●
●●

●●

●
●

●●
●●

●

●●●●●
●

●

●

● ●
●●

●

●

●

●●

●●●

●
●●

●

●

●●
●

●
●

●
●●●

●
●

●● ●

●
●

●

●
●
●

●

●

●

●●

● ●●

●

●●●
●

●●
●

●●●●

●
●

●●●● ●
●

●●
● ●●

●

●●

●
●●

●

●●
●

●

●●
●●

●

●

●
●

●

●
●

●

●
●

●

●
●

●

●
●●●

●

●
●●

●

●

●

●●

●
●

●
●

●●

●

●

●
●

●●

●●●

●
●●

●●
●

●●
●

●●

●●

●

●
●

●

●●

●

●

●
●●

●●●
●●

●
●

●●

●
●

●

●

●
●●

●

●
●

●

●
●

●
●

●●

●
●

●

●
●

●

●●

● ●
●

●
●

●
●

●

●●●
●●

●
●

●●
●

●

●●
●

●
●●●

●●

●
●

●
●●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●●

●
●

●●

●
●

●
●

●●
●

●●

●
●

●
●

●
●●

●●
●●●

●

●
●

●
●●

●●

●●●

●

●●

●
●●

●

●

●●
●●●

●
●●●●

●

●●

●
●

●●●●

●

●

●
●●

●●

●
●●●

●
●●

●

●

●
●●●

●
●

●●

●

●
●●

●●
●

●

●

●● ●
●

●
●●

●

●

● ●
●

●

●

●

●
●

●
●●

●

●

●

●
●

●

●

●

●

●
●

● ●●

●

●

●

●
●

●
● ●

●

●●

●●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●● ●

●

●

●

● ●●

●

● ●●

●

●

●

●●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●●

●

●●●
●

●

●

●

●

●
●

●● ●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

● ●

●

● ●●

●

●

●
●

●●

●●

●

●●

●
●

●

●

●

●

●

●

●
● ●

●

●

●

●

● ●●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●● ●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●●
●●

●

●
●

●

●

●

●

●
●●

●

●
●

●
●

●

●

●

●●●●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●●

●

●

●●

●

●

●

●

●
●

● ●

●

●
●

●
● ●

●

●●

●●
●

●

●
●

● ●
●

●● ●

●●

●●

●
●

●

●●

●

●

●

●

●●

●

●

●

● ●

●

● ●●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●● ●

●

●
●

● ●

●

● ●
●●

●

●
●

●

●

●
●

●

● ●

●

●

●

●● ●

●

●● ●

● ●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●●

●●

●
●●

●

●

●

●

●
●

●●

●●●

●

●
●

●

● ●

●

●

●

●

●●●

●

●
●

● ●

●

●●

●
●

●
●
●
●

●

●
●

●●

●●

●

●
●●

●

●
●

●

●

●

●●●

●

●●
●

●

●

● ●

●●

●

●●
●●●●●
●●●

●
●●
●

●●

●

●●

●
●●

●
●

●
●●

●
●
●

●
●●
●●●

●
●

●
●●●
●
●

●

●●
●●●
●●

●●●
●

●
●

●
●
●

●
●

●
●
●

●

●

●
●
●●

●
●●●

●
●

●●●●●
●●
●

●●
●

●
●●

●●●
●

●
●

●

●
●●●
●●

●
●●●●●●

●

●

●●

●●●●

●●
●

●
●●●

●●
●

●●●
●●

●●
●

●

●

●
●●

●
●
●●

●●

●
●

●●
●●

●
●●●●●●

●

●

●●
●●●
●
●

●●

●●●
●
●●
●

●

●●●

●
●
●
●●

●●
●

●●●

●●
●
●●●

●
●

●

●●

●●●

●
●●●

●●●
●

●●●●
●●

●●●●●
●●

●
●●●

●
●●
●●●
●
●●●

●

●●●●
●●

●
●

●
●●●

●●
●

●●●
●●●●

●
●●●●
●

●
●●

●●●●
●●

●
●

●●
●●

●●●
●

●●
●●●●●●

●●
●●

●
●●●
●●

●
●

●●●
●●●●●
●
●

●●
●●●

●
●●●

●

●●●

●●
●●

●●
●

●
●

●●
●

●●
●●●●●●●

●
●●●●●

●●●●
●

●
●●●

●
●●●●●

●
●

●●●
●

●
●

●
●

●
●

●
●

●●●●●

●
●

●
●

●

●
●●

●●
●●

●●
●

●●
●●●●●●

●●●●
●●●
●●●●●●

●●
●

●●●●
●●●

●

●●
●●●●

●
●●●●●

●●●●●
●

●●
●●●●●●

●
●

●●●
●●

●●●●
●●●

●
●

●●●● ●●●●
●

●●●●●●

30 50 100

2 5 15

−100 −50 0 50 −100 −50 0 50 −100 −50 0 50

−50

0

50

−50

0

50

tSNE1

tS
N

E
2

Varying perplexity

Transformed with tSNE

49/58

tSNE multiple runs

● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●●

●

●

●

●

●
●

●

●
● ●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●●●

●●

● ●

●

●●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●●
●

●

●

●

●

●

●

●●

●

●

●

●
● ●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●●
●

●
●

●●

●

●

●

●

●●

●
●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●
●

●

●

●
●●

●

●
●●

●●
●

●

●
●

●

●

●

●

●
●

●

● ●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●
●●

●
●

●

●

●

●

●

●

●●

●
●●

●

●●

●

●

●

●

●

●

●

●
●
●

●

●

●

●
●

●

●●

●

●

●

●
●

●

●

●

●

●●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●
●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●●

●

● ●

●

●

●
●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●
●

●

●

●

●●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

● ●● ●● ●

●

●

●

●

●●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●●

●
●

●

●
●

●

●

●

●

●

●

●

●

● ●

● ●
●

●

●

●
●● ●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●●

●
●

●
● ●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

● ●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●
●

●●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●● ●

●

●

●

●

●

●

●
●

●

●
●

●●

●

●

●

●

●
●

●

●

●

●●

●
●

●

●

●

● ●

●●

●
●

●

●

● ●
●

●

●

●●

●

●

●

●

●

●

● ●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●
●

● ●

●

● ●

●
●

●●

●

●

●

●

●

●●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●●●

●

● ●
●

●

●

●
● ●

●

●
●

●●
●

●

●
●

●

●

●

●

●

●

●

●●●

●

● ●

● ●

●

●
●

●

●

●
●

●
●

●

●

●●●

●●

● ●
● ●

● ●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
● ●

● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

● ●

●

●
● ●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●
●

●
●●

●●

●
●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●●
●

●

●

●

●

●

●

●●

●

●

●

●
● ●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●●

●
●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

● ●●

●

●
●

●

●

●

●●

●

●
●
●

●●
●

●

●
●

●

●

●

●

●
●

●

● ●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

● ●

●

●
●

●

●

●●●

●

●

●●

●

●

●

●
●

●

●
●

●

●
●●

●

●

●

●●

●●
●

●
●

●
●

●

●
● ●

●

●
●

● ●●

●

●

●

●

●

●

●

●
●
●

●

●

●

●●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●
●

●

●

●●

●

●

●

●
●

●●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●● ●

●

●●

●

●●

●

●

●

●●

●

●

●

●

●

●

●●

●
●●

●

●

●

●
●●●

●

●
●

●
●● ●

●

●

●●
●

●●

● ●

●

● ●●

●

●

●

●●

●●

●

●
●

●

●

●
●

●
●●

●● ●

●

●
●

●

●

●

●●

●●

●

●

●

●
●

●●
●

●●

●

●

●●
●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
● ●

●

●

●

● ●

●●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●
●●

●

●

●
●●

●●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●
●● ●●

●

●

●

●

●

●●●
●

●

●

●

●

●
●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●
●

●●

● ●

●

●●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●
●

●

●

●

●

●

● ● ●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●
●●

●

●

●
●●●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

● ●
●

●

●

●

●

●
●

●

●

●

●●

●

●
●

●

●
●●●

●

●

●●

●

●

●

● ●

●

●

● ●

●

●

●

●

●
●

●●

●●
●● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●
●
●

●
●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●
●

●

●

●
●

●

●

●

●
●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●
●

●

●●

●

●

●
●●

●

●

●

●

●

●

●●

●
●●

●

●

●

●● ● ●

●

●
●

●●●
●

●
●

●
● ●

●●

●●
●

●● ●

●

●

●

●●

●●

●

●
●

●

●

●
●

●

●

●●●● ●
●

●
●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●●
●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●
●

●

●●

●

●

●

●

●

●

●●

●
●
●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●
●

●

●
●

●

●

● ●●

●
●●

●
●

●

●●

●
●●

●

●

●●

●

●

●

● ●

●

●

●●

●
●

●
●

●

●

●

●

●
●

●
●

●

●

●
●

●●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
● ●

●

●

●●

●

● ●
●

●

●
●

●●

●●

●
●

●●● ●

●

● ●

●

●
●

●

●

● ●●

●
●

●

●●●
●

●●
●

●●

●

●
●

● ●●
●

●

●

●

●

●

●●

●
●

● ●● ●

●

●
●●

●

●

●

●

●

●
●

●

●

●●
●

●

●

●●●

●●

●
● ●

●
●

●

●

●
●

●

●
●●

●

●

●

●

●
● ●

●

● ●●

●

●

●●●
●

●

●

●
●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●●●

●

● ●

●

●
●

●

●
●

●

●
●

● ●
●

●
●●

●●
●

●
●●

●

●

●

●

●
●

●
●●

●

●
● ●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●
●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

● ●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

● ●●
●
●

●

●

●

●

●

●

●●

●
●●

●

●●

●

●

●

●

●

●

●

●
●●

●

●

●

●
●

●

●●

●

●

●

●
●
●

●

●

●

●●

●
●

●

●
●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●
●

●
●
●

●

●

●

●

●

●

●●

●●
●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●
●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●● ●
●

●

●
●

●

●

● ●●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

● ●●
●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●
●●

●

● ●●

●

●

●

●●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●●

●

●

●

●

●

●

●

●● ●●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

● ●

●

●

●●

●

●

●●

●●

●●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●
●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●
●

●

●●

●

●

●

●

●

●

●●

●●
●

●

●

●

●

●
●

●

●

●

●

●●●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●
●

●●

●

●

●●
●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
● ●

●●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●●

●

●

●

●
●●

●

●●●

●

●

●

●●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●
●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●
●

●

●

●

●

●

● ● ●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●
● ●

●

●

●
●

●

●
●●

●

●

●

●

●
●

●

●●●

●
●●●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●●

●●
●

●

●
●

● ●

●

●

●

●

●
●

●
●

●

●
●

●

●

●
●

●

●

●●
●

●
●

●

●

● ●

●●

● ●
●

●

● ●
●

●

●

●
●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●
● ●

●

●

●

●

●

●
● ●

●

●

●
●

●
●

●●
●

●

●

● ●●●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●
●

●●
●

●

● ●●

●

●

●
●●

●
●

●
● ●● ●

●
●
●●

●

●
●

●

●
●

●

●

●

●

●
●●

●
● ● ●

●

●

●●

●

●

●

●
●

●

●

●

●
●●

●
●

●
●● ●

●

● ●

●

●

●

●●

●

●

●

●●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●
●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●
●

●

●

●
●

●●
●

●

●
●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●●●

●

●
●●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●
●●

●
●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●● ●

●

●●

●
●

●

●●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●
●

●

●

●

●●

●

●

●

●●

●

●

●

●

●
●

●
●

●
●
●

●

●

●

●

●

●

●

●

●

●

●
●
●

● ●

●●
●

●

●
●●

●

●

●
●

●

●

●

●

●
●

●
● ●

●
●●

●

●●

●

●

●

●
●

●

●

●

● ●

●

●

●●

●
●

●

6 7 8 9 10

1 2 3 4 5

−20 0 20 −20 0 20 −20 0 20 −20 0 20 −20 0 20

−20

0

20

40

−20

0

20

40

tSNE1

tS
N

E
2

Perplexity = 20, multiple runs

Transformed with tSNE

50/58

Large scale methods

Overview

▶ Randomised low-rank SVD (Lecture 15)
▶ Divide and Conquer (Lecture 15)
▶ Random Forests with big-𝑛 extensions (Lecture 15)
▶ Leveraging (Lecture 15)

51/58

Random projection

There are multiple possibilities how the map 𝑓 in the
Johnson-Lindenstrauss theorem can be found.
Let 𝐗 ∈ ℝ𝑛×𝑝 be a data matrix and 𝑞 the target dimension.

▶ Gaussian random projection: Set

Ω𝑖𝑗 ∼ 𝑁 (0, 1𝑞) for 𝑖 = 1, … , 𝑝, 𝑗 = 1,… , 𝑞

▶ Sparse random projection: For a given 𝑠 > 0 set

Ω𝑖𝑗 =√
𝑠
𝑞
⎧
⎨
⎩

−1 1/(2𝑠)
0 with probability 1 − 1/𝑠
1 1/(2𝑠)

for 𝑖 = 1, … , 𝑝, 𝑗 = 1,… , 𝑞 where often 𝑠 = 3
(Achlioptas, 2003) or 𝑠 = √𝑝 (Li et al., 2006)

then 𝐘 = 𝐗𝛀 ∈ ℝ𝑛×𝑞 is a random projection for 𝐗. 52/58

Randomized low-rank SVD

Original goal: Apply SVD in cases where both 𝑛 and 𝑝 are large.
Idea: Determine an approximate low-dimensional basis for
the range of 𝐗 and perform the matrix-factorisation in the
low-dimensional space.

▶ Using a random projection 𝐗 ≈ 𝐐𝐐𝑇𝐗 = 𝐐𝐓
▶ Note that 𝐓 ∈ ℝ𝑞×𝑝

▶ Calculate the SVD of 𝐓 = 𝐔0
𝑞×𝑞

⋅ 𝐃
𝑞×𝑞

⋅ 𝐕𝑇
𝑞×𝑝

▶ Set 𝐔 = 𝐐𝐔0 ∈ ℝ𝑛×𝑞, then 𝐗 ≈ 𝐔𝐃𝐕𝑇

The SVD of 𝐗 can therefore be found by random projection
into a 𝑞-dimensional subspace of the range of 𝐗, performing
SVD in the lower-dimensional subspace and subsequent
reconstruction of the vectors into the original space.

53/58

Divide and conquer

𝐗 ⋮

𝐗2

𝐗1

𝐗𝐾−1

𝐗𝐾

⋮

𝑓(𝐗2)

𝑓(𝐗1)

𝑓(𝐗𝐾−1)

𝑓(𝐗𝐾)

sum, mean, …

DivideAll data Conquer Recombine

54/58

Random forests for big-𝑛

Instead of the standard RF with normal bootstrapping,
multiple strategies can be taken

▶ Subsampling (once): Take a subsample of size 𝑚 and
grow RF from there. Very simple to implement, but
difficult to ensure that the subsample is representative.

▶ 𝑚-out-of-𝑛 sampling: Instead of standard bootstrapping,
draw repeatedly 𝑚 samples and grow a tree on each
subsample. Recombine trees in the usual fashion.

▶ BLB sampling: Grow a forest on each subset by
repeatedly oversampling to 𝑛 samples.

▶ Divide and Conquer: Split original data in 𝐾 parts and
grow a random forest on each.

55/58

Leverage

Problem: Representativeness
How can we ensure that a subsample is still representative?

We need additional information about the samples. Consider
the special case of linear regression and 𝑛 >> 𝑝.

Recall: For least squares predictions it holds that
�̂� = 𝐗 ̂𝜷 = 𝐗(𝐗𝑇𝐗)−1𝐗𝑇𝐲 = 𝐇𝐲

with the hat-matrix 𝐇 = 𝐗(𝐗𝑇𝐗)−1𝐗𝑇 .

Specifically ̂𝑦𝑖 = ∑𝑛
𝑗=1𝐻𝑖𝑗𝑦𝑗 , which means that 𝐻𝑖𝑖 influences

its own fitted values.

Element 𝐻𝑖𝑖 is called the leverage of the observation.
Leverage captures if the observation 𝑖 is close or far from the
centre of the data in feature space. 56/58

Leveraging

Goal: Subsample the data, but make the more influential data
points, those with high leverage, more likely to be sampled.

Computational approach

▶ Weight sample 𝑖 by

𝜋𝑖 =
𝐻𝑖𝑖

∑𝑛
𝑗=1𝐻𝑗𝑗

▶ Draw a weighted subsample of size 𝑚 ≪ 𝑛
▶ Use the subsample to solve the regression problem

This procedure is called Leveraging (Ma and Sun, 2013).

57/58

Outlook

Where to go from here?

▶ Support vector machines (SVM): Chapter 12 in ESL
▶ (Gradient) Boosting: Chapter 10 in ESL
▶ Gaussian processes: Rasmussen and Williams (2006)
Gaussian Processes for Machine Learning1

▶ Streaming/online methods2
▶ Neural networks/Deep Learning: Bishop (2006) Pattern
Recognition and Machine Learning

▶ Natural Language Processing: Course3 by Richard
Johansson, CSE, on this topic in the fall

▶ Reinforcement Learning: Sutton and Barto (2015)
Reinforcement Learning: An Introduction4

1http://www.gaussianprocess.org/gpml/chapters/RW.pdf
2https://en.wikipedia.org/wiki/Online_machine_learning
3https://chalmers.instructure.com/courses/7916
4https://web.stanford.edu/class/psych209/Readings/SuttonBartoIPRLBook2ndEd.pdf

58/58

http://www.gaussianprocess.org/gpml/chapters/RW.pdf
https://en.wikipedia.org/wiki/Online_machine_learning
https://chalmers.instructure.com/courses/7916
https://web.stanford.edu/class/psych209/Readings/SuttonBartoIPRLBook2ndEd.pdf

	Statistical Learning
	Classification
	Regression and feature selection
	Clustering
	Dimension reduction and data representation
	Large scale methods
	Outlook

