MSF100 Statistical Inference Principles - Lecture 1

Rebecka Jörnsten

Mathematical Statistics University of Gothenburg/Chalmers University of Technology

January 16, 2012

1 Introduction

- **Parameter** value $\theta \in \Theta$, where Θ is the parameter space.
- Sample X_1, \ldots, X_n independently drawn according to pdf $f_i(x|theta)$ which may be different for the different X_i .
- **Observed** data x_1, \ldots, x_n

I will use notation \tilde{X}, X or X^n to denote the whole sample, and \tilde{x}, x, x^n for the set of observed values. Note, X and x can also refer to a single random variable or observation, but hopefully the distinction will be clear from the context.

Parametric model: $F = \{f(\tilde{x}|\theta), \theta \in \Theta\}$

If θ is also allowed to have a distribution $\pi(\theta)$ we are *Bayesian*, o/w *Frequentist*.

In both cases, observed data is an instance of something that could be repeated under identical conditions.

- Statistics computed from the observed data \tilde{x} are used for inference about the parameter θ (or its credible values if you're Bayesian).
- $\tilde{x} \to T(\tilde{x}) \to \hat{\theta} \to [\hat{\theta} \pm 1.96se(\hat{\theta})]$ covers true θ with probability .95 (in 95% of repeated experiments) A lot goes into getting $\hat{\theta}$, its standard error and the appropriate form of the confidence interval as we shall see.
- If you're Bayesian, inherent uncertainty/varability in the world, prior belief $\pi(\theta)$ observed data used to *update* the prior to posterior $\pi(\theta|\tilde{x})$ from which credible region (smallest interval with mass 95%) can be constructed.

2 Sufficiency

Before we can get this far, we go over some basics.

The sample X (in Frequentist settings) carries all the information about θ but constitute, perhaps, an inefficient way of summarizing this information. A **statistic** $T(\tilde{X})$ is a form of *data reduction*.

Sufficiency Principle: $T(\tilde{X})$ is sufficient for θ if any information in \tilde{X} about θ depends on \tilde{X} only through $T(\tilde{X})$.

It follows that the conditional distribution X|T(X) does no depend on θ .

Under the sufficiency principle, $T(\tilde{X})$ is such that no information about θ has been lost by the data reduction.

How can we see that a $T(\tilde{X})$ is sufficient?

- compute the conditional distribution $P_{\theta}(X = x | T(X) = t)$ and check it is the same for all θ (Puh!)
- Factorization theorem

<u>Factorization Theorem</u>: For $f(x|\theta)$ pdf of X, T(X) is sufficient iff there are functions $g(t|\theta)$ and h(x) for all x and values of θ such that

$$f(\tilde{x}|\theta) = g(T(\tilde{x})|\theta)h(\tilde{x})$$

Example: X_1, \ldots, X_n with $f_{X_i}(x|\theta) = e^{i\theta - x_1} \{x \ge i\theta\}$. Then $f(\tilde{x}|\theta) = \prod_{i=1}^n e^{i\theta} e^{-x_i} \mathbb{1}\{x_i/i \ge \theta\} = \prod_{i=1}^n e^{i\theta} e^{-x_i} \mathbb{1}\{\min_i x_i/i \ge \theta\} = e^{-\sum x_i} e^{\sum i\theta} \mathbb{1}\{T(\tilde{x}) \ge \theta\}$, where $T(\tilde{x}) = \min_i x_i = x_{(1)}$

Note, in the multiple parameter case, we may need more than one summary statistic $T(X) = (T_1(X), T_2(X), \ldots, T_r(X))$ for $\theta = (\theta_1, \ldots, \theta_s)$. Typically, r = s but we may have r > s in some cases.

3 Minimal sufficiency

There may be many different T that are sufficient for θ . We call T a minimally sufficient statistic (MSS) if for any other sufficient statistic T', T is a function of T'. The MSS T is the coarsest possible data summary that doesn't constitute information loss about θ .

Minimally sufficient statistic: T is MSS if any other sufficient statistic T', T is a function of T'.

Using the above definition is not that easy, but a theorem by Lehmann and Scheffe' makes it very easy indeed to check for MSS.

Lehmann Scheffe': Suppose there is a $T(\tilde{x})$ such that for \tilde{x} and \tilde{y} (observations) $\frac{f(\tilde{x}|\theta)}{f(\tilde{y}|\theta)}$ is constant, independent of θ iff $T(\tilde{x}) = T(\tilde{y})$. Then $T(\tilde{x})$ is MSS for θ .

Example: A hierarchical model. First draw N from a distribution $P(N = n) = p_n$, $\sum_k p_k = 1$. Observing N = n, draw n samples from $Be(\theta)$ and let the sum of these be denoted by X.

$$\frac{f(\tilde{x},n|\theta)}{f(\tilde{y},n'|\theta)} = \frac{f(\tilde{x}|n,\theta)p_n}{f(\tilde{y}|n',\theta)p_{n'}} = \frac{\binom{n}{x}\theta^x(1-\theta)^{n-x}p_n}{\binom{n}{y}\theta^y(1-\theta)^{n'-y}p_{n'}} = \theta^{x-y}(1-\theta)^{n-n'-x+y}\frac{\binom{n}{x}p_n}{\binom{n'}{y}p_{n'}}$$

In the last expression, the ratio term does not depend on θ . The first two terms do not depend on θ if x = y and n = n' and so X, N are the MSS for θ in this case.

Look at the above example carefully? Is it not strange that N should features as a MSS for θ ? N does not depend on θ . That is $P(N = n) = p_n$ is not a function of θ .

4 Ancillary statistics

A statistic S(X) that does not depend on θ (i.e. P(S(X)=s) not a function of θ , or its pdf is not a function of θ is called an **Ancillary statistic**.

Ancillary Statistic: If S(X) is such that its distribution does not depend on θ we call it ancillary. (Ancillary: supplemental or extra).

So, in the above example N is ancillary, and alone does not carry any information about θ . However, together with X it provides sufficient information for θ . This tells us we have to be careful about making snap judgements about what part of the data is needed for estimating θ .

It's even more complicated that this. We can have T, a sufficient statistic, and S, an ancillary, and have T and S dependent on each other! This feels rather counterintuitive since T is the part of the data related to θ and S is not. However, for "nice" distribution families our intuition tends to be correct: S and T are not dependent (more later).

Examples:

- $X \sim N(\mu, \sigma^2)$. $\frac{f(x|\mu, \sigma^2)}{f(y|\mu, \sigma^2)} = exp[\frac{1}{2\sigma^2}(-n(\bar{x}^2 \bar{y}^2) + 2n\mu(\bar{x} \bar{y}) (n-1)(s_x^2 s_y^2))]$ This ratio does not depend on μ and σ^2 if $\bar{x} = \bar{y}$, $s_x^2 = s_y^2$ (or equivalently $\sum x = \sum y$ and $\sum x^2 = \sum y^2$). MSS: (\bar{X}, S_X^2) or $(\sum X, \sum X^2)$ One can show that S^2 does not depend on μ (in fact is distributed $\sigma^2/(n-1)\chi_{n-1}^2$) and is independent of μ .
- n samples, $X \sim U[\theta, \theta + 1]$. $f(x|\theta) = 1\{\theta < x_i < \theta + 1\} = 1\{\max_i x_i 1 < \theta < \min_i x_i\}$. MSS is obtained from ratio $f(x|\theta)/f(y|\theta)$ and is thus $(X_{(1)}, X_{(n)})$. However, any change of variables (one-to-one map) is also a MSS: e.g. $(X_{(n)} - X_{(1)}, (X_{(1)} + X_{(n)})/2) = (R, M)$, the range and mean. One can show that the range, R is ancillary (intuitive also since the support of f is fixed length 1). So, alone, the range does not carry any information about θ , but together with the mean value, M, it provides information.
- \tilde{X} consists of 2 samples from $f(x|\theta) = 1/3$ for $x = \theta, \theta + 1, \theta + 2, \theta$ an integer. Consider all possibilities. There are 9 cases, each equally likely.

x_1/x_2	θ	$\theta + 1$	$\theta + 2$
θ	$R = 0, M = \theta$	$R = 1, M = \theta + .5$	$R = 2, M = \theta + 1$
$\theta + 1$	$R = 1, M = \theta + .5$	$R = 0, M = \theta$	$R = 1, M = \theta + 1.5$
$\theta + 2$	$R = 2, M = \theta + 1$	$R = 1, M = \theta + 1.5$	$R = 0, M = \theta + 2$

The distribution for R does not depend on θ and so is ancillary.

Let's say we are given an observed value for M = m, m integer valued. Then, we know that $\theta = m, m - 1$ or m - 2 with relative probability 1/5, 3/5, 1/5. However, if we also find out that R = 2, then we know that $\theta = m - 1$. So, while R is ancillary, together with M it resolved the value of θ .

5 Completeness, Exponential families

Often, T and S are independent and so estimation can focus on θ (but as we shall see later, interval estimation or testing will perhaps use S nonetheless).

When are T and S independent? When T is MSS and *complete*.

Completeness: $f(t|\theta)$ is a complete family of pdf's for statistic T(X). If $E_{\theta}[g(T)] = 0$ for all θ implies g(T) = 0 for all θ , then T(X) is a complete statistic (and vice versa).

<u>B</u>asu's theorem: If T(X) is MSS and complete, then T(X) is independent of every ancillary statistic S(X).

Proof: If S(X) is ancillary, then P(S(x) = s) is not a function of θ . Also, P(S(X) = s | T(X) = t) is not a function of θ by the definition that T is a sufficient statistic. We need only show that P(S(X) = s | T(X) = t) = P(S(X) = s) for all t (showing S and T are independent).

We have

(a) $P(S(X) = s) = \sum_{t \in T} P(S(X) = s | T(X) = t) P_{\theta}(T(X) = t)$ (definition of marginal probability) (b) but also $sum_{t \in T} P_{\theta}(T(X) = t) = 1$ and so $P(S(X) = s) = \sum_{t \in T} P(S(X) = s) P_{\theta}(T(X) = t)$ (c) Define g(t) = P(S(X) = s | T(X) = t) - P(S(X) = s) and take (a)-(b): we have

$$0 = E_{\theta}g(T) = \sum_{t \in T} g(t)P_{\theta}(T(X) = t), for all \theta$$

but since T is complete this means that g(t) = 0 and so P(S(X) = s|T(X) = t) - P(S(X) = s). QED.

It is not very easy to show completeness. Is it important? It is a technicality that ensures uniqueness in estimation. Luckily, it's established for $f(x|\theta)$ in the exponential family distribution.

Exponential family: If X_i iid $f(x|\theta)$ where

$$f(x|\theta) = h(x)c(\theta)exp[w(\theta)t(x)]$$

then $T(\tilde{X}) = \sum_{i=1}^{n} t(X_i)$ is complete. For multiple parameters, $\theta = (\theta_1, \dots, \theta_r)$:

$$f(x|\theta) = h(x)c(\theta)exp[\sum_{j=1}^{k} w_j(\theta)t_k(x)]$$

Examples

• $X \sim N(\mu, \sigma^2)$, assume σ^2 is fixed. Then

$$f(x|\mu,\sigma^2) = exp(\mu x/\sigma^2)exp(-\mu^2/2\sigma^2 + x^2/2\sigma^2 + \log(2\pi sigma^2)/2)$$

and so t(x) = x, $T(X) = \sum X_i$.

• 2 parameter case.

$$f(x|\mu,\sigma^2) = exp(\frac{\mu}{\sigma^2}x - \frac{1}{\sigma^2}x^2)exp(\frac{-\mu}{2\sigma^2} + \log(2\pi\sigma^2))$$

and so $t_1(x) = x, t_2(x) = x^2$. $T_1(X) = \sum_i X_i, T_2(X) = \sum_i X_i^2$. 1-1 map: alternative $(T_1(X) = \overline{X}, T_2(X) = S^2)$. Note, S^2 is ancillary for μ and from the above we thus have that S and $T(X) = \overline{X}$ are independent.

• $f(x|\theta) = (\theta/2)^{|x|}(1-\theta)^{(1-|x|)}, x \in -1, 0, 1, 0 \leq \theta \leq 1.$ X is a sufficient statistic since it is the data. However, it is not complete. $E[g(X)] = g(-1)\theta/2 + g(0)(1-\theta) + g(1)\theta/2 = 0$ requires g(0) = 0, g(1) = -g(-1) which does not mean that g(t) = 0 for all values t. However, change of variables to $Y = |X|, f(y|\theta) = \theta^y(1-\theta)^{1-y}$, for $y \in 0, 1$. $E[g(Y)] = g(1)\theta + g(0)(1-\theta) = 0$ only if g(0) = g(1) = 0 so |X| is complete. Note also that $f(x|\theta) = exp[|x|log(\theta/(2(1-\theta)))](1-\theta)$, an exponential family with t(x) = |x| so T(X) = |X| complete. • $f(x|\theta) = \theta x^{\theta-1}, \ 0 < x < 1 \text{ and } \theta > 0.$ $f(\tilde{x}|\theta) = \prod_{i=1}^{n} \theta x_i^{\theta-1} = \theta^n (\prod_{i=1}^{n} x_i)^{\theta-1} \text{ and so } \prod_i X_i \text{ is sufficient (not } \sum_i X_i \text{ as we often expect).}$ $f(x|\theta) = exp[(\theta - 1)log(x) + log(\theta)] \text{ is an exponential family, } t(x) = log(x) \text{ and so } T(X) = \sum_i log(X_i) = log(\prod_i X_i) \text{ and as log is 1-1 in } 0 < x < 1 \text{ it follows that } \prod_i X_i \text{ is complete.}$