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Reprise: Statistical Learning (I)

Regression
▶ Theoretically best regression function for squared error
loss

𝑓(𝐱) = 𝔼𝑝(𝑦|𝐱)[𝑦]
▶ Approximate (1) or make model-assumptions (2)

1. k-nearest neighbour regression

𝔼𝑝(𝑦|𝐱)[𝑦] ≈
1
𝑘 ∑

𝐱𝑖𝑙∈𝑁𝑘(𝐱)
𝑦𝑖𝑙

2. linear regression (viewpoint: generalized linear models
(GLM))

𝔼𝑝(𝑦|𝐱)[𝑦] ≈ 𝐱𝑇𝜷
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Reprise: Statistical Learning (II)

Classification

▶ Theoretically best classification rule for 0-1 loss and 𝐾
possible classes

̂𝑐(𝐱) = arg max
1≤𝑖≤𝐾

𝑝(𝑖|𝐱)

▶ Approximate (1) or make model-assumptions (2)
1. k-nearest neighbour classification

𝑝(𝑖|𝐱) ≈ 1
𝑘 ∑

𝐱𝑙∈𝑁𝑘(𝐱)
1(𝑖𝑙 = 𝑖)

2. Instead of approximating 𝑝(𝑖|𝐱) from data, can we make
sensible model assumptions instead?
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Amendment: kNN methods

There are two choices to make when implementing a kNN
method

1. The metric to determine a neighbourhood
▶ e.g. Euclidean/ℓ2 norm, Manhattan/ℓ1 norm, max norm, …

2. The number of neighbours, i.e. 𝑘

The choice of metric changes the underlying local model of
the method while 𝑘 is a tuning parameter.
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Model-based classification



Classification as regression

▶ Consider a two-class problem, with 𝑖𝑙 = 0 or 𝑖𝑙 = 1
▶ Instead of 0-1 loss, use square error loss, i.e.

𝔼𝑝(𝑖|𝐱)[𝑖] = 0 ⋅ 𝑝(0|𝐱) + 1 ⋅ 𝑝(1|𝐱) = 𝑝(1|𝐱)
Note that 𝑖 has a discrete distribution.

▶ Linear regression model assumption

𝑝(1|𝐱) = 𝔼𝑝(𝑖|𝐱)[𝑖] ≈ 𝐱𝑇𝜷
▶ Since we are approximating 𝑝(1|𝐱) and
𝑝(0|𝐱) = 1 − 𝑝(1|𝐱) ≈ 1 − 𝐱𝑇𝜷, we indirectly specified a
model approximation for Bayes’ rule as well

𝑐(𝐱) = {
0 𝐱𝑇𝜷 ≤ 1

2
1 otherwise

Note that 𝐱𝑇𝜷 = 1
2
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0-1 regression
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0-1 regressions and outliers
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Dummy encoding for categorical variables

In regression, when a predictor 𝑥 is categorical, i.e. takes one
of 𝐾 values, it is common to use a dummy encoding.

Example:
𝑥 = 1 → 𝑧 = (1, 0, 0)
𝑥 = 2 → 𝑧 = (0, 1, 0)
𝑥 = 3 → 𝑧 = (0, 0, 1)

Idea
Turn a classification problem into a regression problem by
representing the class outcomes 𝑖𝑙 in the training data (𝑖𝑙, 𝐱𝑙)
as vectors in dummy encoding.
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Multiple classes

▶ This creates a sequence of 0-1 regressions (see
blackboard). If there are 𝐾 classes then

𝑧(1)𝑙 ∶= 1(𝑖𝑙 = 1) → 𝑝(𝑧(1) = 1|𝐱) ≈ 𝐱𝑇𝜷(1)

⋮
𝑧(𝐾)𝑙 ∶= 1(𝑖𝑙 = 𝐾) → 𝑝(𝑧(𝐾) = 1|𝐱) ≈ 𝐱𝑇𝜷(𝐾)

▶ Note that
𝑝(𝑖|𝐱) = 𝑝(𝑧(𝑖) = 1|𝐱) ≈ 𝐱𝑇𝜷(𝑖)

▶ Classification rule

𝑐(𝑥) = arg max
1≤𝑖≤𝐾

𝑝(𝑖|𝐱) ≈ arg max
1≤𝑖≤𝐾

𝐱𝑇𝜷(𝑖)

Decision boundaries are defined by 𝑐(𝑥) = 𝐱𝑇𝛽(𝑖) = 𝐱𝑇𝛽(𝑗)
for 𝑖 ≠ 𝑗
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Multiple 0-1 regressions
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Problems with 0-1 regression

Observations:

1. 𝐱𝑇𝜷 is unbounded but models a probability 𝑝(𝑖|𝐱) ∈ [0, 1]
2. Only values of 𝐱𝑇𝜷 around 0.5 (for binary classification) or
close to the maximal value (for multiple classes) are
really of interest.

3. Sensitive to points far away from the boundary (outliers)
4. Masking: Classes can get buried among other classes
(adding polynomial predictors can sometimes help, but
this is arbitrary and data dependent)

Inspiration from GLM
Can we transform 𝐱𝑇𝜷 such that the transformed values are
in [0, 1], are similar to the original values when close to 0.5
and insensitive outliers far away from the boundary?
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Logistic function and Normal Distribution CDF
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Logistic and probit regression

▶ We arrive at logistic regression when assuming
𝑝(1|𝐱) = 𝔼𝑝(𝑖|𝐱)[𝑖] = 𝜎−1 (𝐱𝑇𝜷)

or probit regression when assuming
𝑝(1|𝐱) = 𝔼𝑝(𝑖|𝐱)[𝑖] = Φ−1 (𝐱𝑇𝜷)

▶ Parameters can be estimated by iteratively reweighted
least squares (Details in ESL Ch. 4.4.1)

▶ A warning: Problematic situation in two-class case
(occurs seldom in practice)

▶ Assume two classes can be separated perfectly in one or
more predictors

▶ Logistic regression tries to fit a step-like function, which
forces the intercept to −∞ and the corresponding
predictor coefficient to +∞.
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Logistic regression and outliers
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Multi-class logistic regression

▶ In case of 𝐾 > 2 classes, using dummy encoding for the
outcome leads again to a series of regression problems.

▶ Requirement: Probabilities should be modelled, i.e. in
𝑝(𝑖|𝐱) ∈ [0, 1] for each class and∑𝑖 𝑝(𝑖|𝐱) = 1

▶ Softmax function: 𝝈 ∶ ℝ𝐾 ↦ [0, 1]𝐾

𝝈𝑗(𝐳) =
𝑒𝑧𝑗

∑𝐾
𝑙=1 𝑒𝑧𝑙

⇔ 𝝈𝑗(𝐳) =
𝑒(𝑧𝑗−𝑧𝐾)

1 +∑𝐾−1
𝑙=1 𝑒(𝑧𝑙−𝑧𝐾)

▶ Model now:

𝑝(𝑖|𝐱) = 𝑒𝐱𝑇𝜷(𝑖)

∑𝐾
𝑙=1 𝑒𝐱

𝑇𝜷(𝑖)
or 𝑝(𝑖|𝐱) = 𝑒𝐱𝑇(𝜷(𝑙)−𝜷(𝐾))

1 +∑𝐾−1
𝑙=1 𝑒𝐱𝑇(𝜷(𝑙)−𝜷(𝐾))

▶ This method has many names: softmax regression,
multinomial logistic regression, maximum entropy
classifier, …
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Multi-class logistic regression: An example
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Classification with focus on the
feature/predictor space



Motivation for a different viewpoint: Nearest centroids
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Determine mean
predictor vector per
class

𝝁𝑖 =
1
𝑛𝑖

∑
𝑖𝑙=𝑖

𝐱𝑙

where

𝑛𝑖 =
𝑛
∑
𝑙=1

1(𝑖𝑙 = 𝑖)

and classify points to
the class who’s mean is
closest.
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A change of scenery

Summary
▶ Classification can be approached through regression and
approximation of 𝔼𝑝(𝑖|𝐱)[𝑖]

▶ Indirectly we approximated 𝑝(𝑖|𝐱) and were able to use
Bayes’ rule

Observation: Good predictors group by class in feature space

Change of focus: Let’s model the density of 𝐱 conditionally on
𝑖 instead!

How? Bayes’ law
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The setting of Discriminant Analysis

Apply Bayes’ law

𝑝(𝑖|𝐱) = 𝑝(𝐱|𝑖)𝑝(𝑖)
∑𝐾

𝑗=1 𝑝(𝐱|𝑗)𝑝(𝑗)

Instead of specifying 𝑝(𝑖|𝐱) we can specify

𝑝(𝐱|𝑖) and 𝑝(𝑖)

The main assumption of Discriminant Analysis (DA) is

𝑝(𝐱|𝑖) ∼ 𝑁(𝝁𝑖, 𝚺𝑖)

where 𝝁𝑖 ∈ ℝ𝑝 is the mean vector for class 𝑖 and 𝚺𝑖 ∈ ℝ𝑝×𝑝 the
corresponding covariance matrix.
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Finding the parameters of DA

▶ Notation: Write 𝑝(𝑖) = 𝜋𝑖 and consider them as unknown
parameters

▶ Given data (𝑖𝑙, 𝐱𝑙) the likelihood maximization problem is

arg max
𝝁,𝚺,𝝅

𝑛
∏
𝑙=1

𝑁(𝐱𝑙|𝝁𝑖𝑙 , 𝚺𝑖𝑙)𝜋𝑖𝑙 subject to
𝐾
∑
𝑖=1

𝜋𝑖 = 1.

▶ Can be solved using a Lagrange multiplier (try it!) and
leads to

𝜋𝑖 =
𝑛𝑖
𝑛 , with 𝑛𝑖 =

𝑛
∑
𝑙=1

1(𝑖𝑙 = 𝑖)

𝝁𝑖 =
1
𝑛𝑖

∑
𝑖𝑙=𝑖

𝑥𝑙

𝚺𝑖 =
1

𝑛𝑖 − 1 ∑𝑖𝑙=𝑖
(𝑥𝑙 − 𝝁𝑖)(𝑥𝑙 − 𝝁𝑖)𝑇
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Performing classification in DA

Bayes’ rule implies the classification rule

𝑐(𝐱) = arg max
1≤𝑖≤𝐾

𝑁(𝐱|𝝁𝑖, 𝚺𝑖)𝜋𝑖

Note that since log is strictly increasing this is equivalent to

𝑐(𝐱) = arg max
1≤𝑖≤𝐾

𝛿𝑖(𝐱)

where

𝛿𝑖(𝐱) = log𝑁(𝐱|𝝁𝑖, 𝚺𝑖) + log𝜋𝑖
= log𝜋𝑖 −

1
2(𝐱 − 𝝁𝑖)𝑇𝚺−1𝑖 (𝐱 − 𝝁𝑖) −

1
2 log |𝚺𝑖| (+𝐶)

This is a quadratic function in 𝐱.
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Different levels of complexity

▶ This method is called Quadratic Discriminant Analysis
(QDA)

▶ Problem: Many parameters that grow quickly with
dimension

▶ 𝐾 − 1 for all 𝜋𝑖
▶ 𝑝 ⋅ 𝐾 for all 𝝁𝑖
▶ 𝑝(𝑝 + 1)/2 ⋅ 𝐾 for all 𝚺𝑖 (most costly)

▶ Solution: Replace covariance matrices 𝚺𝑖 by a pooled
estimate

𝚺 =
𝐾
∑
𝑖=1

𝚺𝑖
𝑛𝑖 − 1
𝑛 − 𝐾 = 1

𝑛 − 𝐾
𝐾
∑
𝑖=1

∑
𝑖𝑙=𝑖

(𝑥𝑙 − 𝝁𝑖)(𝑥𝑙 − 𝝁𝑖)𝑇

▶ Simpler correlation and variance structure: All classes
are assumed to have the same correlation structure
between features

21/25



Performing classification in the simplified case

As before, consider

𝑐(𝐱) = arg max
1≤𝑖≤𝐾

𝛿𝑖(𝐱)

where

𝛿𝑖(𝐱) = log𝜋𝑖 + 𝐱𝑇𝚺−1𝝁𝑖 −
1
2𝝁

𝑇
𝑖 𝚺−1𝝁𝑖 (+𝐶)

This is a linear function in 𝐱. The method is therefore called
Linear Discriminant Analysis (LDA).
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Even more simplifications

Other simplifications of the correlation structure are possible

▶ Ignore all correlations between features but allow
different variances, i.e. 𝚺𝑖 = 𝚲𝑖 for a diagonal matrix 𝚲𝑖
(Diagonal QDA or Naive Bayes’ Classifier)

▶ Ignore all correlations and make feature variances equal,
i.e. 𝚺𝑖 = 𝚲 for a diagonal matrix 𝚲 (Diagonal LDA)

▶ Ignore correlations and variances, i.e. 𝚺𝑖 = 𝜎2𝐈𝑝×𝑝
(Nearest Centroids adjusted for class frequencies 𝜋𝑖 )
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Examples of LDA and QDA
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Decision boundaries can be found with

𝑁(𝐱|𝝁𝑖, 𝚺𝑖)𝜋𝑖 = 𝑁(𝐱|𝝁𝑗, 𝚺𝑗)𝜋𝑗 for 𝑖 ≠ 𝑗
and 𝚺𝑖 = 𝚺 for LDA and 𝚺𝑖 = 𝜎2𝐈𝑝×𝑝 for Nearest Centroids.
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Take-home message

▶ Classification can be achieved through the point-of-view
of regression

▶ Modelling the conditional densities of features instead of
classes leads to Discriminant Analysis (DA)

▶ There is a range of assumptions in DA about the
correlation structure in feature space→ trade-off
between stability and flexibility
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