Lecture 9: Regularized/penalized regression

Felix Held, Mathematical Sciences

MSA220/MVE440 Statistical Learning for Big Data

15th April 2019

CHALMERS ‘

UNIVERSITY OF TECHNOLOGY

; UNIVERSITY OF GOTHENBURG




Revisited: Expectation-Maximization (1)

New target function: Maximize

,Z|6 .0
log(p(X|0)) = Eq(z) [1og %] g [10 . p(ﬁ)z() >]

with respect to q(Z) and 6
Note:

» The left hand side is independent of q(Z)
» The difference on the right hand side has always the
same value, irrespective of the chosen g(Z).

Choosing q(Z) is therefore a trade-off between

p(X,Z|6) [ p(ZIX,e)]
Eyz) [log—q(z) and  [Eyz) |log @
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Revisited: Expectation-Maximization (11)

1. Expectation step: For given parameters 6™ the density
q(Z) = p(Z|X, 6'™)) minimizes the second term and
thereby maximizes the first one. Set

p(X,Z|0) ]
p(Z[X, (™)
2. Maximization step: Maximize the first term with

gim+1) _ arg max Q(6, e(m))
¢}

Q(6,6m) = E p(zix,6tm) [log

Note: Since
. log PEX. O] _
p(ZIX,60m) p(Z|X, omy |
it follows that
X, Z|6(™)
1 X e(m) =E m |1 p(,—
og(P(X|6"™)) = Ep(zx,60m) [ 8 DX, om) 2024



Regularized/penalized regression



Remember ordinary least-squares (OLS)

Consider the model
y=XB+¢
where

» y € R" is the outcome, X € R™(P+1) js the design matrix,
B € RP*! are the regression coefficients, and : € R" is
the additive error

» Five basic assumptions have to be checked

Underlying relationship is linear (1)
Zero mean (2), uncorrelated (3) errors with constant
variance (&) which are (roughly) normally distributed (5)

» Centring (% ZL x;; = 0) and standardisation
(% Y, X} = 1) of predictors simplifies interpretation
» Centring the outcome (% Zln=1 y; = 0) and features
removes the need to estimate the intercept 3/24



Feature selection as motivation

Analytical solution exists when XTX is invertible
fors = XTX)"1XTy
This can be unstable or fail in case of

» high correlation between predictors, or

> if p>n.

Solutions: Regularisation or feature selection
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Filtering for feature selection

» Choose features through pre-processing
» Features with maximum variance
» Use only the first k PCA components
» Examples of other useful measures
» Use a univariate criterion, e.g. F-score: Features that
correlate most with the response
» Mutual Information: Reduction in uncertainty about x
after observing y
» Variable importance: Determine variable importance with
random forests
» Summary
» Pro: Fast and easy
» Con: Filtering mostly operates on single features and is
not geared towards a certain method
» Care with cross-validation and multiple testing necessary

» Filtering is often more of a pre-processing step and less

of a proper feature selection step A



Wrapping for feature selection

>

Idea: Determine the best set of features by fitting models
of different complexity and comparing their performance
Best subset selection: Try all possible (exponentially
many) subsets of features and compare model
performance with e.g. cross-validation

Forward selection: Start with just an intercept and add in
each step the variable that improves fit the most (greedy
algorithm)

Backward selection: Start with all variables included and
then remove sequentially the one with the least impact
(greedy algorithm)

As discreet procedures, all of these methods exhibit high
variance (small changes could lead to different predictors
being selected, resulting in a potentially very different
model) 6/24



Embedding for feature selection

» Embed/include the feature selection into the model
estimation procedure
» Ideally, penalization on the number of included features

p
g= arg;nin lly — XBl13 +2 D, 1(8; #0)

j=1

However, discrete optimization problems are hard to
solve
» Softer regularisation methods can help

= arggnin lly = XBI3 + 2118llg

where 1 is a tuning parameter and g > 1 or g = oo.
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Constrained regression

The optimization problem

argmin |y — Xg||3 subjectto |8l <t
g

for g > 0 is equivalent to
B = arg;nin lly = XAII3 + 2118l

when g > 1. This is the Lagrangian of the constrained
problem.

» Clear when g > 1: Convex constraint + target function and
both are differentiable

» Harder to prove for g = 1, but possible (e.g. with
subgradients)
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Ridge regression

For g = 2 the constrained problem is ridge regression

Briage() = argl;nin lly —X8l1Z + 18113

14
where [|8]3 = X_, 5.

An analytical solution exists if XX + I, is invertible

Briage(D) = XTX + 21,)"'XTy

If XX = I, then

A

A _ ﬁOLS
Bridge(/l) - 1 +/‘l’

i.e. ,éridge(/l) is biased but has lower variance.
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SVD and ridge regression

Recall: The SVD of a matrix X € R"™*P was
X = UDVT
The analytical solution for ridge regression becomes (n > p)
Briaze(D) = (XTX +21,)"'XTy
= (VD*VT 4+ 21,)"'VDUTy
=V(D? + 11,)"'DUTy

Zd2+/1

Ridge regression acts most on principal components with
lower eigenvalues, e.g. in presence of correlation between
features.

10/24



Effective degrees of freedom

Recall the hat matrix H = X(X7X)~'XT in OLS. The trace of H
tr(H) = tr(XXTX)7'XT) = tr(XTX(XTX)™) = tr(I,) = p

is equal to the trace of £ and the degrees of freedom for the
regression coefficients.

In analogy define for ridge regression
H(1) 1= X(XTX + A1,)'x7

and R
d;

df(d) 1= tr(HQ) = ). FERE
J

j=1

the effective degrees of freedom.
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Lasso regression

For g = 1 the constrained problem is known as the lasso

Briage(D) = arg;nin lly = XBI13 + 2116l

» Smallest g in penalty such that constraint is still convex
» Performs feature selection

12/24



Intuition for the penalties (1)

Assume the OLS solution By exists and set
r=y—XBors
it follows for the residual sum of squares (RSS) that

lly — X85 = |(XBors + 1) — XBI3
= ||(X(B — Bors) — I3
= (B— Bors) " X"X(B - Bors) — 2r"X(B— Bors) +1'r

which is an ellipse (at least in 2D) centred on Bo;s.
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Intuition for the penalties (11)

The least squares RSS is minimized for B . If @ constraint is
added (||8|| < t) then the RSS is minimized by the closest g
possible that fulfills the constraint.

Lasso Ridge
By By

ﬁOLS BOLS

Blasso Bridge

B> B>

The blue lines are the contour lines for the RSS.
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Intuition for the penalties (111)

Depending on g the
different constraints
lead to different
solutions. If BoLs is
in one of the
coloured areas or
on a line, the
constrained
solution will be at
the corresponding
dot.

q:0.7 q:1
By By /
B2 B2
q:2 g: Inf
Bip Big

B2

B2
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Computational aspects of the Lasso (1)

What estimates does the lasso produce?

Target function

1
arg min 5[y = X8I + AllBl

Special case: X"X = I,. Then

1 1 1
SNy = XBI3 + MBll = 57y — yTX B+ =BTB+ AlIBll, = ¢(8)
=ﬁgLS
How do we find the solution § in presence of the

non-differentiable penalisation ||f||;?
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Computational aspects of the Lasso (II)

For X”X =1I,, the target function can be written as

p
. 1
arg min Z _ﬁOLS,j;Bj + Eﬁ]z + ALB]l
j=1

This results in p uncoupled optimization problems.

» If Bors,j > 0, then §; > 0 to minimize the target
» If Bo1s,j <0, then §; <0

Each case results in

B} = sign(Bors,j)|Bors,jl — D+ = ST(Bors,j> 1)
where

x x>0
X, =

+ = 5
0 otherwise

and ST is the soft-thresholding operator 17/24



Relation to OLS estimates

Both ridge regression and the lasso estimates can be written
as functions of Bor 5 If XX =1,,.

Bots,j ~
Bridge,j = T4 and B = sign(Bors,j)(|Bors,j

— A

Ridge Lasso

Visualisation of the transformations applied to the OLS estimates.
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Shrinkage

When 2 is fixed, the shrinkage of the lasso estimate £,..,(1)
compared to the OLS estimate By is defined as

S(/l) — ||ﬁlasso(/1)||1

lIBoslly

Note: s(1) € [0,1] with s(1) — 0 for increasing 2 and s(1) = 1 if
A=0
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A regularisation path

Prostate cancer dataset (n = 67, p = 8)
Red dashed lines indicate the 2 selected by cross-validation

Ridge Lasso
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Notes on the lasso

» In the general case, i.e. XTX # I, there is no explicit
solution.

» Numerical solution possible, e.g. with coordinate descent

» As for ridge regression, estimates are biased
» But
» Asymptotic consistency: If 1 = o(n) then B..cc = Birue fOr
n— oo
» Model selection consistency: If 1 x n/2, then there is a
non-zero probability of identifying the true model
» Degrees of freedom: The degrees of freedom are equal to
the number of non-zero coefficients
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Potential caveats of the lasso (I)

> Sparsity of the true model:
» The lasso only works if the data is generated from a
sparse process.
» However, a dense process with many variables and not
enough data or high correlation between predictors can
be unidentifiable either way

» Correlations: Many non-relevant variables correlated
with relevant variables can lead to the selection of the
wrong model, even for large n
» Irrepresentable condition: Split X such that X; contains
all relevant variables and X, contains all irrelevant
variables. If
I(XTX)IXTX) <1-79
for some 5 > 0 then the lasso is (almost) guaranteed to
pick the true model 22/24



Potential caveats of the lasso (I1)

In practice, both the sparsity of the true model and the
irrepresentable condition cannot be checked.

» Assumptions and domain knowledge have to be used

23/24



Take-home message

» Filtering and wrapping methods useful for feature
selection in practice but can be unprincipled or have high

variance
» Penalisation gives stability to regression

» The lasso performs variable selection and variance
stabilisation at the same time
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