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1 Introduction

� Parameter value θ ∈ Θ, where Θ is the parameter space.

� Sample X1, . . . , Xn independently drawn according to pdf fi(x|theta) which may be different for
the different Xi.

� Observed data x1, . . . , xn

I will use notation X̃,X or Xn to denote the whole sample, and x̃, x, xn for the set of observed values.
Note, X and x can also refer to a single random variable or observation, but hopefully the distinction
will be clear from the context.

Parametric model: F = {f(x̃|θ), θ ∈ Θ}
If θ is also allowed to have a distribution π(θ) we are Bayesian, o/w Frequentist.
In both cases, observed data is an instance of something that could be repeated under identical

conditions.

� Statistics computed from the observed data x̃ are used for inference about the parameter θ (or
its credible values if you’re Bayesian).

� x̃→ T (x̃)→ θ̂ → [θ̂±1.96se(θ̂)] covers true θ with probability .95 (in 95% of repeated experiments)

A lot goes into getting θ̂, its standard error and the appropriate form of the confidence interval as
we shall see.

� If you’re Bayesian, inherent uncertainty/varability in the world, prior belief π(θ)
observed data used to update the prior to posterior π(θ|x̃) from which credible region (smallest
interval with mass 95%) can be constructed.

2 Sufficiency

Before we can get this far, we go over some basics.
The sample X̃ (in Frequentist settings) carries all the information about θ but constitute, perhaps,

an inefficient way of summarizing this information. A statistic T (X̃) is a form of data reduction.

Sufficiency Principle: T (X̃) is sufficient for θ if any information in X̃ about θ depends on X̃ only

through T (X̃).
It follows that the conditional distribution X|T (X) does no depend on θ.
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Under the sufficiency principle, T (X̃) is such that no information about θ has been lost by the data
reduction.

How can we see that a T (X̃) is sufficient?

� compute the conditional distribution Pθ(X = x|T (X) = t) and check it is the same for all θ (Puh!)

� Factorization theorem

Factorization Theorem: For f(x|θ) pdf of X, T (X) is sufficient iff there are functions g(t|θ) and
h(x) for all x and values of θ such that

f(x̃|θ) = g(T (x̃)|θ)h(x̃)

Example: X1, . . . , Xn with fXi
(x|θ) = eiθ−x1{x ≥ iθ}.

Then f(x̃|θ) =
∏n
i=1 e

iθe−xi1{xi/i ≥ θ} =
∏n
i=1 e

iθe−xi1{mini xi/i ≥ θ} =

e−
∑

xie
∑

iθ1{T (x̃) ≥ θ}, where T (x̃) = mini xi = x(1)

Note, in the multiple parameter case, we may need more than one summary statistic T (X) =
(T1(X), T2(X), . . . , Tr(X)) for θ = (θ1, . . . , θs). Typically, r = s but we may have r > s in some
cases.

3 Minimal sufficiency

There may be many different T that are sufficient for θ. We call T a minimally sufficient statistic (MSS)
if for any other sufficient statistic T ′, T is a function of T ′. The MSS T is the coarsest possible data
summary that doesn’t constitute information loss about θ.

Minimally sufficient statistic: T is MSS if any other sufficient statistic T ′, T is a function of T ′.

Using the above definition is not that easy, but a theorem by Lehmann and Scheffe’ makes it very
easy indeed to check for MSS.

Lehmann Scheffe’: Suppose there is a T (x̃) such that for x̃ and ỹ (observations) f(x̃|θ)
f(ỹ|θ) is constant,

independent of θ iff T (x̃) = T (ỹ). Then T (x̃) is MSS for θ.

Example: A hierarchical model. First draw N from a distribution P (N = n) = pn,
∑
k pk = 1. Observ-

ing N = n, draw n samples from Be(θ) and let the sum of these be denoted by X.

f(x̃, n|θ)
f(ỹ, n′|θ)

=
f(x̃|n, θ)pn
f(ỹ|n′, θ)pn′

=

(
n
x

)
θx(1− θ)n−xpn(

n′

y

)
θy(1− θ)n′−ypn′

= θx−y(1− θ)n−n
′−x+y

(
n
x

)
pn(

n′

y

)
pn′

In the last expression, the ratio term does not depend on θ. The first two terms do not depend on θ if
x = y and n = n′ and so X,N are the MSS for θ in this case.

Look at the above example carefully? Is it not strange that N should features as a MSS for θ? N
does not depend on θ. That is P (N = n) = pn is not a function of θ.

4 Ancillary statistics

A statistic S(X) that does not depend on θ (i.e. P(S(X)=s) not a function of θ, or its pdf is not a function
of θ is called an Ancillary statistic.
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Ancillary Statistic: If S(X) is such that its distribution does not depend on θ we call it ancillary.
(Ancillary: supplemental or extra).

So, in the above example N is ancillary, and alone does not carry any information about θ. However,
together with X it provides sufficient information for θ. This tells us we have to be careful about making
snap judgements about what part of the data is needed for estimating θ.

It’s even more complicated that this. We can have T , a sufficient statistic, and S, an ancillary, and
have T and S dependent on each other! This feels rather counterintuitive since T is the part of the data
related to θ and S is not. However, for ”nice” distribution families our intuition tends to be correct: S
and T are not dependent (more later).

Examples:

� X ∼ N(µ, σ2). f(x|µ,σ2)
f(y|µ,σ2) = exp[ 1

2σ2 (−n(x̄2 − ȳ2) + 2nµ(x̄− ȳ)− (n− 1)(s2x − s2y))]

This ratio does not depend on µ and σ2 if x̄ = ȳ, s2x = s2y (or equivalently
∑
x =

∑
y and∑

x2 =
∑
y2).

MSS: (X̄, S2
X) or (

∑
X,
∑
X2)

One can show that S2 does not depend on µ (in fact is distributed σ2/(n − 1)χ2
n−1) and is inde-

pendent of µ.

� n samples, X ∼ U [θ, θ + 1]. f(x|θ) = 1{θ < xi < θ + 1} = 1{maxi xi − 1 < θ < mini xi}.
MSS is obtained from ratio f(x|θ)/f(y|θ) and is thus (X(1), X(n)).
However, any change of variables (one-to-one map) is also a MSS: e.g. (X(n) − X(1), (X(1) +
X(n))/2) = (R,M), the range and mean.
One can show that the range, R is ancillary (intuitive also since the support of f is fixed length 1).
So, alone, the range does not carry any information about θ, but together with the mean value,
M , it provides information.

� X̃ consists of 2 samples from f(x|θ) = 1/3 for x = θ, θ + 1, θ + 2, θ an integer.
Consider all possibilities. There are 9 cases, each equally likely.

x1/x2 θ θ + 1 θ + 2

θ R = 0,M = θ R = 1,M = θ + .5 R = 2,M = θ + 1
θ + 1 R = 1,M = θ + .5 R = 0,M = θ R = 1,M = θ + 1.5
θ + 2 R = 2,M = θ + 1 R = 1,M = θ + 1.5 R = 0,M = θ + 2

The distribution for R does not depend on θ and so is ancillary.
Let’s say we are given an observed value for M = m, m integer valued. Then, we know that
θ = m,m − 1 or m − 2 with relative probability 1/5, 3/5, 1/5. However, if we also find out that
R = 2, then we know that θ = m − 1. So, while R is ancillary, together with M it resolved the
value of θ.

5 Completeness, Exponential families

Often, T and S are independent and so estimation can focus on θ (but as we shall see later, interval
estimation or testing will perhaps use S nonetheless).

When are T and S independent? When T is MSS and complete.
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Completeness: f(t|θ) is a complete family of pdf’s for statistic T (X). If Eθ[g(T )] = 0 for all θ
implies g(T ) = 0 for all θ, then T (X) is a complete statistic (and vice versa).

Basu’s theorem: If T (X) is MSS and complete, then T (X) is independent of every ancillary statistic
S(X).

Proof: If S(X) is ancillary, then P (S(x) = s) is not a function of θ.
Also, P (S(X) = s|T (X) = t) is not a function of θ by the definition that T is a sufficient statistic.
We need only show that P (S(X) = s|T (X) = t) = P (S(X) = s) for all t (showing S and T are indepen-
dent).

We have
(a) P (S(X) = s) =

∑
t∈T P (S(X) = s|T (X) = t)Pθ(T (X) = t) (definition of marginal probability)

(b) but also sumt∈TPθ(T (X) = t) = 1 and so P (S(X) = s) =
∑
t∈T P (S(X) = s)Pθ(T (X) = t)

(c) Define g(t) = P (S(X) = s|T (X) = t)− P (S(X) = s) and take (a)-(b): we have

0 = Eθg(T ) =
∑
t∈T

g(t)Pθ(T (X) = t), for all θ

but since T is complete this means that g(t) = 0 and so P (S(X) = s|T (X) = t)− P (S(X) = s). QED.

It is not very easy to show completeness. Is it important? It is a technicality that ensures uniqueness
in estimation. Luckily, it’s established for f(x|θ) in the exponential family distribution.

Exponential family: If Xi iid f(x|θ) where

f(x|θ) = h(x)c(θ)exp[w(θ)t(x)]

then T (X̃) =
∑n
i=1 t(Xi) is complete.

For multiple parameters, θ = (θ1, . . . , θr):

f(x|θ) = h(x)c(θ)exp[

k∑
j=1

wj(θ)tk(x)]

Examples

� X ∼ N(µ, σ2), assume σ2 is fixed.
Then

f(x|µ, σ2) = exp(µx/σ2)exp(−µ2/2σ2 + x2/2σ2 + log(2πsigma2)/2)

and so t(x) = x, T (X̃) =
∑
Xi.

� 2 parameter case.

f(x|µ, σ2) = exp(
µ

σ2
x− 1

σ2
x2)exp(

−µ
2σ2

+ log(2πσ2))

and so t1(x) = x, t2(x) = x2. T1(X) =
∑
iXi, T2(X) =

∑
iX

2
i .

1-1 map: alternative (T1(X) = X̄, T2(X) = S2).
Note, S2 is ancillary for µ and from the above we thus have that S and T (X) = X̄ are independent.

� f(x|θ) = (θ/2)|x|(1− θ)(1−|x|), x ∈ −1, 0, 1, 0 ≤ θ ≤ 1.
X is a sufficient statistic since it is the data. However, it is not complete.
E[g(X)] = g(−1)θ/2 + g(0)(1− θ) + g(1)θ/2 = 0 requires g(0) = 0, g(1) = −g(−1) which does not
mean that g(t) = 0 for all values t.
However, change of variables to Y = |X|, f(y|θ) = θy(1− θ)1−y, for y ∈ 0, 1.
E[g(Y )] = g(1)θ + g(0)(1− θ) = 0 only if g(0) = g(1) = 0 so |X| is complete.
Note also that f(x|θ) = exp[|x|log(θ/(2(1 − θ)))](1 − θ), an exponential family with t(x) = |x| so
T (X) = |X| complete.
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� f(x|θ) = θxθ−1, 0 < x < 1 and θ > 0.
f(x̃|θ) =

∏n
i=1 θx

θ−1
i = θn(

∏n
i=1 xi)

θ−1 and so
∏
iXi is sufficient (not

∑
iXi as we often expect).

f(x|θ) = exp[(θ − 1)log(x) + log(θ)] is an exponential family, t(x) = log(x) and so T (X) =∑
i log(Xi) = log(

∏
iXi) and as log is 1-1 in 0 < x < 1 it follows that

∏
iXi is complete.
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