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1 EM algorithm

� When direct maximization of the likelihood is difficult

� Look for augmentation/additional data, to make the problem easy.

Example:

� observed data yi, i = 1, · · · , n from a mixture of densities fk, k = 1, · · · ,K, fk(y|θk)

� Estimating θk and the mixture proportions is difficult, f(ỹ) =
∏n
i=1

∑K
k=1 πkfy(y|θk)

� However, if I knew which yi belonged to which mixture component fk, the problem is easy:

θ̂k = argmaxθ
∏
i∈k

fk(yi|θk)

π̂k =
∑
i

1{i ∈ k}

� augmentation = group or mixture memberships

Augmentation doesn’t have to be of the form of additional data, though it frequently is. The aug-
mentation has to be of the form

Θ→ X → Y

where X is the augmented data and Y is the observed. That is, we have a Markov dependency such
that p(y|x, θ) = p(y|x). Common forms of X are X : Y = T (X) (so the observed is some summary or
truncation of X) or X = (Z, Y ) where Z is called the hidden or latent component of the data.

� We want to maximize l(θ|ỹ) =
∏n
i=1 p(yi|θ), HARD.

� Complete data X = (Z, y)

� Idea: a two-step process. ”Guess” the Z and use it as if it was true to maximize the likelihood of
the complete data.

1.1 The algorithm

1. Starting value θ0

2. E-step Compute the expectation of the complete likelihood conditioned on observed data ỹ and a
current estimate θm

3. M-step Maximize this expectation wrt θ

4. Iterate until convergence.
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Example:

� yi from f1 and f2 densities (special case with 2 mixtures).

� Zi = 1 if yi belongs to component f1 and 0 otherwise (augmentation).

� Observed likelihood
∏
i

∑2
k=1 πkfk(yi|θk)

� Complete likelihood

L(X) = f(ỹ, Z̃) =
∏
i

K∏
k=1

(πkfk(yi|θk))1{Zi = k}

� Note, now the likelihood is a more simple form, just products.

�

l(X) =
∑
i

1{Zi = 1}(log(π1) + log f1(yi|θ1)) + (1− 1{Zi = 1})(log(1− π1) + log f2(yi|θ2))

� Compute the expectation
E[l(X)|ỹ, πm, θm] =

=
∑
i

P (Zi = 1|ỹ, πm, θm)(log(π1)+log f1(yi|θ1))+(1−P (Zi = 1|ỹ, πm, θm))(log(1−π1)+log f2(yi|θ2))

using previous estimate πm = (π1)m and θm = (θm1 , θ
m
2 )

� Now,

P (Zi = 1|ỹ, πm, θm) =
πm1 f1(yi|θm1 )

πm1 f1(yi|θm1 ) + (1− πm1 )f2(yi|θm2 )
= πm+1

1 (i)

This quantity: πm+1
1 (i) is the posterior probability that observation i belongs to the component

f1, i.e. it is an observation level mixture probability as opposed to the π1 which is the population
parameter, the proportion of samples yi that came from the component f1.

� Given the expression for πm+1
1 (i) we now maximize the expected value ∗ = E[l(X)|ỹ, πm, θm] above

wrt to π1 and θk.

� First, taking the derivative wrt π1 we obtain

d∗
dπ

=
∑
i

πm+1
1 (i)π−1 +

∑
i

−(1− πm+1
1 )(1− π)−1 = 0

and solving for π1:

πm+1
1 =

n∑
i=1

πm+1
1 (i)/n = ”n1”/n

where we use n1 to denote the total posterior probability mass in component 1 as representing an
estimate of the number of samples from this component.

� Similarly, we obtain estimate for θk as

θm+1
k = argmaxθk

n∑
i=1

πm+1
k (i)fk(yi|θk)

� Notice that all observations contribute to both components weighted by their posterior probability
mass.

� An alternative called the CEM (classification EM) uses a threshold on πm+1
k (i) such that obser-

vations contribute only to the component that they have maximum probability wrt to. This is
tantamount to replacing the E-step with a MaP step
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1.2 General formulation

We want the MLE θ∗ = argmaxθL(θ|ỹ) but this is hard to obtain. We augment the data X = (Z, y) s.t.
θ → X → y holds (Markov) and thus p(x|θ) = p(y|z, θ)p(z|θ) or p(y|x, θ) = p(y|x).

We start with value θ0 and compute the E-step:

� E-step Compute

Q(θ, θm) = E[log
f(y, Z|θ)
f(y, Z|θm)

|y, θm]

(note, use of the relative loglikelihood in the expectation)

� M-step View Q(θ, θm) as a function of θ with θm fixed and maximize to obtain

θm+1 = argmaxθQ(θ, θm)

The point is that if we choose Z carefully, the Mstep has closed form/is easy to compute.

Why does this work? Well, we want to maximize l(θ|y). We can write

l(θ|y) = log p(y|θ) = log

∫
X(y)

p(x, y|θ)dx = (∗∗)

where X(y) refers to x-values for which the joint density p(x, y|θ) is defined.
Now,

(∗∗) = log

∫
X(y)

p(x, y|θ)
p(x|y, θm)

p(x|y, θm)dx = logEX|y,θm [
p(X, y|θ)
p(X|y, θm)

] = (∗ ∗ ∗)

By Jensen’s inequality we have

(∗ ∗ ∗) ≥ EX|y,θm [log
p(X, y|θ)
p(X|y, θm)

] = EX|y,θm [log
p(X|θ)p(y|θ)

p(X|θm)p(y|X)/p(y|θm)
] = (o)

where the last expression follows from the Markov property of X and y and Bayes theorem. This
simplifies to

(o) = EX|y,θm [log
p(X|θ)p(y|θm)

p(X|θm)
] = EX|y,θm [log p(X|θ)]− EX|y,θm [log p(X|θm)] + log p(y|θm) =

= Q(θ|θm)−Q(θm|θm) + l(θm)

Now, since we maximize the Q function in each iteration of the EM algorithm, we have Q(θ|θm) −
Q(θm|θm) ≥ 0 and so

l(θ) ≥ l(θm)

That is, the EM steps are guaranteed to not decrease the likelihood at least. Another way to interpret
the above result and what the EM does is to think of the Q function as a function of the iteration step
m as better and better lower bounds of the loglikelihood that we want to estimate.

1.3 Convergence

We have that the EM always generates a nondecreasing sequence of loglikelihood values. Using the
”imputed” likelihood Q has the following property:
Given θ → X → y, if Q(θ|θm) ≥ Q(θm|θm) then l(θ) ≥ l(θm). Now, no general convergence result
exists for EM since the behaviour of the sequence {θm} depends on both l, Q and the starting value.
However, there are some results that show, under certain regularity conditions, that EM converges to a
stationary point of l(θ). It is therefore important to try different starting values. Convergence can also
be rather slow, slower than e.g. Newton-Rhapson, but the benefit is that the M-step usually is a very
simple, closed form. If you are curious about convergence results for EM I recommend the paper by Jeff
Wu (’83) though it heavy on optimization.
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1.4 Practical considerations

Besides the convergence issues and multiple starting points you need also to worry about nonrobustness
in the M-step. This frequently happens in e.g. mixture modeling where essentially one or more of the
components have very little probability mass and the corresponding mixture parameters are poorly
estimated. One can incorporate priors into EM to deal with this problem. The prior enters in the Mstep
as

argmaxθQ(θ|θm) + log π(θ)

In multivariate gaussian mixture modeling, we commonly use a prior that ”shrinks” the covariance esti-
mate Σk toward a global value ∆. That is,

πm+1
k =

n∑
i=1

πmk (i)/n, nk =

n∑
i=1

πmk (i)

µm+1
k =

n∑
i=1

πmk (i)xi/nk

Σm+1
k =

1

nk

n∑
i=1

πm+1
k (i)(xi − µm+1

k )(xi − µm+1
k ) + ν∆

The ν is a tuning parameter (controlled by the shape of the prior - how focused it is around ∆.). A
common choice for ∆ is a scaled version of the covariance of y - i.e. estimated covariance from the data
ignoring that mixture components are present. If you are interested in mixture modeling I recommend
you check out the book by G. J. McLachlan. For papers on mixture modeling and Bayesian estimates,
check out e.g. Adrian Raftery’s homepage (U. Washington).
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