Lecture 4: Rule-based classification and regression

Felix Held, Mathematical Sciences

MSA220/MVE440 Statistical Learning for Big Data

1st April 2019

UNIVERSITY OF GOTHENBURG

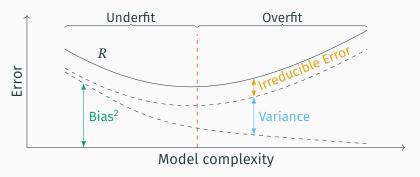
Amendment: Bias-Variance Tradeoff

Bias-Variance Decomposition

$$R = \mathbb{E}_{p(\mathcal{T}, \mathbf{x}, y)} \left[(y - \hat{f}(\mathbf{x}))^2 \right]$$

= σ^2
+ $\mathbb{E}_{p(\mathbf{x})} \left[\left(f(\mathbf{x}) - \mathbb{E}_{p(\mathcal{T})} \left[\hat{f}(\mathbf{x}) \right] \right)^2 \right]$
+ $\mathbb{E}_{p(\mathbf{x})} \left[\operatorname{Var}_{p(\mathcal{T})} \left[\hat{f}(\mathbf{x}) \right] \right]$

Total expected prediction error Irreducible Error Bias² averaged over \mathbf{x} Variance of \hat{f} averaged over \mathbf{x}



Observations

- Irreducible error cannot be changed
- Bias and variance of \hat{f} are sample-size dependent

• For a consistent estimator \widehat{f}

$$\mathbb{E}_{p(\mathcal{T})}[\widehat{f}(x)] \to f(x)$$

for increasing sample size

In many cases:

$$\mathrm{Var}_{p(\mathcal{T})}(\widehat{f}(x)) \to 0$$

for increasing sample size

 Caution: Theoretical guarantees are often dependent on the number of variables p staying fixed and increasing n. Might not be fulfilled in reality.

Cross-validation with c = n is called **leave-one-out** cross-validation.

- Popular because explicit formulas (or approximations) exist for many special cases (e.g. regularized regression)
- Uses the most data for training possible
- More variable than c-fold CV for c < n since only one data point is used for testing and the training sets are very similar
- In praxis: Try out different values for c. Be cautious if results vary drastically with c. Maybe the underlying model assumptions are not appropriate.

Classification and Partitions

A classification algorithm constructs a partition of feature space and assigns a class to each.

- kNN creates local neighbourhoods in feature space and assigns a class in each
- Logistic regression divides feature space implicitly by modelling p(i|x) and determines decision boundaries through Bayes' rule
- Discriminant analysis creates an explicit model of the feature space conditional on the class. It models p(x, i) by assuming that p(x|i) is a normal distribution and either estimates p(i) from data or through prior knowledge.

New point-of-view: Rectangular Partitioning

Idea: Create an explicit partition by dividing feature space into rectangular regions and assign a constant conditional mean (regression) or constant conditional class probability (classification) to each region.

Given regions R_m for m = 1, ..., M, a classification rule for classes $i \in \{1, ..., K\}$ is

$$\hat{c}(\mathbf{x}) = \operatorname*{arg\,max}_{1 \leq i \leq K} \sum_{m=1}^{M} \mathbb{1}(\mathbf{x} \in R_m) \left(\sum_{\mathbf{x}_l \in R_m} \mathbb{1}(i_l = i) \right)$$

and a regression function is given by

$$\widehat{f}(\mathbf{x}) = \sum_{m=1}^{M} \left(\frac{1}{|R_m|} \sum_{\mathbf{x}_l \in R_m} y_l \right) \mathbb{1}(\mathbf{x} \in R_m)$$

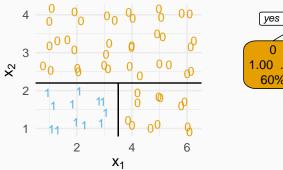
(Derivations are similar to kNN with regions instead of neighbourhoods.)

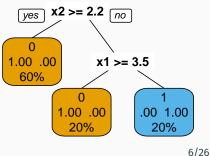
Classification and Regression Trees (CART)

Complexity of partitioning:

Arbitrary	>	Rectangular	>	Partition from a
Partition		Partition		sequence of binary splits

 Classification and Regression Trees create a sequence of binary axis-parallel splits in order to reduce variability of values/classes in each region





CART: Tree building/growing

- 1. Start with all data in a root node
- 2. Binary splitting
 - 2.1 Consider each feature $x_{.j}$ for j = 1, ..., p. Choose a threshold t_j (for continuous features) or a partition of the feature categories (for categorical features) that results in the greatest improvement in node purity:

 $\{i_l : x_{lj} > t_j\}$ and $\{i_l : x_{lj} \le t_j\}$

- 2.2 Choose the feature *j* that led to the best splitting of the data and create a new **child node** for each subset
- 3. Repeat Step 2 on all child nodes until the tree reaches a **stopping criterion**

All nodes without descendents are called **leaf nodes**. The sequence of splits preceding them defines the regions R_m .

Measures of node purity

Ν

Use

$$\widehat{\pi}_{im} = \frac{1}{|R_m|} \sum_{\mathbf{x}_l \in R_m} \mathbbm{1}(i_l = i)$$

 Three common measures to determine impurity in a region R_m are (for classification trees)

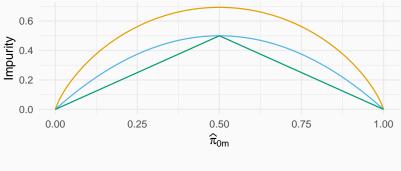
Aisclassification error:
$$1 - \max_i \hat{\pi}_{im}$$

Gini impurity: $\sum_{i=1}^{K} \hat{\pi}_{im} (1 - \hat{\pi}_{im})$
Entropy/deviance: $-\sum_{i=1}^{K} \hat{\pi}_{im} \log \hat{\pi}_{im}$

- All criteria are zero when only one class is present and maximal when all classes are equally common.
- For regression trees the decrease in mean squared error after a split can be used as an impurity measure.

Node impurity in two class case

Example for a two-class problem (i = 0 or 1). $\hat{\pi}_{0m}$ is the empirical frequency of class 0 in a region R_m .



Impurity Measure — Entropy — Gini — Misclassification

Only gini impurity and entropy are used in practice (averaging problems for misclassification error).

- Minimum size of leaf nodes (e.g. 5 samples per leaf node)
- Minimum decrease in impurity (e.g. cutoff at 1%)
- Maximum tree depth, i.e. number of splits (e.g. maximum 30 splits from root node)
- Maximum number of leaf nodes

Running CART until one of these criteria is fulfilled generates a **max tree**.

- > Pro: Outcome is easily interpretable
- > Pro: Can easily handle missing data
- Neutral: Only suitable for axis-parallel decision boundaries
- Con: Features with more potential splits have a higher chance of being picked
- Con: Prone to overfitting/unstable (only the best feature is used for splitting and which is best might change with small changes of the data)

How can overfitting be avoided?

- Tuning of stopping criteria: These can easily lead to early stopping since a weak split might lead to a strong split later
- Pruning: Build a max tree first. Then reduce its size by collapsing internal nodes. This can be more effective since weak splits are allowed during tree building. ("The silly certainty of hindsight")
- Ensemble methods: Examples are bagging, boosting, stacking, ...

A note on pruning

- A common strategy is **cost-complexity pruning**.
- For a given α > 0 and a tree T its cost-complexity is defined as

$$C_{\alpha}(T) = \underbrace{\sum_{R_m \in T} \left(\frac{1}{|R_m|} \sum_{\mathbf{x}_l \in R_m} \mathbb{1}(i_l \neq \hat{c}(\mathbf{x})) \right)}_{\text{Cost}} + \underbrace{\alpha|T|}_{\text{Complexity}}$$

where (i_l, \mathbf{x}_l) is the training data, \hat{c} the CART classification rule and |T| is the number of leaf nodes/regions defined by the tree.

- ► It can be shown that successive subtrees T_k of the max tree T_{\max} can be found such that each tree T_k minimizes $C_{\alpha_k}(T_k)$ where $\alpha_1 \ge \cdots \ge \alpha_J$
- ▶ The tree with the lowest cost-complexity is chosen

Re-cap of the bootstrap and variance reduction

The Bootstrap - A short recapitulation (I)

Given a sample x_i , i = 1, ..., n from an underlying population estimate a statistic θ by $\hat{\theta} = \hat{\theta}(x_1, ..., x_n)$. What is the uncertainty of $\hat{\theta}$?

Solution: Find confidence intervals (CIs) quantifying the variability of $\hat{\theta}$.

Computation:

- Through theoretical results (e.g. linear models) if distributional assumptions fulfilled
- Linearisation for more complex models (e.g. nonlinear or generalized linear models)
- Nonparametric approaches using the data (e.g. bootstrap)

All of these approaches require fairly large sample sizes.

The Bootstrap - A short recapitulation (II)

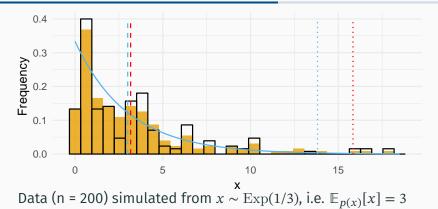
Nonparametric bootstrap

Given a sample x_1, \dots, x_n bootstrapping performs for $b = 1, \dots, B$

- 1. Sample $\tilde{x}_1, \dots, \tilde{x}_n$ with replacement from original sample
- 2. Calculate $\hat{\theta}_b(\tilde{x}_1, \dots, \tilde{x}_n)$
- ▶ *B* should be large (in the 1000–10000s)
- ▶ The distribution of $\hat{\theta}_b$ approximates the sampling distribution of $\hat{\theta}$
- The bootstrap makes exactly one strong assumption: The data is discrete and values not seen in the data are impossible.¹

¹Check out this blog post!

CI for statistics of an exponential random variable



- Orange histogram shows original sample
- Blue line is the true density
- Black outlined histogram shows a bootstrapped sample
- Vertical lines are the mean of x (dashed) and the 99% quantile (dotted) [red = empirical, blue = theoretical]

CI calculation: Normal approximation and percentile method

1. Normal approximation: Set $\overline{\theta} = \frac{1}{B} \sum_{b=1}^{B} \hat{\theta}_{b}$ and estimate the

standard error of $\hat{\theta}$ as

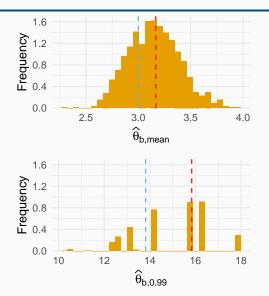
$$\widehat{\sigma}_{se} = \sqrt{\frac{\sum_{b=1}^{B} (\widehat{\theta}_b - \overline{\theta})^2}{B - 1}}$$

Assume the distribution of $\hat{\theta}$ is approximately $N(\hat{\theta}, \hat{\sigma}_{se})$ giving CI

$$\hat{\theta} \pm z_{1-\alpha/2} \hat{\sigma}_{se}$$

2. **Percentile/quantile method:** Take the α and $\alpha/2$ quantiles of the bootstrap estimates $\hat{\theta}_b$ as boundaries of CI

CI calculation: Applied to example



For the mean value, normal approximation assumption seems reasonable

95% Cls

Normal Approx. (2.68, 3.65) Perc. Method (2.71, 3.67)

For the quantile, bootstrapping requires much larger *n* and shows high uncertainty

Based on B = 1000 bootstrap samples

Modifications to nonparametric bootstrap

- Different sampling strategies. Some examples:
 - m-out-of-n bootstrap: Draw m < n samples without replacement
 - > Draw from a smooth density estimate of the data
 - Draw from a parametric distribution fitted to the original data
- Normal approximation doesn't always apply and percentile method is unstable for complicated statistics. Example of alternative
 - Bootstrap-t: Instead of normal quantiles, estimate quantiles from

$$\frac{\hat{\theta}_b - \hat{\theta}}{\widehat{\sigma}_b}$$

where $\hat{\sigma}_b$ is an estimate of the standard error

Many other alternatives exist ...

- Number of samples needs to be quite large
- Extreme values (minimum, maximum very small or large quantiles) can be hard to estimate since they might not even appear in data
- Many basic CI estimation algorithms assume that the bootstrap distribution is approximately normal (often not the case in reality)

Bootstrap aggregation (bagging)

- 1. Given a training sample (y_l, \mathbf{x}_l) or (i_l, \mathbf{x}_l) , we want to fit a predictive model $\hat{f}(\mathbf{x})$
- 2. For b = 1, ..., B, form bootstrap samples of the training data and fit the model, resulting in $\hat{f}_b(\mathbf{x})$
- 3. Define

$$\widehat{f}_{bag}(\mathbf{x}) = \frac{1}{B} \sum_{b=1}^{B} \widehat{f}_{b}(\mathbf{x})$$

where $\hat{f}_b(\mathbf{x})$ is a continuous value for a regression problem or a vector of class probabilities for a classification problem

Majority vote can be used for classification problems instead of averaging

Bagging using averages approximates

$$f_{\mathrm{ag}}(\mathbf{x}) = \mathbb{E}_{p(\mathcal{F})}\left[\widehat{f}(\mathbf{x})\right]$$

▶ For the conditional expected error in squared error loss

$$\mathbb{E}_{p(\mathcal{T}, y | \mathbf{x})}[(y - \hat{f}(\mathbf{x}))^2] \ge \mathbb{E}_{p(\mathcal{T}, y | \mathbf{x})}[(y - f_{ag}(\mathbf{x}))^2]$$

- Remember the graphs of kNN from last lecture: Noisy individually, more stable (less variable) on average
- Bagging shows no effect on linear models

Recall: For identically distributed (i.d.) random variables x_i , i = 1, ..., n $V_{0,n} \left(1 \sum_{i=1}^{n} x_i \right) = \frac{1 - \rho}{\sigma^2} + 2\sigma^2$

$$\operatorname{Var}\left(\frac{1}{n}\sum_{i=1}^{n}x_{i}\right) = \frac{1-\rho}{n}\sigma^{2} + \rho\sigma^{2}$$

where $\rho \in [0, 1)$ is the (positive) pairwise correlation coefficient and σ^2 is the variance of each x_i .

- Bootstrap samples are correlated and increase total variance
- Decreasing correlation between bootstrap samples would decrease the variance of a bagging estimate

Random Forests

Random Forests

- 1. Given a training sample with p features, do for b = 1, ..., B
 - 1.1 Draw a bootstrap sample of size *n* from training data (with replacement)
 - 1.2 Grow a tree T_b until each node reaches minimal node size n_{\min}
 - 1.2.1 Randomly select m variables from the p available
 - 1.2.2 Find best splitting variable among these m
 - 1.2.3 Split the node
- 2. For a new \mathbf{x} predict

Regression: $\hat{f}_{rb}(\mathbf{x}) = \frac{1}{B} \sum_{b=1}^{B} T_b(\mathbf{x})$ Classification: Majority vote at \mathbf{x} across trees

Note: Step 1.2.1 leads to less correlation between trees built on bootstrapped data.

Variable importance

- Impurity index: Splitting on a feature leads to a reduction of node impurity. Summing all improvements over all trees per feature gives a measure for variable importance
- 2. Out-of-bag error
 - During bootstrapping for large enough n, each sample has a chance of about 63% to be selected
 - For bagging the remaining samples are **out-of-bag**.
 - These out-of-bag samples for tree T_b can be used as a test set for that particular tree, since they were not used during training. Resulting in test error E₀
 - Permute variable j in the out-of-bag samples and calculate test error again E₁^(j)
 - The increase in error

$$E_1^{(j)} - E_0 \ge 0$$

serves as an importance measure for variable j

- Direct partitioning of feature space is a complex task
- Simplifications in form of binary splits resulting in tree models work well
- ▶ High interpretability of CART, but also high variability
- Random Forests tackles variance reduction though bagging and random selection of splitting features