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Random Forests

1. Given a training sample with 𝑝 features, do for 𝑏 = 1,… , 𝐵
1.1 Draw a bootstrap sample of size 𝑛 from training data (with

replacement)
1.2 Grow a tree 𝑇𝑏 until each node reaches minimal node size

𝑛min
1.2.1 Randomly select𝑚 variables from the 𝑝 available
1.2.2 Find best splitting variable among these𝑚
1.2.3 Split the node

2. For a new 𝐱 predict

Regression: 𝑓𝑟𝑏(𝐱) =
1
𝐵
∑𝐵

𝑏=1 𝑇𝑏(𝐱)
Classification: Majority vote at 𝐱 across trees

Note: Step 1.2.1 leads to less correlation between trees built
on bootstrapped data.

1/21



Comparison of RF, Bagging and CART

Toy example

𝑦 = 𝑥21 + 𝜀 where 𝜀 ∼ 𝑁(0, 1)
𝐱 ∼ 𝑁(𝟎, 𝚺), 𝐱 ∈ ℝ5, 𝚺𝑙𝑙 = 1, 𝚺𝑙𝑘 = 0.98, 𝑙 ≠ 𝑘

Training and test data were sampled from the true model. Results
for RF, bagged CART and a single CART, using 𝑥1, … , 𝑥5 as predictor
variables. (𝑛𝑡𝑟 = 50, 𝑛𝑡𝑒 = 100)
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Variable importance

1. Impurity index: Splitting on a feature leads to a reduction
of node impurity. Summing all improvements over all
trees per feature gives a measure for variable importance

2. Out-of-bag error
▶ During bootstrapping for large enough 𝑛, each sample has
a chance of about 63% to be selected

▶ For bagging the remaining samples are out-of-bag.
▶ These out-of-bag samples for tree 𝑇𝑏 can be used as a test
set for that particular tree, since they were not used
during training. Resulting in test error 𝐸0

▶ Permute variable 𝑗 in the out-of-bag samples and
calculate test error again 𝐸(𝑗)1

▶ The increase in error

𝐸(𝑗)1 − 𝐸0 ≥ 0

serves as an importance measure for variable 𝑗
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RF applied to cardiovascular dataset

Monica dataset (http://thl.fi/monica, 𝑛 = 6367, 𝑝 = 11)
Predicting whether or not patients survive a 10 year period given a
number of cardiovascular risk factors (class ratio 1.25 alive : 1 dead)
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RF applied to heart disease dataset

South African coronary heart disease (SAheart) dataset
𝑛 = 462, 𝑝 = 9, predicting cholesterol levels in variable ldl
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Principal Component Analysis



Projection onto a subspace

Assume 𝐱 ∈ ℝ𝑝. Given orthonormal vectors 𝐛1, … , 𝐛𝑚, i.e.

‖𝐛𝑗‖ = 1 and 𝐛𝑇𝑗 𝐛𝑘 = 0 for 𝑗 ≠ 𝑘

where 𝑚 < 𝑝, the projection of 𝐱 onto the 𝑚-dimensional
linear subspace 𝑉𝑚 = span(𝐛1, … , 𝐛𝑚) is

�̂� =
𝑚
∑
𝑗=1

(𝐱𝑇𝐛𝑗)𝐛𝑗 = (
𝑚
∑
𝑗=1

𝐛𝑗𝐛𝑇𝑗 )
⏟⎵⎵⏟⎵⎵⏟
Projection
matrix

𝐱

The projection is orthogonal, i.e.

(𝐱 − �̂�)𝑇𝐛𝑗 = 0

for all 𝐛𝑗 .
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Rayleigh Quotient

Let 𝐀 ∈ ℝ𝑘×𝑘 be a symmetric matrix. For 𝟎 ≠ 𝐱 ∈ ℝ𝑘 define

𝐽(𝐱) = 𝐱𝑇𝐀𝐱
𝐱𝑇𝐱

𝐽(𝐱) is called the Rayleigh Quotient for 𝐀.
Maximizing the Rayleigh Quotient
The maximization problem

max
𝐱

𝐽(𝐱) subject to 𝐱𝑇𝐱 = 1

is solved by a unit eigenvector 𝐱 of 𝐀 corresponding to the
largest eigenvalue 𝜆 of 𝐀.

Note: −𝐱 is also a solution.
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Principal Component Analysis (PCA) (I)

Goal: Given continuous data, find an orthogonal coordinate
system such that the variance of the data is maximal along
each direction.

Given data points 𝐱1, … , 𝐱𝑛 and a
unit vector 𝐫, the variance of the
data along 𝐫 is

𝑆(𝐫) =
𝑛
∑
𝑙=1
(𝐫𝑇(𝐱𝑙−𝐱))2 = (𝑛−1)𝐫𝑇𝚺𝐫

where 𝚺 is the empirical
covariance matrix.
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Principal Component Analysis (PCA) (II)

Direction with maximal variance: Find 𝐫 such that

max
𝐫

𝑆(𝐫) subject to ‖𝐫‖2 = 𝐫𝑇𝐫 = 1

▶ This is the same problem as maximizing the Rayleigh
Quotient for the matrix �̂�.

▶ The solution is the eigenvector 𝐫1 of 𝚺 corresponding to
the largest eigenvalue 𝜆1.

How do we find the other directions? Project data on
orthogonal complement of 𝐫1, i.e.

�̂�𝑙 = (𝐈𝑝 − 𝐫1𝐫𝑇1 ) 𝐱𝑙

and repeat the procedure above.
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Principal Component Analysis (PCA) (III)

Computational Procedure:
1. Centre and standardize the columns of the data matrix
𝐗 ∈ ℝ𝑛×𝑝

2. Calculate the empirical covariance matrix 𝚺 = 1
𝑛 − 1𝐗

𝑇𝐗
3. Determine the eigenvalues 𝜆𝑗 and corresponding
orthonormal eigenvectors 𝐫𝑗 of 𝚺 for 𝑗 = 1,… , 𝑝 and order
them such that

𝜆1 ≥ 𝜆2 ≥ ⋯ ≥ 𝜆𝑝 ≥ 0

4. The vectors 𝐫𝑗 give the direction of the principal
components (PC) 𝐫𝑇𝑗 𝐱 and the eigenvalues 𝜆𝑗 are the
variances along the PC directions

Note: Set 𝐑 = (𝐫1, … , 𝐫𝑝) and 𝐃 = diag(𝜆1, … , 𝜆𝑝) then

�̂� = 𝐑𝐃𝐑𝑇 and 𝐑𝑇𝐑 = 𝐑𝐑𝑇 = 𝐈𝑝
10/21



PCA and Dimension Reduction

Recall: For a matrix 𝐀 ∈ ℝ𝑘×𝑘 with eigenvalues 𝜆1, … , 𝜆𝑘 it
holds that

tr(𝐀) =
𝑘
∑
𝑗=1

𝜆𝑗

For the empirical covariance matrix 𝚺 and the variance of the
𝑗-th feature Var[𝑥𝑗]

tr(�̂�) =
𝑝
∑
𝑗=1

Var[𝑥𝑗] =
𝑝
∑
𝑗=1

𝜆𝑗

is called the total variation.
Using only the first 𝑚 < 𝑝 principal components leads to

𝜆1 +⋯+ 𝜆𝑚
𝜆1 +⋯+ 𝜆𝑝

⋅ 100% of explained variance 11/21



PCA and Dimension Reduction: Example (I)

Variant of the MNIST handwritten digits dataset
(𝑛 = 7291, 16 × 16 greyscale images, i.e. 𝑝 = 256)

Digit Frequency

0 0.16
1 0.14
2 0.10
3 0.09
4 0.09
5 0.08
6 0.09
7 0.09
8 0.07
9 0.09

7 3 6

6 5 4
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PCA and Dimension Reduction: Example (II)

For standardized variables

tr(�̂�) = 𝑝

Typical selection rule: Components
with

𝜆𝑗 ≥
1
𝑝 tr(𝚺) (= 1)
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PCA and Dimension Reduction: Example (III)

Using the selection rule leads to 44
components. Using the projection

�̂� = (
44
∑
𝑗=1

𝐫𝑗𝐫𝑇𝑗 )𝐱

creates a reconstruction of 𝐱.

4 7

6 5
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PCA and Dimension Reduction: Example (IV)

Projecting the digits onto the first two principal component
directions gives a very clear distinction of digits 0 and 1.
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Running QDA naively on all 256
variables to predict the digits
does not work. Use the two most
variable features across both
classes.

Table 1: Missclassifaction rate
(20-fold CV)

0 1 Overall

QDA + PCA 0.000 0.010 0.005
LDA + PCA 0.044 0.000 0.024
LDA + max var 0.007 0.024 0.015
QDA + max var 0.015 0.028 0.021
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Singular Value Decomposition



Singular Value Decomposition (SVD)

The singular value decomposition (SVD) of a matrix 𝐗 ∈ ℝ𝑛×𝑝,
𝑛 ≥ 𝑝, is

𝐗 = 𝐔𝐃𝐕𝑇

where 𝐔 ∈ ℝ𝑛×𝑝 and 𝐕 ∈ ℝ𝑝×𝑝 with

𝐔𝑇𝐔 = 𝐈𝑝 and 𝐕𝑇𝐕 = 𝐕𝐕𝑇 = 𝐈𝑝

and 𝐃 ∈ ℝ𝑝×𝑝 is diagonal. Usually

𝑑11 ≥ 𝑑22 ≥ ⋯ ≥ 𝑑𝑝𝑝

Note: Due to the orthogonality conditions for 𝐔 and 𝐕

𝐗𝐗𝑇𝐔 = 𝐔𝐃2

𝐗𝑇𝐗𝐕 = 𝐕𝐃2
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SVD and PCA

In PCA the empirical covariance matrix �̂� is in focus, whereas
SVD focuses on the data matrix 𝐗 directly.

Connection: For centred variables

𝚺 = 𝐗𝑇𝐗
𝑛 − 1 =

𝐕𝐃𝐔𝑇𝐔𝐃𝐕𝑇

𝑛 − 1 = 𝐕( 𝐃2

𝑛 − 1)𝐕
𝑇

The PC directions are in 𝐕 and the eigenvalues of �̂� are
𝑑2𝑗𝑗/(𝑛 − 1).
Note: This is how PCA is typically calculated. SVD is a more
general tool and is used in many other contexts as well.
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SVD and best rank-𝑞-approximation / dimension reduction

Write 𝐮𝑗 and 𝐯𝑗 for the columns of 𝐔 and 𝐕, respectively. Then

𝐗 = 𝐔𝐃𝐕𝑇 =
𝑝
∑
𝑗=1

𝑑𝑗𝑗 𝐮𝑗𝐯𝑇𝑗⏟
rank-1-matrix

Best rank-𝑞-approximation: For 𝑞 < 𝑝

𝐗𝑞 =
𝑞
∑
𝑗=1

𝑑𝑗𝑗𝐮𝑗𝐯𝑇𝑗

with approximation error

‖
‖𝐗 − 𝐗𝑞

‖
‖
2

2
=
‖
‖‖‖

𝑝
∑

𝑗=𝑞+1
𝑑𝑗𝑗𝐮𝑗𝐯𝑇𝑗

‖
‖‖‖

2

2

=
𝑝
∑

𝑗=𝑞+1
𝑑2𝑗
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Connections to Discriminant
Analysis



Discriminant Analysis and the Inverse Covariance Matrix

From PCA or SVD we get �̂� = 𝐕𝐃𝐕𝑇 where 𝐕𝑇𝐕 = 𝐕𝐕𝑇 = 𝐈𝑝
and 𝑑11 ≥ ⋯ ≥ 𝑑𝑝𝑝 ≥ 0. Then

�̂�−1 = 𝐕𝐃−1𝐕𝑇 = 𝐕𝐃−1/2𝐃−1/2𝐕𝑇 = (�̂�−1/2)
𝑇
�̂�−1/2

where (𝐃−1/2)𝑗𝑗 ∶= 1/√𝑑𝑗𝑗 and 𝚺−1/2 ∶= 𝐃−1/2𝐕𝑇 .

In DA the term involving the inverse covariance matrix is then

(𝐱 − 𝝁)𝑇𝚺−1(𝐱 − 𝝁) = (𝐱 − 𝝁)𝑇 (𝚺−1/2)
𝑇
𝚺−1/2(𝐱 − 𝝁)

= (𝐕𝑇(𝐱 − 𝝁))𝑇 𝐃−1 (𝐕𝑇(𝐱 − 𝝁))

= ∑
𝑗=1

1
𝑑𝑗𝑗

( ̃𝑥𝑗 − �̃�𝑗)2

Inverse of the eigenvalues can lead to numerical instability! 19/21



Regularized Discriminant Analysis (RDA)

The empirical covariance matrix can be stabilized:

𝚺𝜆 ∶= 𝚺 + 𝜆𝐈𝑝 = 𝐕(𝐃 + 𝜆𝐈𝑝)𝐕𝑇

where 𝜆 > 0 is a tuning parameter.

▶ Using �̂�𝜆 in LDA is called regularized discriminant
analysis (RDA).

▶ Instead of 1/𝑑𝑗𝑗 the values 1/(𝑑𝑗𝑗 + 𝜆) are now involved.
▶ For small 𝑑𝑗𝑗 this can lead to numerical stability, whereas
large 𝑑𝑗𝑗 are not much affected.

▶ For large 𝜆 the 𝑑𝑗𝑗 will have diminishing impact and RDA
starts to become nearest centroids.

▶ RDA can be used with QDA as well by considering:

�̂�𝑖,𝜆 ∶= 𝚺𝑖⏟
QDA

+𝜆 �̂�⏟
LDA 20/21



Take-home message

▶ Random forests is very flexible and can determine
variable importance

▶ Principal component analysis gives a convenient
decomposition of the data with respect to variance

▶ Singular value decomposition is a universal workhorse for
dimension reduction
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