Lecture 8: Model- and density-based clustering

Felix Held, Mathematical Sciences

MSA220/MVE440 Statistical Learning for Big Data

11th April 2019

UNIVERSITY OF GOTHENBURG

Model-based clustering

In Quadratic Discriminant Analysis (QDA) we assumed

$$p(\mathbf{x}|i) = N(\mathbf{x}|\boldsymbol{\mu}_i, \boldsymbol{\Sigma}_i) \text{ and } p(i) = \pi_i$$

This is known as a Gaussian Mixture Model (GMM) for x where

$$p(\mathbf{x}) = \sum_{i=1}^{K} p(i)p(\mathbf{x}|i) = \sum_{i=1}^{K} \pi_i N\left(\mathbf{x}|\boldsymbol{\mu}_i, \boldsymbol{\Sigma}_i\right)$$

QDA used that the classes i_l and feature vectors \mathbf{x}_l of the observations were known to calculate π_i , $\boldsymbol{\mu}_i$ and $\boldsymbol{\Sigma}_i$.

What if we only know the features x_l?

Maximum Likelihood for GMMs?

The log-likelihood for the data $\mathbf{X} \in \mathbb{R}^{n \times p}$ and all unknowns

$$\boldsymbol{\theta} = (\pi_1, \boldsymbol{\mu}_1, \boldsymbol{\Sigma}_1, \dots, \pi_K, \boldsymbol{\mu}_K, \boldsymbol{\Sigma}_K)$$

is

$$\log(p(\mathbf{X}|\boldsymbol{\theta})) = \sum_{l=1}^{n} \log\left(\sum_{i=1}^{K} \pi_{i} N\left(\mathbf{x}_{l} | \boldsymbol{\mu}_{i}, \boldsymbol{\Sigma}_{i}\right)\right)$$

Taking the gradient (with chain-rule) and solving for some μ_i gives

$$\boldsymbol{\mu}_{i} = \frac{\sum_{l=1}^{n} \eta_{li} \mathbf{x}_{l}}{\sum_{l=1}^{n} \eta_{li}} \quad \text{where} \quad \eta_{li} = \frac{\pi_{i} N(\mathbf{x}_{l} | \boldsymbol{\mu}_{i}, \boldsymbol{\Sigma}_{i})}{\sum_{j=1}^{K} \pi_{j} N(\mathbf{x}_{l} | \boldsymbol{\mu}_{j}, \boldsymbol{\Sigma}_{j})}$$

Note: There is a non-linear cyclic dependence between η_{li} and μ_{i} .

Expectation-Maximization for GMMs

Finding the MLE for parameters θ in GMMs results in an iterative process called **Expectation-Maximization (EM)**

- 1. Initialize θ
- 2. E-Step: Update

$$\eta_{li} = \frac{\pi_i N(\mathbf{x}_l | \boldsymbol{\mu}_i, \boldsymbol{\Sigma}_i)}{\sum_{j=1}^K \pi_j N(\mathbf{x}_l | \boldsymbol{\mu}_j, \boldsymbol{\Sigma}_j)}$$

3. M-Step: Update

$$\boldsymbol{\mu}_{i} = \frac{\sum_{l=1}^{n} \eta_{li} \mathbf{x}_{l}}{\sum_{l=1}^{n} \eta_{li}} \qquad \boldsymbol{\pi}_{i} = \frac{\sum_{l=1}^{n} \eta_{li}}{n}$$
$$\boldsymbol{\Sigma}_{i} = \frac{1}{\sum_{l=1}^{n} \eta_{li}} \sum_{l=1}^{n} \eta_{li} (\mathbf{x}_{l} - \boldsymbol{\mu}_{i}) (\mathbf{x}_{l} - \boldsymbol{\mu}_{i})^{T}$$

4. Repeat steps 2 and 3 until convergence

GMM clustering example

- Yellow and green clusters share a covariance matrix
- The blue cluster has a different one
- GGM clustering on only the data points without knowledge of the class labels recovers the covariance structures and clusters

Why does Expectation-Maximization work?

Likelihood of the complete data

- ▶ Assume that the classes i_l are known and code them as $z_{lj} = 1$ if $i_l = j$ and $z_{lj} = 0$ otherwise. Collect them in $\mathbf{Z} \in \mathbb{R}^{n \times K}$.
- (X, Z) are called the complete data, and incomplete data when only X is observed
- The class assignments Z are called latent variables
- Complete data likelihood

$$\log(p(\mathbf{X}, \mathbf{Z} | \boldsymbol{\theta})) = \sum_{l=1}^{n} \sum_{i=1}^{K} z_{li} \left(\log(\pi_i) + \log(N(\mathbf{x}_l | \boldsymbol{\mu}_i, \boldsymbol{\Sigma}_i)) \right)$$

and the parameters in θ are easy to estimate (QDA).

Incomplete data likelihood

$$\log(p(\mathbf{X}|\boldsymbol{\theta})) = \sum_{l=1}^{n} \log\left(\sum_{i=1}^{K} \pi_{i} N\left(\mathbf{x}_{l} | \boldsymbol{\mu}_{i}, \boldsymbol{\Sigma}_{i}\right)\right)$$

Decomposing the incomplete data likelihood

If we knew Z then

$$p(\mathbf{X}|\theta) = \frac{p(\mathbf{X}, \mathbf{Z}|\theta)}{p(\mathbf{Z}|\mathbf{X}, \theta)},$$
 i.e.

 $\log(p(\mathbf{X}|\boldsymbol{\theta})) = \log(p(\mathbf{X},\mathbf{Z}|\boldsymbol{\theta})) - \log(p(\mathbf{Z}|\mathbf{X},\boldsymbol{\theta}))$

a decomposition of the log-likelihood for X given θ
For any density q(Z) it holds that

$$\log(p(\mathbf{X}|\boldsymbol{\theta})) = \log\left(\frac{p(\mathbf{X}, \mathbf{Z}|\boldsymbol{\theta})}{q(\mathbf{Z})}\right) - \log\left(\frac{p(\mathbf{Z}|\mathbf{X}, \boldsymbol{\theta})}{q(\mathbf{Z})}\right)$$

• Average over \mathbf{Z} according to the density $q(\mathbf{Z})$

$$\log(p(\mathbf{X}|\boldsymbol{\theta})) = \mathbb{E}_{q(\mathbf{Z})}\left[\log\frac{p(\mathbf{X},\mathbf{Z}|\boldsymbol{\theta})}{q(\mathbf{Z})}\right] - \mathbb{E}_{q(\mathbf{Z})}\left[\log\frac{p(\mathbf{Z}|\mathbf{X},\boldsymbol{\theta})}{q(\mathbf{Z})}\right]$$

It can be shown (using Jensen's inequality) that

$$\mathbb{E}_{q(\mathbf{Z})}\left[\log\frac{p(\mathbf{Z}|\mathbf{X},\boldsymbol{\theta})}{q(\mathbf{Z})}\right] \leq 0$$

with equality if $q(\mathbf{Z}) = p(\mathbf{Z}|\mathbf{X}, \boldsymbol{\theta})$

Expectation-Maximization

New target function: Maximize

$$\log(p(\mathbf{X}|\boldsymbol{\theta})) = \mathbb{E}_{q(\mathbf{Z})} \left[\log \frac{p(\mathbf{X}, \mathbf{Z}|\boldsymbol{\theta})}{q(\mathbf{Z})} \right] - \mathbb{E}_{q(\mathbf{Z})} \left[\log \frac{p(\mathbf{Z}|\mathbf{X}, \boldsymbol{\theta})}{q(\mathbf{Z})} \right]$$

with respect to $q(\mathbf{Z})$ and $\boldsymbol{\theta}$

1. **Expectation step:** For given parameters $\theta^{(m)}$ the density $q(\mathbf{Z}) = p(\mathbf{Z}|\mathbf{X}, \theta^{(m)})$ minimizes the second term and thereby maximizes the first one. Set

$$Q(\boldsymbol{\theta}, \boldsymbol{\theta}^{(m)}) = \mathbb{E}_{p(\mathbf{Z}|\mathbf{X}, \boldsymbol{\theta}^{(m)})} \left[\log \frac{p(\mathbf{X}, \mathbf{Z}|\boldsymbol{\theta})}{p(\mathbf{Z}|\mathbf{X}, \boldsymbol{\theta}^{(m)})} \right]$$

2. Maximization step: Maximize the first term with

$$\boldsymbol{\theta}^{(m+1)} = \operatorname*{arg\,max}_{\boldsymbol{\theta}} Q(\boldsymbol{\theta}, \boldsymbol{\theta}^{(m)})$$

The incomplete data likelihood increases in each step until convergence to a **local maximum**.

Applying EM to the GMM clustering problem

Given **X** and $\theta^{(m)}$

$$p(\mathbf{Z}|\mathbf{X}, \boldsymbol{\theta}^{(m)}) = \frac{p(\mathbf{X}, \mathbf{Z}|\boldsymbol{\theta}^{(m)})}{p(\mathbf{X}|\boldsymbol{\theta}^{(m)})} = \frac{\prod_{l=1}^{n} \prod_{i=1}^{K} (\pi_{i} N(\mathbf{x}_{l}|\boldsymbol{\mu}_{i}, \boldsymbol{\Sigma}_{i}))^{z_{li}}}{\sum_{j=1}^{K} \pi_{j} N\left(\mathbf{x}|\boldsymbol{\mu}_{j}, \boldsymbol{\Sigma}_{j}\right)}$$

and it holds that

$$\mathbb{E}_{p(\mathbf{Z}|\mathbf{X},\boldsymbol{\theta}^{(m)})}[z_{li}] = \frac{\pi_i N(\mathbf{x}_l|\boldsymbol{\mu}_i,\boldsymbol{\Sigma}_i)}{\sum_{j=1}^K \pi_j N(\mathbf{x}_l|\boldsymbol{\mu}_j,\boldsymbol{\Sigma}_j)} = \boldsymbol{\eta}_{li}$$

the so-called **responsibility** of class *i* for having generated the observation \mathbf{x}_l .

This results in

$$Q(\boldsymbol{\theta}, \boldsymbol{\theta}^{(m)}) = \sum_{l=1}^{n} \sum_{i=1}^{K} \eta_{li} \left(\log(\pi_i) + \log(N(\mathbf{x}_l | \boldsymbol{\mu}_i, \boldsymbol{\Sigma}_i)) \right) \quad (+ \text{ const})$$

which is maximized by estimates seen earlier weighted by η_{li} .

A final clustering can be selected with

 $C(\mathbf{x}_l) = \arg\max_i \eta_{li}$

or responsibilities can be used as a soft clustering

Cluster count selection: Model selection criteria for MLE can be used, e.g. minimal **Bayesian Information Criterion (BIC)**

BIC(K) =
$$-2\log(p(\mathbf{X}|\boldsymbol{\theta}, K))$$

+ $\log(n) \cdot \underbrace{[(K-1) + K \cdot p + K \cdot \frac{p(p+1)}{2}]}_{\text{number of model parameters}}$

where n is much larger than the number of model parameters

- Centering one mixture component on an observation (i.e. µ_i = x_l for some *i* and *l*) and letting its variance go to zero can drive the likelihood to infinity
 - Outside of scope solution: Bayesian framework and Inverse-Wishart prior on Σ_i
 - Initialize Σ_i with large enough variances and potentially restart if bad convergence
- ▶ Like k-means, this algorithm is sensitive to starting values

GMMs and EM for classification

GMM for classification

In QDA $p(\mathbf{x}|i) = N(\mathbf{x}|\boldsymbol{\mu}_i, \boldsymbol{\Sigma}_i)$ can only capture **elliptic class** shapes.

Assume features are described by a GMM, i.e.

$$p(\mathbf{x}|i) = \sum_{m=1}^{M_i} \pi_{im} N(\mathbf{x}|\boldsymbol{\mu}_{im}, \boldsymbol{\Sigma})$$

where

- *M_i* components for class *i*
- π_{im} is the probability of mixture component *m* for class *i*
- Covariance matrix Σ is assumed to be constant across mixture components and classes

Component membership z_{lm} is a latent variable for the observation (\mathbf{x}_l, i_l) with $z_{lm} = 1$ if \mathbf{x}_l is in component $m \in \{1, ..., M_{i_l}\}$ and $z_{lm} = 0$ otherwise

Mixture DA

Finding the MLE for the mixture DA parameters can be achieved through **Expectation-Maximization (EM)**

- 1. Initialize θ
- 2. E-Step: Update

$$\eta_{lm} = \frac{\pi_{i_lm} N(\mathbf{x}_l | \boldsymbol{\mu}_{i_lm}, \boldsymbol{\Sigma})}{\sum_{j=1}^{M_{i_l}} \pi_{i_lj} N(\mathbf{x}_l | \boldsymbol{\mu}_{i_lj}, \boldsymbol{\Sigma})}$$

3. M-Step: Update

$$\boldsymbol{\mu}_{im} = \frac{\sum_{i_l=i} \eta_{lm} \mathbf{x}_l}{\sum_{i_l=i} \eta_{lm}} \qquad \boldsymbol{\pi}_{im} = \frac{\sum_{i_l=i} \eta_{lm}}{n_i}$$
$$\boldsymbol{\Sigma} = \frac{1}{n} \sum_{i=1}^{K} \sum_{i_l=i} \sum_{m=1}^{M_i} \eta_{lm} (\mathbf{x}_l - \boldsymbol{\mu}_{im}) (\mathbf{x}_l - \boldsymbol{\mu}_{im})^T$$

4. Repeat steps 2 and 3 until convergence

Density-based clustering

Yet another approach to clustering

- Most methods discussed so far have problems with odd, non-convex shapes
- What about noise? Some observations might not fit into any cluster
- New cluster definition: Clusters are dense regions in feature space
 - What is dense?
 - How to find groups and separate the noise?

Naive approach: Find points surrounded by many other points and connect them to a cluster. Points that do not end up in a cluster are noise.

Notation in density-based clustering

The presented methodology has **two tuning parameters** $\varepsilon > 0$ and $n_{\min} \in \mathbb{N}$. Assume each observation is a **point** p **in a database/dataset** D and there is a **distance measure** d(p,q).

- ► *ε*-neighbourhood of *p*: $N_{\varepsilon}(p) = \{q \in D | d(p,q) \le \varepsilon\}$
- ▶ **Core point:** A $p \in D$ s.th. $|N_{\varepsilon}(p)| \ge n_{\min}$
- ▶ p is directly density-reachable from a core-point q if p ∈ N_ε(q)
- ▶ p is density-reachable from a core-point q if there is a chain q = p₁, p₂, ..., p_m = p s.th. p_{i+1} is directly density-reachable from p_i
- *p* and *q* are **density-connected** if there is a core-point *o* s.th. *p* and *q* are density-reachable from *o*

A **cluster** *C* is a set of points in *D* s.th.

- 1. If $p \in C$ and q is density-reachable from p then $q \in C$ (maximality)
- 2. For all $p, q \in C$: p and q are density-connected (connectivity)
- This leads to three types of points
 - 1. Core points: Part of a cluster and at least n_{\min} points in neighbourhood
 - 2. Border points: Part of a cluster but not core points
 - 3. Noise: Not part of any cluster

Note: Border points can have non-unique cluster assignments

Computational procedure:

- 1. Go through each point p in the dataset D
- 2. If it has already been processed take the next one
- 3. Else determine its ε -neighbourhood. If less than n_{\min} points in neighbourhood, label as noise. Otherwise, start a new cluster.
- 4. Find all points that are density-reachable from p and add them to the cluster.

- Controls how easy it is to connect components in a cluster
 - Too small and most points are core points, creating many small clusters
 - Too large and few points are core points, leading to many noise labelled observations
- A cluster has by definition at least n_{\min} points
- Choice of n_{\min} is very dataset dependent
- Tricky in high-dimensional data (curse of dimensionality, everything is far apart)

Dependence on ε

- Controls how much of the data will be clustered
 - Too small and small gaps in clusters cannot be bridged, leading to isolated islands in the data
 - Too large and everything is connected
- Choice of ε is also dataset dependent but there is a decision tool
 - Determine distance to the k nearest neighbours for each point in the dataset
 - Inside clusters, increasing k should not lead to a large increase of d
 - The optimal e is supposed to be roughly at the knee

- DBSCAN is able to cluster points in the situations advertised and correctly identifies noise points
- Very sensitive to the choice of tuning parameters

- Expectation-Maximization allows maximum likelihood estimation even in situation where additional data would be necessary
- Both clustering and classification methods profit from using Gaussian Mixture Models
- Density-based clustering allows to capture complex shapes and the identification of noise during clustering