Chapter 6: Fractional factorial designs

Petter Mostad mostad@chalmers.se

Review of factorial designs

- Goal of experiment: To find the effect on the response(s) of a set of factors
- each factor can be set by the experimenter independently of the others
- each factor is set in the experiment at one of two possible levels (- and +)
- Standard order of factors, 2^{n} design, calculation of main effects and interaction effects, table of contrasts, standard errors of effect estimates.

Example

- Given 2^{3} experimental plan, with factors A, B, C.
- Can we investigate also factor D without increasing number of experiments?
- Possibility: Give D same signs as interaction ABC.
- Then: Main effect of D estimated separately from other main effects.

A	B	C	AB
	AB		
-	-	-	C
-	-	+	+
-	+	-	+
-	+	+	-
+	-	-	+
+	-	+	-
+	+	-	-
+	+	+	+

Fractional factorial designs

- A design with factors at two levels.
- How to build: Start with full factorial design, and then introduce new factors by identifying with interaction effects of the old.
- Notation: A 2^{3-1} design, 2^{4-1} design, 2^{5-2} design, etc
- $2^{\mathrm{nm}}: \mathrm{n}$ is total number of factors, m is number of factors added identified with interaction effects.
- The number of experiments is equal to $2^{\mathrm{n}-\mathrm{m}}$

Example: Biking up a hill

- Goal of experiment: Determine how various factors influence the time it takes to bike up a hill.
- Factors: Seat Up/Down, Dynamo Off/On, Handlebars Up/Down, Gear Low/Medium, Raincoat On/Off, Breakfast On/Off, Tires Hard/Soft.
- The variance of measurements was estimated from separately collected data.
- An 8-run experiment was desired, for initial screening of factors.

Experimental plan: 2^{7-4} experiment

A	B	C	$\mathrm{D}=$	$\mathrm{E}=$	$\mathrm{F}=$	AB
AB	AC	BC	AB			
-	-	-	+	+	+	-
+	-	-	-	-	+	+
-	+	-	-	+	-	+
+	+	-	+	-	-	-
-	-	+	+	-	-	+
+	-	+	-	+	-	-
-	+	+	-	-	+	-
+	+	+	+	+	+	+

Conclusions from biking example

- Main effects are computed: Dynamo and gear large
- We saw previously how the standard deviation of the population of effect estimates (the "standard error" of the effect") could be estimated as

$$
\sqrt{\sigma^{2} / 4+\sigma^{2} / 4}
$$

where σ^{2} is the variance of the population of observations at a setting.

- In this example, repeated runs at some setting had sample standard deviation 3.
- So σ^{2} was estimated with 3^{2}, and the standard error with

$$
\sqrt{\sigma^{2} / 4+\sigma^{2} / 4}=\sqrt{3^{2} / 4+3^{2} / 4}=2.1
$$

Drawing conclusions

- Fractional factorial experiments are great for screening for factors with effect.
- Assuming factors do not interact, a rough impression of the size of effects of factors can be found quickly.
- A quick estimate of the standard error can help interpret the numbers.
- In bicycle example: Effects were 3.5, 12.0, $1.0,22.5,0.5,1.0,2.5$, with st. error 2.1.

Visualization

- A 3D cube can visualize 3 effects: Take average over other factors.

- Alternative: Visualize 4D data by splitting into two cubes, one for + or - of a fourth factor.
- Possible to visualize 5D data, and even 6D data, by splitting into smaller cubes.

What is lost when using fractional designs?

- In a 2^{3-1} design, an interaction between A and B , and an effect of C , will have same effect on data:

A	B	C
-	-	+
-	+	-
+	-	-
+	+	+

	-	+
-	2	3
+	4	14

- Also: The interaction AC is confounded with the effect of B, and the interaction BC is confounced with the effect of A.
- So, how can we keep track of what we can estimate, and what not?

Theory for fractional designs

- Formally define the multiplication AB of factors A and B by multiplying the signs at each experiment.
- The multiplication rule is associative $(\mathrm{AB}) \mathrm{C}=\mathrm{A}(\mathrm{BC})$ and commutative $\mathrm{AB}=\mathrm{BA}$
- It has an identity I consisting of + for every experiment: for any $\mathrm{A}, \mathrm{AI}=\mathrm{A}$.
- For any factor A , we have $\mathrm{AA}=\mathrm{I}$
- These rules of calculation can be used to find out which effects and interactions are identified!

Example

- 2^{3-1} design generated by A, B, and $\mathrm{C}=\mathrm{AB}$
- We get $\mathrm{ABC}=\mathrm{I}$
- Also: $\mathrm{AC}=\mathrm{B}$ and $\mathrm{BC}=\mathrm{A}$
- Conclusions:
- Main effect A confounded with interaction BC
- Main effect B confounded with interaction AC
- Main effect C confounded with interaction $A B$

Example

- 2^{4-1} design generated by $\mathrm{A}, \mathrm{B}, \mathrm{C}$, and $\mathrm{D}=\mathrm{ABC}$
- We get $\mathrm{ABCD}=\mathrm{I}$
- Also: $\mathrm{A}=\mathrm{BCD}, \mathrm{B}=\mathrm{ACD}, \mathrm{C}=\mathrm{ABD}, \mathrm{D}=\mathrm{ABC}, \mathrm{AB}=\mathrm{CD}$, $\mathrm{AC}=\mathrm{BD}$, and $\mathrm{AD}=\mathrm{BC}$.
- Conclusions:
- Main effect A confounded with interaction BCD
- Main effect B confounded with interaction ACD
- Main effect C confounded with interaction ABD
- Main effect D confounded with interaction ABC
- Interactions AB and CD confounded
- Interactions AC and BD confounded
- Interactions AD and BC confounded

Example

- 2^{4-1} design generated by $\mathrm{A}, \mathrm{B}, \mathrm{C}$, and $\mathrm{D}=\mathrm{BC}$
- We get $\mathrm{BCD}=\mathrm{I}$
- In general: $\mathrm{BC}=\mathrm{D}, \mathrm{BD}=\mathrm{C}, \mathrm{CD}=\mathrm{B}, \mathrm{ABC}=\mathrm{AD}, \mathrm{ABD}=\mathrm{AC}$, $A C D=A B, B C D=1, A B C D=A$.
- Conclusions:
- Main effect A confounded with ABCD
- Main effect B confounded with interaction CD
- Main effect C confounded with interaction BD
- Main effect D confounded with interaction BC
- Interactions ABC and AD confounded
- Interactions ABD and AC confounded
- Interactions ACD and AB confounded

Conclusions

- Different designs will have different properties and abilities to detect interactions.
- Choice of design should be made based on the context of the experiment.

Classification of designs.

- The designs above is defined by the "defining relations", like $\mathrm{ABC}=\mathrm{I}$ or $\mathrm{ABCD}=\mathrm{I}$.
- The "resolution" is the smallest set of letters in an equation identifying effects.
- It is denoted with Roman numerals:
- The three examples above can be denoted

$$
2_{I I I}^{3-1} \quad 2_{I V}^{4-1} \quad 2_{I I I}^{4-1}
$$

Example: A $2_{I I}^{5-2}$ design

- Generated by $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}=\mathrm{AB}, \mathrm{E}=\mathrm{AC}$
- Resolution: III
- 16-run
- 2-way interactions confounded by main effects: $\mathrm{AB}=\mathrm{D}, \mathrm{AC}=\mathrm{E}, \mathrm{AD}=\mathrm{B}, \mathrm{AE}=\mathrm{C}$, $\mathrm{BD}=\mathrm{A}, \mathrm{CE}=\mathrm{A}$
- 2-way interactions NOT confounded by main effects: $\mathrm{BC}, \mathrm{BE}, \mathrm{CD}, \mathrm{DE}$.

Extending designs

- Factorial expeirments are often part of explorative research.
- Next step is often to extend the experiment in a direction suggested by the data.
- Example:

Example

- A 2^{3-1} design visited before:

A	B	C
-	-	+
-	+	-
+	-	-
+	+	+

- Data indicates either a strong effect of C , or a strong interaction effect AB . Which is it?
- Run 4 more experiments, but with the sign of C switched compared to the first 4 runs.
- C and AB can now be estimated independently.

Foldovers

- You want to know more about a factor X and its interactions
- Repeat all experiments, but with sign of X switched
- You get a new design where new and old data can be analysed jointly
- To get a description of the new design: Rewrite all defining relations so that on ly one of them contains the folded factor X . Then remove that defining relation.
- Result: No interaction containing X is confounded with an interaction not containing X. Two-way interactions with X are confounded at most with other higher-order interactions with X .

Example, cont.

A	B	C		- Main effect of C: 5.5
-	-	+	2	
-	+	-	3	
+	-	-	4	ffect
+	+	+	14	-1
-	-	-	3	- Note: This is a
-	+	+	10	standard 2^{3} design,
+	-	+	7	en if rows are
+	+	-	1	permuted

Repeated fractional factorial designs

- Generally, defeats purpose of fractional design
- When some factors are "declared inert", we can get a repeated design by reinterpreting the data.
- Once this is true, we can use some of the extra degrees of freedom to estimate variance, and find standard errors of effect estimates.
- May be better to get variance estimates from separate experiments.

