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Model-based clustering



Remember QDA

In Quadratic Discriminant Analysis (QDA) we assumed
p(x|i) = N (x|u;, %;) and p() =
This is known as a Gaussian Mixture Model (GMM) for x where
K K
p(x) = D p()p(x[i) = Y, mN X|u;, )
i=1 i=1

QDA used that the classes i; and feature vectors x; of the
observations were known to calculate 7;, u; and ;.

What if we only know the features x;?
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Maximum Likelihood for GMMs?

The log-likelihood for the data X € R™*P and all unknowns

0 = (my, p1, 2y, -, Tk, M5 Zc)

n K
log(p(X|)) = Y log (Z N (x |I"i’zi))
(=i i=

Taking the gradient (with chain-rule) and solving for some y;
gives

n

_ X N s i
— lel e where ny = I?l (Xlllul 1)

D=1 i 2o TGNy, Z5)

Note: There is a non-linear cyclic dependence between 7;;
and y;.

i
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Expectation-Maximization for GMMs

Finding the MLE for parameters 6 in GMMs results in an
iterative process called Expectation-Maximization (EM)

1. Initialize 6
2. E-Step: Update
TN (X |pi, Z;)

K
Zj:l 7TjN(Xl|ﬂj’ zj)

mi =

3. M-Step: Update
_ 27:1 X S 27:1 Nii

i

z:l:l Nii n
1 n
= D mu(x — p)(x — )T
Zl=1 Mi 1=1
4. Repeat steps 2 and 3 until convergence

i

%
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GMM clustering example

» Yellow and green clusters s
share a covariance matrix

» The blue cluster has a
different one

» GGM clustering on only
the data points without
knowledge of the class
labels recovers the
covariance structures and N
clusters
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Why does Expectation-Maximization
work?




Likelihood of the complete data

» Assume that the classes i; are known and code them as
zj; = 1ifi; = j and z;; = 0 otherwise. Collect them in
Z € R™K,

» (X,Z) are called the complete data, and incomplete data
when only X is observed

» The class assignments Z are called latent variables

» Complete data likelihood

n K
log(p(X,Z|6)) = Y, Y, z; (log(rm;) + log(N(x)|uy, E;)))
I=1i=1
and the parameters in @ are easy to estimate (QDA).
» Incomplete data likelihood

log(p(X|0)) = Y. log
£

=il

K
(Z TN (Xp| M, 21’))
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Decomposing the incomplete data likelihood

» If we knew Z then
pPX,Z|o) .
X|0) = ———, le.
PXIO = L@ 6)
log(p(X]0)) = log(p(X, Z|6)) — log(p(Z|X, 6))
a decomposition of the log-likelihood for X given 6
» For any density q(Z) it holds that
_ X, Zle)) (p(ZIX, 6))
log(p(X/6)) = s ) -los (o
» Average over Z according to the density q(Z)
_ pX.219)] [ p(ZIX.6)
log(p(X|6)) = Ey(z) [10gw Eqcz) |log 1@

» It can be shown (using Jensen’s inequality) that

Eq(z) [bg 2 lZ) 6)]

with equality if g(Z) = p(Z|X, 6) o/



Expectation-Maximization

New target function: Maximize

X,Z|6 Z|X,0
log(p(X|6)) = Ey(z) [log p(q(—z)l)] ~Fao [log p(qlz) )]

with respect to q(Z) and 6
1. Expectation step: For given parameters 6™ the density

q(Z) = p(Z|X, 6" minimizes the second term and
thereby maximizes the first one. Set

(X, Z|0)
Q6,6™) = E iz otm) [log X, Z|

p(Z|X, 60m)
2. Maximization step: Maximize the first term with

e(m+1) = arg max Q(6, 6™)
6

The incomplete data likelihood increases in each step until
convergence to a local maximum.
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Applying EM to the GMM clustering problem

Given X and 8™
K .
p(X,Zj6)  TI_, I, (mNGx|p;, )%

PGS " 5K N (xly. 3)
and it holds that
T N(xp|pi, Zp)
[Ep(Z\X,e(m))[Zli] = Kl i =M

ijl 7TjN(Xl|:uj’ Zj)
the so-called responsibility of class i for having generated the
observation x;.

This results in

n K
Q(6,6™) = > > my; (log(rmy) + log(N(xy |k, E;)))  (+ const)
I=1i=1

which is maximized by estimates seen earlier weighted by 7;;.
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Cluster selection

A final clustering can be selected with

C(x;) = arg max7);
i

or responsibilities can be used as a soft clustering

Cluster count selection: Model selection criteria for MLE can
be used, e.g. minimal Bayesian Information Criterion (BIC)

BIC(K) = — 2log(p(X|6,K))

+10g(n)'[(K—1)+K.p+K.w]

number of model parameters

where n is much larger than the number of model parameters
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Caveat with MLE for GMMs

» Centering one mixture component on an observation (i.e.
u; = x; for some i and 1) and letting its variance go to zero
can drive the likelihood to infinity

» Outside of scope solution: Bayesian framework and
Inverse-Wishart prior on X;

» Initialize Z; with large enough variances and potentially
restart if bad convergence

» Like k-means, this algorithm is sensitive to starting values
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GMMs and EM for classification




GMM for classification

In QDA p(x|i) = N(x|u;, Z;) can only capture elliptic class
shapes.

Assume features are described by a GMM, i.e.
M;

p(x|i) = D) TNy, Z)
m=1

where

» M; components for class i

» 7, is the probability of mixture component m for class i

» Covariance matrix X is assumed to be constant across
mixture components and classes

Component membership z;,, is a latent variable for the
observation (x;, ;) with z;,,, =1 if x; is in component
m € {1,...,M;} and z;,, = 0 otherwise 1/21



Mixture DA

Finding the MLE for the mixture DA parameters can be
achieved through Expectation-Maximization (EM)

1. Initialize 6
2. E-Step: Update
ﬂilmN(X”#ilWD Z)

Nim = M;
2]211 ﬂile(Xl |I“('ilj’ Z)
3. M-Step: Update

Zi[:i NimXi Zil:i Nim
#. - —_ TT; L A —
" D=1 Mim o n;
Lk M;
z= E Z Z Z 77lm(xl - :uim)(xl - Iuim)T
i=1i;=i m=1

4. Repeat steps 2 and 3 until convergence T



MDA example

LDA Decision Boundaries QDA Decision Boundaries MDA Decision Boundaries
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Density-based clustering




Yet another approach to clustering

k-means

» Most methods discussed so far have
problems with odd, non-convex shapes

» What about noise? Some observations
might not fit into any cluster Single Inkage

» New cluster definition: Clusters are
dense regions in feature space
» What is dense?
» How to find groups and separate the
noise?

k-means

» Naive approach: Find points
surrounded by many other points and
connect them to a cluster. Points that
do not end up in a cluster are noise.
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Notation in density-based clustering

The presented methodology has two tuning parameters
¢ > 0and n,;, € N. Assume each observation is a point pina
database/dataset D and there is a distance measure d(p, q).

» c-neighbourhood of p: N.(p) = {q € D|d(p,q) < &}

» Core point: A p € D s.th. [N.(p)| = npin

» pis directly density-reachable from a core-point g if
p € N:(9)

» pis density-reachable from a core-point q if there is a
chain g = p1, p2, ..., P = p Sth. p;4q is directly
density-reachable from p;

» p and g are density-connected if there is a core-point o
s.th. p and g are density-reachable from o
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Density-based clusters

A cluster C is a set of points in D s.th.

1. If p € C and q is density-reachable from p theng € C
(maximality)

2. Forall p,q € C: p and q are density-connected
(connectivity)

This leads to three types of points

1. Core points: Part of a cluster and at least n,,;,, points in
neighbourhood

2. Border points: Part of a cluster but not core points
3. Noise: Not part of any cluster

Note: Border points can have non-unique cluster assignments
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DBSCAN algorithm

Computational procedure:

1. Go through each point p in the dataset D
2. If it has already been processed take the next one

3. Else determine its e-neighbourhood. If less than n,;,
points in neighbourhood, label as noise. Otherwise, start
a new cluster.

4. Find all points that are density-reachable from p and add
them to the cluster.

17/21



Dependenceonn,,,

» Controls how easy it is to connect components in a
cluster

» Too small and most points are core points, creating many
small clusters

» Too large and few points are core points, leading to many
noise labelled observations

» A cluster has by definition at least n,;, points
» Choice of n,,;, is very dataset dependent

» Tricky in high-dimensional data (curse of dimensionality,
everything is far apart)
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Dependence on ¢

» Controls how much of the data will be
clustered

» Too small and small gaps in clusters
cannot be bridged, leading to isolated
islands in the data

» Too large and everything is connected

» Choice of ¢ is also dataset dependent
but there is a decision tool

» Determine distance to the k nearest
neighbours for each point in the
dataset

» Inside clusters, increasing k should
not lead to a large increase of d

» The optimal ¢ is supposed to be
roughly at the knee

4-NN distance

00 01 02 03 04 05 06

T
0

500 1000 1500 2000

Points (sample) sorted by distance

19/21



DBSCAN example

DBSCAN (& = 0.4, Npin =5)

» DBSCAN is able to cluster points in the
situations advertised and correctly
identifies noise points

» Very sensitive to the choice of tuning
parameters
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Take-home message

» Expectation-Maximization allows maximum likelihood
estimation even in situation where additional data would
be necessary

» Both clustering and classification methods profit from
using Gaussian Mixture Models

» Density-based clustering allows to capture complex
shapes and the identification of noise during clustering
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