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Random Forests

1. Given a training sample with p features, do forb =1,...,B
1.1 Draw a bootstrap sample of size n from training data (with

replacement)
1.2 Grow a tree Ty, until each node reaches minimal node size

Min

1.21 Randomly select m variables from the p available
1.2.2 Find best splitting variable among these m

1.2.3 Split the node

2. For a new x predict

Regression: f(x) = % Z];:l Tp(X)
Classification: Majority vote at x across trees

Note: Step 1.2 leads to less correlation between trees built
on bootstrapped data.
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Comparison of RF, Bagging and CART

Toy example

y=x?+¢ where ¢~ N(0,1)
x~N(0,2),xeR>, X;=1%;=0981+#k
Training and test data were sampled from the true model. Results

for RF, bagged CART and a single CART, using x, ..., x5 as predictor
variables. (n;, = 50, n;, = 100)
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Variable importance

1. Impurity index: Splitting on a feature leads to a reduction
of node impurity. Summing all improvements over all
trees per feature gives a measure for variable importance

2. Out-of-bag error

» During bootstrapping for large enough n, each sample has
a chance of about 63% to be selected

» For bagging the remaining samples are out-of-bag.

» These out-of-bag samples for tree T}, can be used as a test
set for that particular tree, since they were not used
during training. Resulting in test error E,

» Permute variable j in the out-of-bag samples and
calculate test error again El(j)

» The increase in error

EY _E, >0

serves as an importance measure for variable j
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RF applied to cardiovascular dataset

Monica dataset (http://thl.fi/monica, n = 6367, p = 11)
Predicting whether or not patients survive a 10 year period given a
number of cardiovascular risk factors (class ratio 1.25 alive : 1 dead)
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http://thl.fi/monica

RF applied to heart disease dataset

South African coronary heart disease (SAheart) dataset
n =462, p =9, predicting cholesterol levels in variable 1d1

.

o

Out-of-bag error (MSE
IS
7
IS
I'S
7«3
IS
i%u

0 100 200 300 100 125 150 175 200 0 10 20 30 10 20 30 40
Number of Trees sbp tobacco adiposity
q A 16 16 16
Variable importance
12 12 12
VEC Type > 8 0 > 8 ® > o8
tobacco F [ Mean accuracy ‘o . ¢
[ Mean MSE 4 % 4 » 4 ~
sbp '_ o
obesity - 20 40 60 80 20 30 40 0 50 100 150
famhist typea obesity alcohol
chd B 16 16
alcohol 12 12 12

s
o

age > 8 ’ s > 8 <> 8
adiposity o T 4

.0 05 10 15 20 25
Decrease

o

20 30 40 50 60 Absent  Present CHD  No CHD
age famhist chd

5/21



Principal Component Analysis



Projection onto a subspace

Assume x € RP. Given orthonormal vectors b,, ..., b,,, i.e.
Ibjll=1 and blb, =0forj#k

where m < p, the projection of x onto the m-dimensional
linear subspace V,, = span(by,...,b,,) is

X=Z@ﬂWW=(Z%W>X
j=1 j

j=1
Project_ion
The projection is orthogonal, i.e. matrix \ |
x—-2)Th =0 /////
YN
for all b;. \};/
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Rayleigh Quotient

Let A € R¥*k be a symmetric matrix. For 0 # x € R* define

xT Ax

I = xTx

J(x) is called the Rayleigh Quotient for A.
Maximizing the Rayleigh Quotient
The maximization problem

max J(x) subjectto xTx=1
X

is solved by a unit eigenvector x of A corresponding to the
largest eigenvalue 1 of A.

Note: —x is also a solution.
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Principal Component Analysis (PCA) (1)

Goal: Given continuous data, find an orthogonal coordinate
system such that the variance of the data is maximal along

each direction.

Given data points x4, ...,x, and a
unit vector r, the variance of the

data alongr s

S@®) =Y T (x—-%))? = (n—1)r"Er
=1

where £ is the empirical

. . Axes
covariance matrix. ) L
<» Cartesian =» Principal Component
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Principal Component Analysis (PCA) (1)

Direction with maximal variance: Find r such that

max S(r) subjectto [r|?=rTr=1
r

» This is the same problem as maximizing the Rayleigh
Quotient for the matrix £.

» The solution is the eigenvector r; of £ corresponding to
the largest eigenvalue 4;.

How do we find the other directions? Project data on
orthogonal complement of ry, i.e.

X =1, —rr])x

and repeat the procedure above.
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Principal Component Analysis (PCA) (111)

Computational Procedure:
1. Centre and standardize the columns of the data matrix
X € R"™*P
2. Calculate the empirical covariance matrix £ = %XTX

3. Determine the eigenvalues 4; and corresponding
orthonormal eigenvectors r; of £for j=1,...,p and order
them such that

M 222220

4. The vectors r; give the direction of the principal
components (PC) rox and the eigenvalues J; are the
variances along the PC directions

Note: Set R = (ry, ..., 1)) and D = diag(44, ... Ap) then

$=RDR” and RTR=RRT =1,

10/21



PCA and Dimension Reduction

Recall: For a matrix A € R with eigenvalues 4, ..., A it
holds that

k
tr(A) = D 4
j=1

For the empirical covariance matrix £ and the variance of the
j-th feature Var[x;]

p p
tr(ﬁ) = Z Var[xj] = Z /1]
Jj=1 Jj=1

is called the total variation.
Using only the first m < p principal components leads to

/11+ "'+/1m

-100% of explained variance
M+ + 2, e p 1/21



PCA and Dimension Reduction: Example (1)

Variant of the MNIST handwritten digits dataset
(n = 7291, 16 x 16 greyscale images, i.e. p = 256)
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PCA and Dimension Reduction: Example (11)

For standardized variables

tr(2) = p 1 2
Typical selection rule: Components
with "
L>=tr®) (=1
y2pr® =D o Nl
Scree plot 3 4
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PCA and Dimension Reduction: Example (1)

Using the selection rule leads to 44
components. Using the projection

44 [
o T
2= Z R 4 7
j=1
creates a reconstruction of x.
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PCA and Dimension Reduction: Example (IV)

Projecting the digits onto the first two principal component

directions gives a very clear distinction of digits 0 and 1.

Running QDA naively on all 256

variables to predict the digits

does not work. Use the two most

variable features across both

classes.

Table 1: Missclassifaction rate

(20-fold CV)
0 1  Overall
QDA + PCA 0.000 0.010 0.005
LDA + PCA 0.044  0.000 0.024
LDA + max var 0.007 0.024 0.015
QDA + maxvar 0.015 0.028 0.021
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Singular Value Decomposition




Singular Value Decomposition (SVD)

The singular value decomposition (SVD) of a matrix X € R"*P,
n>p,is
X = UDVT

where U € R™P and V € RP*P with
Uu'u=1, and V'v=vv’ =1,
and D € RP*P is diagonal. Usually

diy 2dy 2 2dpp

Note: Due to the orthogonality conditions for U and V
XXTU = UD?
XTXV = VD?
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SVD and PCA

In PCA the empirical covariance matrix £ is in focus, whereas
SVD focuses on the data matrix X directly.

Connection: For centred variables

$=

T T T 2
XX=VDU UDV v D VT
n—1 n—1 n—1

The PC directions are in V and the eigenvalues of £ are

Note: This is how PCA is typically calculated. SVD is a more
general tool and is used in many other contexts as well.
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SVD and best rank-g-approximation / dimension reduction

Write w; and v; for the columns of U and V, respectively. Then

X=UDV' = Zdu ujVJT

rank-1-matrix

Best rank-g-approximation: For g < p

q
Z_: JJuJ

with approximation error

2 p

- 2

HX_XqHZ - Z JiY%V, 2 dj
j=q+1 5 J=q+l
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Connections to Discriminant
Analysis




Discriminant Analysis and the Inverse Covariance Matrix

From PCA or SVD we get £ = VDVT where VIV = vVT =1,
anddy; > -+ >dp, 2 0. Then

$-1 — vp-1yT = vD-12p-1/2yT — (g—l/z)T $-172
where (D~Y2);; 1=1/ /djj and $-172 . — p-12yT.
In DA the term involving the inverse covariance matrix is then

(x-S x—f) = (x— BT (812) £12(x - )
= (VI(x~ m)T D (VI (x - 2))

_Zd - )

Inverse of the eigenvalues can lead to numerical instability! 19/21



Regularized Discriminant Analysis (RDA)

The empirical covariance matrix can be stabilized:
£, =841, = V(D + AL,)VT
where 1 > 0 is a tuning parameter.

» Using £, in LDA is called regularized discriminant

analysis (RDA).

Instead of 1/d;; the values 1/(d;; + A4) are now involved.

> For small d;; this can lead to numerical stability, whereas
large d;; are not much affected.

> For large 4 the d;; will have diminishing impact and RDA
starts to become nearest centroids.

» RDA can be used with QDA as well by considering:

v

M)

id = Ei +1 X
QDA LDA 20/21



Take-home message

» Random forests is very flexible and can determine
variable importance

» Principal component analysis gives a convenient
decomposition of the data with respect to variance

» Singular value decomposition is a universal workhorse for
dimension reduction
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