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Revisited: Expectation-Maximization (I)

New target function: Maximize

log(𝑝(𝐗|𝜽)) = 𝔼𝑞(𝐙) [log 𝑝(𝐗, 𝐙|𝜽)𝑞(𝐙) ] − 𝔼𝑞(𝐙) [log 𝑝(𝐙|𝐗, 𝜽)𝑞(𝐙) ]

with respect to 𝑞(𝐙) and 𝜽

Note:
▶ The left hand side is independent of 𝑞(𝐙)
▶ The difference on the right hand side has always the
same value, irrespective of the chosen 𝑞(𝐙).

Choosing 𝑞(𝐙) is therefore a trade-off between

𝔼𝑞(𝐙) [log 𝑝(𝐗, 𝐙|𝜽)𝑞(𝐙) ] and 𝔼𝑞(𝐙) [log 𝑝(𝐙|𝐗, 𝜽)𝑞(𝐙) ]
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Revisited: Expectation-Maximization (II)

1. Expectation step: For given parameters 𝜽(𝑚) the density
𝑞(𝐙) = 𝑝(𝐙|𝐗, 𝜽(𝑚)) minimizes the second term and
thereby maximizes the first one. Set

𝑄(𝜽, 𝜽(𝑚)) = 𝔼𝑝(𝐙|𝐗,𝜽(𝑚)) [log 𝑝(𝐗, 𝐙|𝜽)
𝑝(𝐙|𝐗, 𝜽(𝑚))]

2. Maximization step: Maximize the first term with

𝜽(𝑚+1) = arg max
𝜽

𝑄(𝜽, 𝜽(𝑚))

Note: Since

𝔼𝑝(𝐙|𝐗,𝜽(𝑚)) [log 𝑝(𝐙|𝐗, 𝜽
(𝑚))

𝑝(𝐙|𝐗, 𝜽(𝑚))] = 0

it follows that

log(𝑝(𝐗|𝜽(𝑚))) = 𝔼𝑝(𝐙|𝐗,𝜽(𝑚)) [log 𝑝(𝐗, 𝐙|𝜽
(𝑚))

𝑝(𝐙|𝐗, 𝜽(𝑚))] 2/24



Regularized/penalized regression



Remember ordinary least-squares (OLS)

Consider the model
𝐲 = 𝐗𝜷 + 𝜺

where
▶ 𝐲 ∈ ℝ𝑛 is the outcome, 𝐗 ∈ ℝ𝑛×(𝑝+1) is the design matrix,
𝜷 ∈ ℝ𝑝+1 are the regression coefficients, and 𝜺 ∈ ℝ𝑛 is
the additive error

▶ Five basic assumptions have to be checked
Underlying relationship is linear (1)
Zero mean (2), uncorrelated (3) errors with constant
variance (4) which are (roughly) normally distributed (5)

▶ Centring ( 1
𝑛
∑𝑛

𝑙=1 𝑥𝑙𝑗 = 0) and standardisation
( 1
𝑛
∑𝑛

𝑙=1 𝑥2𝑙𝑗 = 1) of predictors simplifies interpretation
▶ Centring the outcome ( 1

𝑛
∑𝑛

𝑙=1 𝑦𝑙 = 0) and features
removes the need to estimate the intercept 3/24



Feature selection as motivation

Analytical solution exists when 𝐗𝑇𝐗 is invertible

̂𝜷OLS = (𝐗𝑇𝐗)−1𝐗𝑇𝐲

This can be unstable or fail in case of

▶ high correlation between predictors, or
▶ if 𝑝 > 𝑛.

Solutions: Regularisation or feature selection
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Filtering for feature selection
▶ Choose features through pre-processing

▶ Features with maximum variance
▶ Use only the first 𝑘 PCA components

▶ Examples of other useful measures
▶ Use a univariate criterion, e.g. F-score: Features that
correlate most with the response

▶ Mutual Information: Reduction in uncertainty about 𝐱
after observing 𝑦

▶ Variable importance: Determine variable importance with
random forests

▶ Summary
▶ Pro: Fast and easy
▶ Con: Filtering mostly operates on single features and is
not geared towards a certain method

▶ Care with cross-validation and multiple testing necessary
▶ Filtering is often more of a pre-processing step and less
of a proper feature selection step 5/24



Wrapping for feature selection
▶ Idea: Determine the best set of features by fitting models
of different complexity and comparing their performance

▶ Best subset selection: Try all possible (exponentially
many) subsets of features and compare model
performance with e.g. cross-validation

▶ Forward selection: Start with just an intercept and add in
each step the variable that improves fit the most (greedy
algorithm)

▶ Backward selection: Start with all variables included and
then remove sequentially the one with the least impact
(greedy algorithm)

▶ As discreet procedures, all of these methods exhibit high
variance (small changes could lead to different predictors
being selected, resulting in a potentially very different
model) 6/24



Embedding for feature selection

▶ Embed/include the feature selection into the model
estimation procedure

▶ Ideally, penalization on the number of included features

̂𝜷 = arg min
𝜷

‖𝐲 − 𝐗𝜷‖22 + 𝜆
𝑝
∑
𝑗=1

1(𝛽𝑗 ≠ 0)

However, discrete optimization problems are hard to
solve

▶ Softer regularisation methods can help

̂𝜷 = arg min
𝜷

‖𝐲 − 𝐗𝜷‖22 + 𝜆‖𝜷‖𝑞𝑞

where 𝜆 is a tuning parameter and 𝑞 ≥ 1 or 𝑞 = ∞.
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Constrained regression

The optimization problem

arg min
𝜷

‖𝐲 − 𝐗𝜷‖22 subject to ‖𝜷‖𝑞𝑞 ≤ 𝑡

for 𝑞 > 0 is equivalent to
̂𝜷 = arg min

𝜷
‖𝐲 − 𝐗𝜷‖22 + 𝜆‖𝜷‖𝑞𝑞

when 𝑞 ≥ 1. This is the Lagrangian of the constrained
problem.

▶ Clear when 𝑞 > 1: Convex constraint + target function and
both are differentiable

▶ Harder to prove for 𝑞 = 1, but possible (e.g. with
subgradients)
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Ridge regression

For 𝑞 = 2 the constrained problem is ridge regression

̂𝜷ridge(𝜆) = arg min
𝜷

‖𝐲 − 𝐗𝜷‖22 + 𝜆‖𝜷‖22

where ‖𝜷‖22 = ∑𝑝
𝑗=1 𝛽2𝑗 .

An analytical solution exists if 𝐗𝑇𝐗 + 𝜆𝐈𝑝 is invertible

̂𝜷ridge(𝜆) = (𝐗𝑇𝐗 + 𝜆𝐈𝑝)−1𝐗𝑇𝐲

If 𝐗𝑇𝐗 = 𝐈𝑝, then
̂𝜷ridge(𝜆) =

̂𝜷OLS
1 + 𝜆 ,

i.e. ̂𝜷ridge(𝜆) is biased but has lower variance.
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SVD and ridge regression

Recall: The SVD of a matrix 𝐗 ∈ ℝ𝑛×𝑝 was

𝐗 = 𝐔𝐃𝐕𝑇

The analytical solution for ridge regression becomes (𝑛 ≥ 𝑝)
̂𝜷ridge(𝜆) = (𝐗𝑇𝐗 + 𝜆𝐈𝑝)−1𝐗𝑇𝐲

= (𝐕𝐃2𝐕𝑇 + 𝜆𝐈𝑝)−1𝐕𝐃𝐔𝑇𝐲
= 𝐕(𝐃2 + 𝜆𝐈𝑝)−1𝐃𝐔𝑇𝐲

=
𝑝
∑
𝑗=1

𝑑𝑗
𝑑2𝑗 + 𝜆

𝐯𝑗𝐮𝑇𝑗 𝐲

Ridge regression acts most on principal components with
lower eigenvalues, e.g. in presence of correlation between
features.
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Effective degrees of freedom

Recall the hat matrix 𝐇 = 𝐗(𝐗𝑇𝐗)−1𝐗𝑇 in OLS. The trace of 𝐇

tr(𝐻) = tr(𝐗(𝐗𝑇𝐗)−1𝐗𝑇) = tr(𝐗𝑇𝐗(𝐗𝑇𝐗)−1) = tr(𝐈𝑝) = 𝑝

is equal to the trace of 𝚺 and the degrees of freedom for the
regression coefficients.

In analogy define for ridge regression

𝐇(𝜆) ∶= 𝐗(𝐗𝑇𝐗 + 𝜆𝐈𝑝)−1𝐗𝑇

and

df(𝜆) ∶= tr(𝐇(𝜆)) =
𝑝
∑
𝑗=1

𝑑2𝑗
𝑑2𝑗 + 𝜆

,

the effective degrees of freedom.
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Lasso regression

For 𝑞 = 1 the constrained problem is known as the lasso

̂𝜷ridge(𝜆) = arg min
𝜷

‖𝐲 − 𝐗𝜷‖22 + 𝜆‖𝜷‖1

▶ Smallest 𝑞 in penalty such that constraint is still convex
▶ Performs feature selection
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Intuition for the penalties (I)

Assume the OLS solution 𝜷OLS exists and set

𝐫 = 𝐲 − 𝐗𝜷OLS

it follows for the residual sum of squares (RSS) that

‖𝐲 − 𝐗𝜷‖22 = ‖(𝐗𝜷OLS + 𝐫) − 𝐗𝜷‖22
= ‖(𝐗(𝜷 − 𝜷OLS) − 𝐫‖22
= (𝜷 − 𝜷OLS)𝑇𝐗𝑇𝐗(𝜷 − 𝜷OLS) − 2𝐫𝑇𝐗(𝜷 − 𝜷OLS) + 𝐫𝑇𝐫

which is an ellipse (at least in 2D) centred on 𝜷OLS.
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Intuition for the penalties (II)

The least squares RSS is minimized for 𝜷OLS. If a constraint is
added (‖𝜷‖𝑞𝑞 ≤ 𝑡) then the RSS is minimized by the closest 𝜷
possible that fulfills the constraint.
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The blue lines are the contour lines for the RSS. 14/24



Intuition for the penalties (III)

Depending on 𝑞 the
different constraints
lead to different
solutions. If 𝜷OLS is
in one of the
coloured areas or
on a line, the
constrained
solution will be at
the corresponding
dot.
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Computational aspects of the Lasso (I)

What estimates does the lasso produce?

Target function

arg min
𝜷

1
2‖𝐲 − 𝐗𝜷‖22 + 𝜆‖𝜷‖1

Special case: 𝐗𝑇𝐗 = 𝐈𝑝. Then

1
2‖𝐲 − 𝐗𝜷‖22 + 𝜆‖𝜷‖1 =

1
2𝐲

𝑇𝐲 − 𝐲𝑇𝐗⏟
=𝜷𝑇OLS

𝜷 + 1
2𝜷

𝑇𝜷 + 𝜆‖𝜷‖1 = 𝑔(𝜷)

How do we find the solution ̂𝜷 in presence of the
non-differentiable penalisation ‖𝜷‖1?
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Computational aspects of the Lasso (II)

For 𝐗𝑇𝐗 = 𝐈𝑝 the target function can be written as

arg min
𝜷

𝑝
∑
𝑗=1

−𝛽OLS,𝑗𝛽𝑗 +
1
2𝛽

2
𝑗 + 𝜆|𝛽𝑗|

This results in 𝑝 uncoupled optimization problems.
▶ If 𝛽OLS,𝑗 > 0, then 𝛽𝑗 > 0 to minimize the target
▶ If 𝛽OLS,𝑗 ≤ 0, then 𝛽𝑗 ≤ 0

Each case results in

𝛽𝑗 = sign(𝛽OLS,𝑗)(|𝛽OLS,𝑗| − 𝜆)+ = ST(𝛽OLS,𝑗, 𝜆),
where

𝑥+ = {
𝑥 𝑥 > 0
0 otherwise

and ST is the soft-thresholding operator 17/24



Relation to OLS estimates

Both ridge regression and the lasso estimates can be written
as functions of 𝜷OLS if 𝐗𝑇𝐗 = 𝐈𝑝.

𝛽ridge,𝑗 =
𝛽OLS,𝑗
1 + 𝜆 and 𝛽𝑗 = sign(𝛽OLS,𝑗)(|𝛽OLS,𝑗| − 𝜆)+

λ

Ridge Lasso

Visualisation of the transformations applied to the OLS estimates.
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Shrinkage

When 𝜆 is fixed, the shrinkage of the lasso estimate 𝜷lasso(𝜆)
compared to the OLS estimate 𝜷OLS is defined as

𝑠(𝜆) = ‖𝜷lasso(𝜆)‖1
‖𝜷OLS‖1

Note: 𝑠(𝜆) ∈ [0, 1] with 𝑠(𝜆) → 0 for increasing 𝜆 and 𝑠(𝜆) = 1 if
𝜆 = 0
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A regularisation path

Prostate cancer dataset (𝑛 = 67, 𝑝 = 8)
Red dashed lines indicate the 𝜆 selected by cross-validation
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Notes on the lasso

▶ In the general case, i.e. 𝐗𝑇𝐗 ≠ 𝐈𝑝, there is no explicit
solution.

▶ Numerical solution possible, e.g. with coordinate descent
▶ As for ridge regression, estimates are biased
▶ But

▶ Asymptotic consistency: If 𝜆 = o(𝑛) then 𝜷lasso → 𝜷true for
𝑛 → ∞

▶ Model selection consistency: If 𝜆 ∝ 𝑛1/2, then there is a
non-zero probability of identifying the true model

▶ Degrees of freedom: The degrees of freedom are equal to
the number of non-zero coefficients
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Potential caveats of the lasso (I)

▶ Sparsity of the true model:
▶ The lasso only works if the data is generated from a
sparse process.

▶ However, a dense process with many variables and not
enough data or high correlation between predictors can
be unidentifiable either way

▶ Correlations: Many non-relevant variables correlated
with relevant variables can lead to the selection of the
wrong model, even for large 𝑛

▶ Irrepresentable condition: Split 𝐗 such that 𝐗1 contains
all relevant variables and 𝐗2 contains all irrelevant
variables. If

|(𝐗𝑇
2𝐗1)−1(𝐗𝑇

1 𝐗1)| < 1 − 𝜼
for some 𝜼 > 0 then the lasso is (almost) guaranteed to
pick the true model 22/24



Potential caveats of the lasso (II)

In practice, both the sparsity of the true model and the
irrepresentable condition cannot be checked.

▶ Assumptions and domain knowledge have to be used
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Take-home message

▶ Filtering and wrapping methods useful for feature
selection in practice but can be unprincipled or have high
variance

▶ Penalisation gives stability to regression
▶ The lasso performs variable selection and variance
stabilisation at the same time
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