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Projects

» Focus on challenging the algorithms and their
assumptions

» Keep your presentations short (~ 10 min)

» Send in your presentation and code by 10.00 on Friday
(all groups)

» There are 30 groups across 3 rooms, i.e.

» Not every group might get to present (it is not to your
disadvantage if you cannot present because there is not

enough time)
» We will group similar topics to allow for better discussion
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Importance of standardisation (1)

The overall issue: Subjectivity vs Objectivity

(Co-)variance is scale dependent: If we have a sample (size n)
of variables x and y, then their empirical covariance is
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Importance of standardisation (I1)

(Co-)variance is scale dependent: s,, = c - 5., Wwhere z =c - x

» By scaling variables we can therefore make them as
large/influential or small/insignificant as we want, which
is a very subjective process

» By standardising variables we can get of rid of scaling

and reach an objective point-of-view
» Do we get rid of information?

» The typical range of a variable is compressed, but if most
samples for a variable fall into that range, then it is not
very informative after all

» Real data is not a perfect Gaussian point cloud and
therefore there will still be dominating directions after
standardisation

» Outliers will still be outliers
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Importance of standardisation (I11)

UCI Wine dataset (Three different types of wine with p = 13
characteristics)
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Class-related dimension reduction




Better data projection for classification?

Idea: Find directions along which projections result in
minimal within-class scatter and maximal between-class
separation.

LDA decision
< _-~ " boundary
<

Projection onto

first discriminant Projection onto

first principal component
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Classification and principal components

In LDA the covariance matrix of the features within each class
is £. Now we will consider the within-class scatter matrix
S = (n — K)Z. In addition define

K n
) m = _ 1
%5 = > mi(p — W —@)", where k= - > x
=1

i=1
the between-class scatter matrix.

Note: The principal component
directions do not take class-labels into
account. Classification after projection
on these directions can by problematic.
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Fisher's Problem

Recall: The variance of the data projected on a direction given
by r can be calculated as S(r) = r’Sjr.

In analogy, the variance between class centres alongr is
calculated as r7Sgr.

The goal is to maximize variance between class centres while
simultaneously minimizing variance within each class.

Optimization goal: Maximize over r
T/\
)Y, .
Jr) = Z2BY subjectto |rf| = 1
'S, r
which is a more general form of a Rayleigh Quotient and is
called Fisher's problem.
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Solving Fisher's Problem

Note: There are maximum K — 1 solutions r; to Fisher’s
problem (because fB has rank < K —1).

Computation of solutions:

1. Compute the eigen-decomposition (the matrix is real and
symmetric)

$,2858,H? = vDVT
where V € RP*P orthogonal and D € RP*P diagonal.

2. Set R = £,,/*V. The columns of R solve Fisher's problem
(as with PCA the j-th solution maximizes Fisher’s problem
on the orthogonal complement of the first j — 1 solutions)
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Discriminant Variables and Reduced-rank LDA

» The vectors r; determined by solving Fisher’s problem can
be used like PCA, but are aware of class labels and give
the optimal separation of projected class centroids

» Projecting the data onto the j-th solution gives the j-th
discriminant variable r/x

» Using only the m < K — 1 first is called reduced-rank LDA
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Reduced-rank LDA: Example

» Consider digits 0, 8 and 9 in the MNIST digit dataset.

» Compare PCA and discriminant variable projections onto the
first two components.

» For technical reasons features constant within at least one
class had to be excluded before running LDA.

PC1 LD1

Digit - 0 - 8 - 9 R



Cross-validation and dimension reduction

Caution when using a dimension reduction technique like PCA
or reduced-rank LDA, together with cross-validation:

» PCAis a class-unrelated technique for dimension
reduction

» Whereas LDA is a class-related technique for dimension
reduction

» Any transformation done to all samples before
application of cross validation has to be class-unrelated.
Otherwise the projected data contains information about
the test data even in its training data

» However: To avoid potential confusion, best to perform
all data preparation on the training data alone and then
apply the same transformations to the test data
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Clustering




Classification without classes

In classification the main idea was to determine

p(ilx) or p(x,i) = p(x|i)p(i)

through model approximations (LDA, logistic regression),
rules/partitioning (CART, random forests) or directly from data
(KNN).

What if we do not have any classes? Clustering
Goals
» Find groups in data

» Summarize high-dimensional data
» Data exploration
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Clustering

Clustering is a harder problem 2 ',r'f' .
than classification q g"{:
» What is a cluster? 20— ’
» How many clusters are -1 -;';_-. :
there? L, 1T #;;..
» How do we find them? Can 3 i
they have any shape? -2 -1 xol 1 2

We need to able to measure dissimilarity between features to
determine which samples/objects are close together or far
apart.

Note: In clustering classes are often called labels and features
are attributes 13/23



Dissimilarity measures

A dissimilarity measure for features x,, x, is a function such

that
d(x1,x) 20 and  d(xy,x;) = d(xy, ;)

Dissimilarity across all features can be defined as
SRR
D(xy,%) = Y, di(xy”, x3)
Jj=1
Typical examples

» For quantitative features: #; or £, norm, correlation
between whole feature vectors, ...

» For categorical variables: Loss matrix L € REXX such that
L, =L, L, =0and L, > 0. Then d(x;,x;) = Ly ,
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Challenges in Clustering

Two main challenges

1. How many clusters are there?
2. Given a number of clusters, how do we find them?

Focus on Challenge 2 first.

Idea: Partition the observations into K groups/clusters so
that pairwise dissimilarities within groups are smaller than
between groups.

Note: A partition of the observations is called a clustering
rule C(x) =i
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Combinatorial Clustering (1)

Similar to Fisher's problem we are looking at point scatter.

Total amount of dissimilarity across all observations

T = Z Z D(Xl,Xm)

=1m<l

Total point scatter

K n
=Z Z Z D(Xl,Xm)+ Z D(Xl,xm)

i=1 I=1 m<l m<l
C(xp)=i \C(xp)=i C(xm)?él
K n
=2 2 2 Dexw+ Z Z 2, DGxxm)
i=1 I=1 i=1
Cla)=i Cla=i Clay=i o
Within cluster point scatter Between cluster point scatter
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Combinatorial Clustering (11)

Note that T does not depend on the clustering. Therefore
W(C) =T — B(C)

and minimizing within cluster point scatter is equivalent to
maximizing between cluster point scatter.

As in the case of decision trees/CART looking at all possible
partitions and finding the global minimum of W(C) is too
computational expensive.

Use greedy algorithms to find local minima.
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Approximations to Combinatorical Clustering (1)

Consider the special case D(x;,x,,,) = ||x;
K
w(C) = Z Z > lx-
i=1 m<l
C(Xl) 1 C(xpm)=i
K n

i=1
where

N; = Z]I(C(xl)—l) and m; =
I1=1

— X,,||* then

Xm||?

=2 Ni I, — my]|?
)=

X
i C(Xl) i
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Approximations to Combinatorical Clustering (II)

The goal now is to solve

K n
argmin Y N; Y. [Ix; — m;(C)||?
© i=1 I=1
C(xp)=i

which still requires to visit all possible partitions.

Observation: For a fixed clustering rule C it holds that
m;(C) = arg min Z Ix; — m||?
i1} C(xp)=i
Approximative solution: Consider the larger problem

n

K
argmin 3N, D) [lx; —my]?

m; for 1<i<K 1=1 C(l;)lzi
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k-means

This approximation can be solved iteratively for the
clustering C and the cluster centres. This is called the
k-means algorithm.

Computational procedure:

1. Initialize: Randomly choose K observations as cluster
centres m; and set J,.
2. Forstepsj=1,...,J.x

21 Cluster allocation: C(x;) = arg min ||x — my]|?
1<i<K

1
2.2 Cluster centre update: m; = A Z X]
L c(x)=i

2.3 Stop if clustering C did not change
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Notes on k-means

» Dependence on initial selection: Run repeatedly to

» Since k-means uses the ¢, norm it has all the typical
problems (sensitive to outliers and noise)

» Clusters tend to be circular: k-means looks in a circular
fashion around each cluster centre and assigns an
observation to the closest centre

» Always finds K clusters (not unique to k-means)
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Using k-means on the wine dataset

UCI Wine dataset: K = 3 classes. Let's see if k-means recovers
the classes given only the features/attributes.
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Note: k-means (and all clustering algorithms) are very

sensitive to certain geometries
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Take-home message

» Standardisation is important to remove subjective scaling
from data

» Reduced-rank LDA can lead to an optimal dimension
reduction with regards to class separation

» Clustering is @ more challenging problem than
classification and needs to answer two questions:

» How many clusters?
» What is a cluster?
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