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Amendment: Bias-Variance Tradeoff

Bias-Variance Decomposition
𝑅 = 𝔼𝑝(𝒯,𝐱,𝑦) [(𝑦 − 𝑓(𝐱))2] Total expected prediction error

= 𝜎2 Irreducible Error
+ 𝔼𝑝(𝐱) [(𝑓(𝐱) − 𝔼𝑝(𝒯) [𝑓(𝐱)])

2
] Bias2 averaged over 𝐱

+ 𝔼𝑝(𝐱) [Var𝑝(𝒯) [𝑓(𝐱)]] Variance of 𝑓 averaged over 𝐱
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Observations

▶ Irreducible error cannot be changed
▶ Bias and variance of 𝑓 are sample-size dependent

▶ For a consistent estimator 𝑓

𝔼𝑝(𝒯)[𝑓(𝑥)] → 𝑓(𝑥)

for increasing sample size
▶ In many cases:

Var𝑝(𝒯)(𝑓(𝑥)) → 0

for increasing sample size
▶ Caution: Theoretical guarantees are often dependent on
the number of variables 𝑝 staying fixed and increasing 𝑛.
Might not be fulfilled in reality.
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Amendment: Leave-One-Out Cross-validation (LOOCV)

Cross-validation with 𝑐 = 𝑛 is called leave-one-out
cross-validation.

▶ Popular because explicit formulas (or approximations)
exist for many special cases (e.g. regularized regression)

▶ Uses the most data for training possible
▶ More variable than 𝑐-fold CV for 𝑐 < 𝑛 since only one data
point is used for testing and the training sets are very
similar

▶ In praxis: Try out different values for 𝑐. Be cautious if
results vary drastically with 𝑐. Maybe the underlying
model assumptions are not appropriate.
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Classification and Partitions



Classification and Partitions

A classification algorithm constructs a partition of feature
space and assigns a class to each.

▶ kNN creates local neighbourhoods in feature space and
assigns a class in each

▶ Logistic regression divides feature space implicitly by
modelling 𝑝(𝑖|𝐱) and determines decision boundaries
through Bayes’ rule

▶ Discriminant analysis creates an explicit model of the
feature space conditional on the class. It models 𝑝(𝐱, 𝑖) by
assuming that 𝑝(𝐱|𝑖) is a normal distribution and either
estimates 𝑝(𝑖) from data or through prior knowledge.
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New point-of-view: Rectangular Partitioning

Idea: Create an explicit partition by dividing feature space
into rectangular regions and assign a constant conditional
mean (regression) or constant conditional class probability
(classification) to each region.

Given regions 𝑅𝑚 for 𝑚 = 1,… ,𝑀, a classification rule for
classes 𝑖 ∈ {1, … , 𝐾} is

̂𝑐(𝐱) = arg max
1≤𝑖≤𝐾

𝑀
∑
𝑚=1

1(𝐱 ∈ 𝑅𝑚) ( ∑
𝐱𝑙∈𝑅𝑚

1(𝑖𝑙 = 𝑖))

and a regression function is given by

𝑓(𝐱) =
𝑀
∑
𝑚=1

( 1
|𝑅𝑚|

∑
𝐱𝑙∈𝑅𝑚

𝑦𝑙)1(𝐱 ∈ 𝑅𝑚)

(Derivations are similar to kNN with regions instead of
neighbourhoods.)
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Classification and Regression Trees (CART)

▶ Complexity of partitioning:
Arbitrary
Partition

> Rectangular
Partition

> Partition from a
sequence of binary splits

▶ Classification and Regression Trees create a sequence of
binary axis-parallel splits in order to reduce variability of
values/classes in each region
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CART: Tree building/growing

1. Start with all data in a root node
2. Binary splitting

2.1 Consider each feature 𝑥⋅𝑗 for 𝑗 = 1,… , 𝑝. Choose a
threshold 𝑡𝑗 (for continuous features) or a partition of the
feature categories (for categorical features) that results in
the greatest improvement in node purity:

{𝑖𝑙 ∶ 𝑥𝑙𝑗 > 𝑡𝑗} and {𝑖𝑙 ∶ 𝑥𝑙𝑗 ≤ 𝑡𝑗}
2.2 Choose the feature 𝑗 that led to the best splitting of the

data and create a new child node for each subset
3. Repeat Step 2 on all child nodes until the tree reaches a
stopping criterion

All nodes without descendents are called leaf nodes. The
sequence of splits preceding them defines the regions 𝑅𝑚.
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Measures of node purity

Use
𝜋𝑖𝑚 = 1

|𝑅𝑚|
∑

𝐱𝑙∈𝑅𝑚
1(𝑖𝑙 = 𝑖)

▶ Three common measures to determine impurity in a
region 𝑅𝑚 are (for classification trees)

Misclassification error: 1 − max𝑖 𝜋𝑖𝑚
Gini impurity: ∑𝐾

𝑖=1 𝜋𝑖𝑚(1 − 𝜋𝑖𝑚)
Entropy/deviance: −∑𝐾

𝑖=1 𝜋𝑖𝑚 log𝜋𝑖𝑚
▶ All criteria are zero when only one class is present and
maximal when all classes are equally common.

▶ For regression trees the decrease in mean squared error
after a split can be used as an impurity measure.
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Node impurity in two class case

Example for a two-class problem (𝑖 = 0 or 1). 𝜋0𝑚 is the
empirical frequency of class 0 in a region 𝑅𝑚.
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Only gini impurity and entropy are used in practice (averaging
problems for misclassification error).
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Stopping criteria

▶ Minimum size of leaf nodes (e.g. 5 samples per leaf node)
▶ Minimum decrease in impurity (e.g. cutoff at 1%)
▶ Maximum tree depth, i.e. number of splits (e.g. maximum
30 splits from root node)

▶ Maximum number of leaf nodes

Running CART until one of these criteria is fulfilled generates
a max tree.
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Summary of CART

▶ Pro: Outcome is easily interpretable
▶ Pro: Can easily handle missing data
▶ Neutral: Only suitable for axis-parallel decision
boundaries

▶ Con: Features with more potential splits have a higher
chance of being picked

▶ Con: Prone to overfitting/unstable (only the best feature
is used for splitting and which is best might change with
small changes of the data)
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CART and overfitting

How can overfitting be avoided?

▶ Tuning of stopping criteria: These can easily lead to early
stopping since a weak split might lead to a strong split
later

▶ Pruning: Build a max tree first. Then reduce its size by
collapsing internal nodes. This can be more effective
since weak splits are allowed during tree building. (“The
silly certainty of hindsight”)

▶ Ensemble methods: Examples are bagging, boosting,
stacking, …
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A note on pruning

▶ A common strategy is cost-complexity pruning.
▶ For a given 𝛼 > 0 and a tree 𝑇 its cost-complexity is
defined as

𝐶𝛼(𝑇) = ∑
𝑅𝑚∈𝑇

( 1
|𝑅𝑚|

∑
𝐱𝑙∈𝑅𝑚

1(𝑖𝑙 ≠ ̂𝑐(𝐱)))
⏟⎵⎵⎵⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⎵⎵⎵⏟

Cost

+ 𝛼|𝑇|
⏟

Complexity

where (𝑖𝑙, 𝐱𝑙) is the training data, ̂𝑐 the CART classification
rule and |𝑇| is the number of leaf nodes/regions defined
by the tree.

▶ It can be shown that successive subtrees 𝑇𝑘 of the max
tree 𝑇max can be found such that each tree 𝑇𝑘 minimizes
𝐶𝛼𝑘(𝑇𝑘) where 𝛼1 ≥ ⋯ ≥ 𝛼𝐽

▶ The tree with the lowest cost-complexity is chosen
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Re-cap of the bootstrap and
variance reduction



The Bootstrap – A short recapitulation (I)

Given a sample 𝑥𝑖 , 𝑖 = 1, … , 𝑛 from an underlying population
estimate a statistic 𝜃 by ̂𝜃 = ̂𝜃(𝑥1, … , 𝑥𝑛).

What is the uncertainty of ̂𝜃?

Solution: Find confidence intervals (CIs) quantifying the
variability of ̂𝜃.
Computation:

▶ Through theoretical results (e.g. linear models) if
distributional assumptions fulfilled

▶ Linearisation for more complex models (e.g. nonlinear or
generalized linear models)

▶ Nonparametric approaches using the data (e.g.
bootstrap)

All of these approaches require fairly large sample sizes. 14/26



The Bootstrap – A short recapitulation (II)

Nonparametric bootstrap
Given a sample 𝑥1, … , 𝑥𝑛 bootstrapping performs for
𝑏 = 1,… , 𝐵

1. Sample ̃𝑥1, … , ̃𝑥𝑛 with replacement from original sample
2. Calculate ̂𝜃𝑏( ̃𝑥1, … , ̃𝑥𝑛)

▶ 𝐵 should be large (in the 1000–10000s)
▶ The distribution of ̂𝜃𝑏 approximates the sampling
distribution of ̂𝜃

▶ The bootstrap makes exactly one strong assumption:
The data is discrete and values not seen in the data are
impossible.1

1Check out this blog post!
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CI for statistics of an exponential random variable

0.0

0.1

0.2

0.3

0.4

0 5 10 15

x

F
re

qu
en

cy

Data (n = 200) simulated from 𝑥 ∼ Exp(1/3), i.e. 𝔼𝑝(𝑥)[𝑥] = 3
▶ Orange histogram shows original sample
▶ Blue line is the true density
▶ Black outlined histogram shows a bootstrapped sample
▶ Vertical lines are the mean of 𝑥 (dashed) and the 99% quantile
(dotted) [red = empirical, blue = theoretical] 16/26



CI calculation: Normal approximation and percentile method

1. Normal approximation: Set 𝜃 = 1
𝐵

𝐵
∑
𝑏=1

̂𝜃𝑏 and estimate the

standard error of ̂𝜃 as

𝜎𝑠𝑒 =√
∑𝐵

𝑏=1( ̂𝜃𝑏 − 𝜃)2
𝐵 − 1

Assume the distribution of ̂𝜃 is approximately 𝑁( ̂𝜃, 𝜎𝑠𝑒)
giving CI

̂𝜃 ± 𝑧1−𝛼/2𝜎𝑠𝑒
2. Percentile/quantile method: Take the 𝛼 and 𝛼/2 quantiles
of the bootstrap estimates ̂𝜃𝑏 as boundaries of CI
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CI calculation: Applied to example
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Based on 𝐵 = 1000 bootstrap samples

For the mean value, normal
approximation assumption
seems reasonable

95% CIs
Normal Approx. (2.68, 3.65)
Perc. Method (2.71, 3.67)

For the quantile,
bootstrapping requires
much larger 𝑛 and shows
high uncertainty
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Modifications to nonparametric bootstrap

▶ Different sampling strategies. Some examples:
▶ 𝑚-out-of-𝑛 bootstrap: Draw 𝑚 < 𝑛 samples without
replacement

▶ Draw from a smooth density estimate of the data
▶ Draw from a parametric distribution fitted to the original
data

▶ Normal approximation doesn’t always apply and
percentile method is unstable for complicated statistics.
Example of alternative

▶ Bootstrap-t: Instead of normal quantiles, estimate
quantiles from

̂𝜃𝑏 − ̂𝜃
𝜎𝑏

where 𝜎𝑏 is an estimate of the standard error
▶ Many other alternatives exist …
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Limitations of the bootstrap

▶ Number of samples needs to be quite large
▶ Extreme values (minimum, maximum very small or large
quantiles) can be hard to estimate since they might not
even appear in data

▶ Many basic CI estimation algorithms assume that the
bootstrap distribution is approximately normal (often not
the case in reality)
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Bootstrap aggregation (bagging)

1. Given a training sample (𝑦𝑙, 𝐱𝑙) or (𝑖𝑙, 𝐱𝑙), we want to fit a
predictive model 𝑓(𝐱)

2. For 𝑏 = 1,… , 𝐵, form bootstrap samples of the training
data and fit the model, resulting in 𝑓𝑏(𝐱)

3. Define

𝑓bag(𝐱) =
1
𝐵

𝐵
∑
𝑏=1

𝑓𝑏(𝐱)

where 𝑓𝑏(𝐱) is a continuous value for a regression
problem or a vector of class probabilities for a
classification problem

Majority vote can be used for classification problems instead
of averaging
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Bagging and variance reduction

▶ Bagging using averages approximates

𝑓ag(𝐱) = 𝔼𝑝(𝒯) [𝑓(𝐱)]

▶ For the conditional expected error in squared error loss

𝔼𝑝(𝒯,𝑦|𝐱)[(𝑦 − 𝑓(𝐱))2] ≥ 𝔼𝑝(𝒯,𝑦|𝐱)[(𝑦 − 𝑓ag(𝐱))2]

▶ Some notes:
▶ Remember the graphs of kNN from last lecture: Noisy
individually, more stable (less variable) on average

▶ Bagging shows no effect on linear models
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Correlation and bagged variance

Recall: For identically distributed (i.d.) random variables 𝑥𝑖 ,
𝑖 = 1, … , 𝑛

Var (1𝑛
𝑛
∑
𝑖=1

𝑥𝑖) =
1 − 𝜌
𝑛 𝜎2 + 𝜌𝜎2

where 𝜌 ∈ [0, 1) is the (positive) pairwise correlation
coefficient and 𝜎2 is the variance of each 𝑥𝑖 .

▶ Bootstrap samples are correlated and increase total
variance

▶ Decreasing correlation between bootstrap samples would
decrease the variance of a bagging estimate
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Random Forests



Random Forests

1. Given a training sample with 𝑝 features, do for 𝑏 = 1,… , 𝐵
1.1 Draw a bootstrap sample of size 𝑛 from training data (with

replacement)
1.2 Grow a tree 𝑇𝑏 until each node reaches minimal node size

𝑛min
1.2.1 Randomly select𝑚 variables from the 𝑝 available
1.2.2 Find best splitting variable among these𝑚
1.2.3 Split the node

2. For a new 𝐱 predict

Regression: 𝑓𝑟𝑏(𝐱) =
1
𝐵
∑𝐵

𝑏=1 𝑇𝑏(𝐱)
Classification: Majority vote at 𝐱 across trees

Note: Step 1.2.1 leads to less correlation between trees built
on bootstrapped data.
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Variable importance

1. Impurity index: Splitting on a feature leads to a reduction
of node impurity. Summing all improvements over all
trees per feature gives a measure for variable importance

2. Out-of-bag error
▶ During bootstrapping for large enough 𝑛, each sample has
a chance of about 63% to be selected

▶ For bagging the remaining samples are out-of-bag.
▶ These out-of-bag samples for tree 𝑇𝑏 can be used as a test
set for that particular tree, since they were not used
during training. Resulting in test error 𝐸0

▶ Permute variable 𝑗 in the out-of-bag samples and
calculate test error again 𝐸(𝑗)1

▶ The increase in error

𝐸(𝑗)1 − 𝐸0 ≥ 0
serves as an importance measure for variable 𝑗 25/26



Take-home message

▶ Direct partitioning of feature space is a complex task
▶ Simplifications in form of binary splits resulting in tree
models work well

▶ High interpretability of CART, but also high variability
▶ Random Forests tackles variance reduction though
bagging and random selection of splitting features
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