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Evaluating performance of a
statistical method



Goals

▶ Model selection: Choose a hyper-parameter or model
structure, e.g. 𝑘 in kNN regression/classification, or
“Choose between logistic regression, LDA and kNN”

▶ Model assessment: How well did a model do on a data
set?
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How to choose the best 𝑘 for kNN?
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▶ UCI breast cancer wisconsin (diagnostic) data set1

▶ Which 𝑘 will do best for class prediction of new data?
1https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic)
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Error rates (I)

▶ Remember: To determine the optimal regression function
or classifier we looked at expected prediction loss

𝐽(𝑓) = 𝔼𝑝(𝐱,𝑦) [𝐿(𝑦, 𝑓(𝐱))]
Note that 𝑓 was thought to be an arbitrary unknown
function.

▶ Now: 𝑓 is estimated from data under some model
assumption

▶ The resulting regressor/classifier 𝑓(⋅|𝒯) is fixated after
estimation but dependent on the training samples 𝒯

▶ Expected prediction error for a fixed training set 𝒯
𝑅(𝒯) = 𝔼𝑝(𝐱,𝑦) [𝐿(𝑦, 𝑓(𝐱|𝒯)]
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Error rates (II)

▶ Conditional expected prediction error for a fixed training
set 𝒯

𝑅(𝒯) = 𝔼𝑝(𝐱,𝑦) [𝐿(𝑦, 𝑓(𝐱|𝒯)]
▶ Training samples are random too!
▶ Total expected prediction error

𝑅 = 𝔼𝑝(𝒯) [𝑅(𝒯)] = 𝔼𝑝(𝒯) [𝔼𝑝(𝐱,𝑦) [𝐿(𝑦, 𝑓(𝐱|𝒯))]]
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Empirical error rates (I)

▶ Training error

𝑅𝑡𝑟 = 1
𝑛

𝑛
∑
𝑙=1

𝐿(𝑦𝑙, 𝑓(𝐱𝑙|𝒯))

where
𝒯 = {(𝑦𝑙, 𝐱𝑙) ∶ 1 ≤ 𝑙 ≤ 𝑛}

▶ Test error
𝑅𝑡𝑒 = 1

𝑚
𝑚
∑
𝑙=1

𝐿( ̃𝑦𝑙, 𝑓(𝐱̃𝑙|𝒯))

where ( ̃𝑦𝑙, 𝐱̃𝑙) for 1 ≤ 𝑙 ≤ 𝑚 are new samples from the
same distribution as 𝒯, i.e. 𝑝(𝒯).
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Empirical error rates (II)

Can we directly use these empirical rates and approximate
total or conditional expected prediction error?

Observations:

▶ 𝒯 has already been used to determine 𝑓(⋅|𝒯) and usually
methods aim to minimize training error

▶ Training error is often smaller for more complex models
(so-called optimism of the training error) since they can
adjust better to the available data (overfitting!)

▶ How do we get new samples from the data distribution
𝑝(𝒯)? What do we do if all we have is the training sample?
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Splitting up the data

▶ Holdout method: If we have a lot of samples, randomly
split available data into training set and test set

▶ 𝑐-fold cross-validation: If we have few samples
1. Randomly split available data into 𝑐 equally large subsets,
so-called folds.

2. By taking turns, use 𝑐 − 1 folds as the training set and the
last fold as the test set
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Approximations of expected prediction error

▶ Use test error for hold-out method, i.e.

𝑅𝑡𝑒 = 1
𝑚

𝑚
∑
𝑙=1

𝐿( ̃𝑦𝑙, 𝑓(𝐱̃𝑙|𝒯))

where ( ̃𝑦𝑙, 𝐱̃𝑙) for 1 ≤ 𝑙 ≤ 𝑚 are the elements in the test set.
▶ Use average test error for c-fold cross-validation, i.e.

𝑅𝑐𝑣 = 1
𝑛

𝑐
∑
𝑗=1

∑
(𝑦𝑙,𝐱𝑙)∈ℱ𝑗

𝐿(𝑦𝑙, 𝑓(𝐱𝑙|ℱ−𝑗))

where ℱ𝑗 is the 𝑗-th fold and ℱ−𝑗 is all data except fold 𝑗.

8/25



Careful data splitting

▶ Note: For the approximations to be justifiable, test and
training sets need to be identically distributed

▶ Splitting has to be done randomly
▶ If data is unbalanced, then stratification is necessary.
Examples:

▶ Class imbalance
▶ Continuous outcome is observed more often in some
intervals than others (e.g. high values more often than low
values)
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Error estimation and tuning parameters

The holdout method and cross-validation can be used to
determine tuning parameters.

1. For a sequence of tuning parameters 𝜆1, … , 𝜆𝑆 calculate

𝑅𝑐𝑣(𝜆𝑠) =
1
𝑛

𝑐
∑
𝑗=1

∑
(𝑦𝑙,𝐱𝑙)∈ℱ𝑗

𝐿(𝑦𝑙, 𝑓(𝐱𝑙|𝜆𝑠, ℱ−𝑗))

2. Choose
̂𝜆 = arg min

𝜆𝑠
𝑅𝑐𝑣(𝜆𝑠)

Also works for a sequence of methods𝑀1, … ,𝑀𝑆 (e.g. kNN,
QDA, Logistic Regression)
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Global rule & Simple boundary
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−1 0 1
x1

x 2

LDA

▶ The red line is the true
boundary.

▶ Each grey line represents
a fit to randomly chosen
20% of all data.

▶ The black line is the
average of the grey lines.

▶ Here: low variance and
low bias
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Local rule & Simple boundary
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kNN (k = 3)

▶ Here: high variance but on
average low bias
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Global rule & Complex boundary
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▶ Here: low variance but
also large bias
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Local rule & Complex boundary
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kNN (k = 3)

▶ Here: high variance but on
average low bias
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Global vs local rules

Observations

▶ Local rules are built using data in a local neighbourhood,
can capture complex boundaries, but have high variance

▶ Global rules are built using all data, are usually less
flexible, but have low variance

▶ Bias-Variance Trade-off: It can be theoretically motivated
that bias and variance affect the expected prediction
error. The goal is to find a balance.
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Performance of LDA vs KNN

Table 1: Average cross-validation errors for ten folds

Boundary

simple complex

LDA 0.011 0.092
kNN (k = 3) 0.018 0.021

LDA does better for simple boundaries, while kNN has an
advantage for more complicated boundaries.
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Choosing a classification method (I)

Remember: We looked at different classification methods for
solving the same classification problem
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Choosing a classification method (II)

Table 2: Average cross-validation errors for ten folds

NC LDA QDA

0.193 0.2 0.22

18/25



Quality of a classification result

How to quantify classification quality, When we receive a
classification result from our classifier?

Setting:

▶ Language/notation comes from medical studies where
the presence or absence of a disease/condition is
determined

▶ Binary classification with classes 0 and 1
▶ 0s are interpreted as negative outcomes (e.g. not sick =
healthy individual) and 1s are interpreted as positive
outcomes e.g. sick individuals
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Confusion matrix

Table 3: Confusion matrix

Predicted class True class

Positive Negative

Positive True Positive (TP) False Positive (FP)
Negative False Negative (FN) True Negative (TN)
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Measures of classification quality

▶ Accuracy: 𝑇𝑃 + 𝑇𝑁
𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 + 𝑇𝑁

▶ Precision: 𝑇𝑃
𝑇𝑃 + 𝐹𝑃

▶ Sensitivity/True positive rate (TPR)/Recall: 𝑇𝑃
𝑇𝑃 + 𝐹𝑁

▶ Specificity: 𝑇𝑁
𝑇𝑁 + 𝐹𝑃

▶ False positive rate (FPR)/fall out: 1 - Specificity
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Combined measures

▶ 𝐹1 score = 2 ⋅ Precision ⋅ RecallPrecision + Recall
▶ Matthew’s correlation coefficient:
𝑀𝐶𝐶 = 𝑇𝑃 ⋅ 𝑇𝑁 − 𝐹𝑃 ⋅ 𝐹𝑁

√(𝑇𝑃 + 𝐹𝑃)(𝑇𝑃 + 𝐹𝑁)(𝑇𝑁 + 𝐹𝑃)(𝑇𝑁 + 𝐹𝑁)
∈ (−1, 1)

where𝑀𝐶𝐶 = 0 for a random classifier and𝑀𝐶𝐶 < 0 if
worse than random and𝑀𝐶𝐶 > 0 if better than random.
Takes both classes into account.

▶ Receiver Operating Characteristic (ROC) curve: Trade-off
between FPR and TPR. Equal for a random classifier, TPR
< FPR for a worse than random classifier and FPR > TPR is
better than random

▶ Area under the ROC curve (AUC): 0.5 for a random
classifier and > 0.5 for better classifiers. Maximum 1.
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How to choose the best 𝑘 for kNN? (revisited, I)

Reminder: This motivated our discussion
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How to choose the best 𝑘 for kNN? (revisited, II)
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Table 4: Average training
and cross-validation errors
for five folds

𝑘 𝑅𝑡𝑟 𝑅𝑐𝑣

1 0.000 0.276
3 0.137 0.243
5 0.160 0.228
10 0.182 0.204
100 0.204 0.207

𝑘 = 100 leads to the best measurable results. Judging from the plots
for 𝑘 = 1, 𝑘 = 10 and 𝑘 = 100, kNN is trying to approximate a linear
decision boundary and “tries to become a global method”. 24/25



Take-home message

▶ Cross-validation or splitting data into a training and test
set are valuable approaches for model selection and
model assessment

▶ Method complexity and global/local rules exhibit a
bias-variance trade-off

▶ There is no single best measurement of classification
quality, use multiple!

25/25


	Evaluating performance of a statistical method

