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Reprise: Statistical Learning (1)

Regression

» Theoretically best regression function for squared error
loss

~

f(X) = [Ep(y|x)[y]
» Approximate (1) or make model-assumptions (2)
1. k-nearest neighbour regression

1
EpowI~ g 2 %

Xj ENk(x)

2. linear regression (viewpoint: generalized linear models
(GLM))

Epypoly] # x"8
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Reprise: Statistical Learning (11)

Classification

» Theoretically best classification rule for 0-1 loss and K
possible classes

é(x) = argmax p(i|x)
1<i<K

» Approximate (1) or make model-assumptions (2)
1. k-nearest neighbour classification

D> LG =1)

X]EN (X)

bl

p(i|x) ~

2. Instead of approximating p(i|x) from data, can we make
sensible model assumptions instead?
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Amendment: kNN methods

There are two choices to make when implementing a kNN
method

1. The metric to determine a neighbourhood
» e.g. Euclidean/¢, norm, Manhattan/#; norm, max norm, ...

2. The number of neighbours, i.e. k

The choice of metric changes the underlying local model of
the method while k is a tuning parameter.
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Model-based classification



Classification as regression

» Consider a two-class problem, withi; =0ori; =1
» Instead of 0-1 loss, use square error loss, i.e.

Epipolil = 0- p(0]x) +1 - p(1|x) = p(1]x)

Note that i has a discrete distribution.
» Linear regression model assumption

p([x) = Epglil = xT8

» Since we are approximating p(1|x) and
p(0|x) = 1 — p(1|x) ~ 1 — xT B, we indirectly specified a
model approximation for Bayes’ rule as well
0 XTﬁ < !

c(x) = 2
1 otherwise

Note that x” 8 = % defines the decision boundary
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0-1regression
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The solid black lines show the decision boundary.
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0-1 regressions and outliers

5
Case
< — No outlier
0 --=-- With Outlier
=5
[]
0 5 10
X1
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Dummy encoding for categorical variables

In regression, when a predictor x is categorical, i.e. takes one
of K values, it is common to use a dummy encoding.

Example:
x=1-2z=(1,0,0)
x=2-2z=(0,1,0)
x=3->2z=(0,0,1)
Idea

Turn a classification problem into a regression problem by
representing the class outcomes i; in the training data (ij, x;)
as vectors in dummy encoding.
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Multiple classes

» This creates a sequence of 0-1 regressions (see
blackboard). If there are K classes then

(1) =13; =1) -» p(z® = 1|x) = xT gDV

25 =13, = K) > p® = 1|x) ~ xTE)
» Note that
p(ix) = p(z® = 1]x) ~ xT gD
» Classification rule

c¢(x) = arg max p(i|x) ~ arg max x* )

Decision boundaries are defined by c(x) = x"g® = xT )
fori#j
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Multiple 0-1 regressions
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Problems with 0-1 regression

Observations:

1. xT B is unbounded but models a probability p(i|x) € [0,1]

2. Only values of xT 8 around 0.5 (for binary classification) or
close to the maximal value (for multiple classes) are
really of interest.

3. Sensitive to points far away from the boundary (outliers)

4. Masking: Classes can get buried among other classes
(adding polynomial predictors can sometimes help, but
this is arbitrary and data dependent)

Inspiration from GLM
Can we transform x” g such that the transformed values are
in [0,1], are similar to the original values when close to 0.5

and insensitive outliers far away from the boundary?
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Logistic function and Normal Distribution CDF

Type Logistic Function
Logistic (sigmoid) function

exp(x)

o(x) = 1+ exp(x)

Standard Normal CDF

Standard Normal CDF

d(x) = f

2
! exp (—Z—) dz
\ 27 2
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Logistic and probit regression

» We arrive at logistic regression when assuming

p(1x) = Epgylil = o7 (xTB)

or probit regression when assuming

p(llX) p(l|X) -1 (XTﬁ)
» Parameters can be estimated by iteratively reweighted
least squares (Details in ESL Ch. 4.4.1)
» A warning: Problematic situation in two-class case
(occurs seldom in practice)
» Assume two classes can be separated perfectly in one or
more predictors
» Logistic regression tries to fit a step-like function, which
forces the intercept to —co and the corresponding
predictor coefficient to +co.
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Logistic regression and outliers
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Multi-class logistic regression

» In case of K > 2 classes, using dummy encoding for the
outcome leads again to a series of regression problems.

» Requirement: Probabilities should be modelled, i.e. in
p(ilx) € [0,1] for each class and ), p(i|x) = 1

» Softmax function: o : RX — [0,1]¥

@) = —2 = —
Oi\Z) = ———— L — g;\Z) =
J j -
f:l eZl 14+ Ef:ll e(z1—zx)
» Model now:
eXTﬁ(i) eXT(;;(l)_ BE))
p(i[x) = ——— or p(ix) = —
S, exTEO 1+ Y exT(60-p)

» This method has many names: softmax regression,
multinomial logistic regression, maximum entropy

classifier, ...
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Multi-class logistic regression: An example
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Classification with focus on the
feature/predictor space




Motivation for a different viewpoint: Nearest centroids
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A change of scenery

Summary

» Classification can be approached through regression and
approximation of E ;]

» Indirectly we approximated p(i|x) and were able to use
Bayes' rule

Observation: Good predictors group by class in feature space

Change of focus: Let's model the density of x conditionally on
i instead!

How? Bayes' law
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The setting of Discriminant Analysis

Apply Bayes’ law

pGxli)p(D)
) PEIDPG)

p(ilx) =

Instead of specifying p(i|x) we can specify
px[i) and p()

The main assumption of Discriminant Analysis (DA) is
p(x[i) ~ N(u;, %)

where u; € RP is the mean vector for class i and X; € RP*P the
corresponding covariance matrix.
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Finding the parameters of DA

» Notation: Write p(i) = 7; and consider them as unknown

parameters
» Given data (i;, x;) the likelihood maximization problem is
n K
arg maxHN(Xd,uil,Zil)ﬂil Subject to Z Ty = 1.
I"L?Esﬂ =1 i=1
» Can be solved using a Lagrange multiplier (try it!) and
leads to
n
7, =—, with n; = Z 1, = 1)
I=1
fi=>Yx
i = — !
i =i
% = DG — @) — i)
n; — 1

ij=i
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Performing classification in DA

Bayes’ rule implies the classification rule

c(x) = arg max N(X|u;, Z;)7;

1<i<K

Note that since log is strictly increasing this is equivalent to

c(x) = argmax 6;(x)
1<i<K

where
6;(x) = log N(X|u;, Z;) + log ;

1 _ 1
= logm; — E(X — ) I x — ) — 3 log|%;| (+C)

This is a quadratic function in x.
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Different levels of complexity

» This method is called Quadratic Discriminant Analysis
(QDA)
» Problem: Many parameters that grow quickly with
dimension
» K—1forallx
» p-Kforall y;
» p(p+1)/2-K for all Z; (most costly)
» Solution: Replace covariance matrices X; by a pooled
estimate

K . K
2=t — @) — 8T
; 'n—-K n-K ;;(xl w)(x — 1)

» Simpler correlation and variance structure: All classes
are assumed to have the same correlation structure
between features
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Performing classification in the simplified case

As before, consider

c(x) = arg max 6;(x)
1<i<K

where
§i(x) = logm; + x"= 7y — %ﬂ?z‘lui (+0)

This is a linear function in x. The method is therefore called
Linear Discriminant Analysis (LDA).
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Even more simplifications

Other simplifications of the correlation structure are possible

» Ignore all correlations between features but allow
different variances, i.e. ¥; = A, for a diagonal matrix A;
(Diagonal QDA or Naive Bayes’ Classifier)

» Ignore all correlations and make feature variances equal,
i.e. 3; = A for a diagonal matrix A (Diagonal LDA)

» Ignore correlations and variances, i.e. Z; = o%I,,,
(Nearest Centroids adjusted for class frequencies 7; )
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Examples of LDA and QDA
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Decision boundaries can be found with
N(x|p;, £)m; = Nx|w;, Z)m; for i #j

and ¥; =X for LDAand X; = O'ZIpo for Nearest Centroids.
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Take-home message

» Classification can be achieved through the point-of-view
of regression

» Modelling the conditional densities of features instead of
classes leads to Discriminant Analysis (DA)

» There is a range of assumptions in DA about the
correlation structure in feature space — trade-off
between stability and flexibility
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