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1 Simulation based inference

You already looked at this when you read about bootstrap. Bootstrap was a way of drawing inference
based on repeated sampling from an estimate of the underlying true distribution function F . The esti-
mate most commonly used is the empirical cdf, in which case inference is based on multiple data sets
generated by resampling data from the original data set, with replacement.

Here we will talk about simulation based inference for Bayesian modeling. Now, frequentist methods
may not perform so well if the sample size is limited and the model complex. Moreover, perhaps you
have a good idea of likely values for θ and would like to take this prior belief into account? We have:

� prior π(θ)

� data distribution f(y|θ)

� posterior p(θ|y).

The posterior is used for Bayesian inference. It can be written as

p(θ|y) =
π(θ)f(y|θ)∫
f(y|θ)π(θ)dθ

where the integral in the denominator can be quite difficult to compute analytically. Even numerical
integration can be hard in e.g. cases with high-dimensional θ. What can we do?

1.1 Monte Carlo Integration

The Bayesian inference involves intergrals of some kind with respect to the posterior p(θ|y). For example:

�

∫
θp(θ|y)dθ is the posterior mean

�

∫ b
a
p(θ|y)dθ relates to credible regions

In general, we need to compute integrals of the kind∫
h(θ)p(θ|y)dθ

for functions h(). Instead of direct computation, assume we could sample from p(θ|y): constructing a
sequence of values θ1, θ2, · · · , θM drawn from p(θ|y). Then, by the LLN we have that

1

M

∑
m

h(θm)→
∫
h(θ)p(θ|y)dθ

Hang on - the point is we don’t have p(θ|y), so how did this help. Well, it turns out that sampling
from p(θ|y) to be able to compute sample means or expectation does not require us to have the whole
posterior, only relative values of it (the numerator!). How this works is by clever sampling schemes that
generate a Markov Chain of θ-values whose stationary distribution is the posterior (more later). Let’s
first briefly say something about various sampling approaches:
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� Rejection based: Let’s say you sample θ from q(θ). If the resulting θ is unlikely to have come from
p(θ|y) you reject it, otherwise use it sample mean computations.

� Importance based: Sample θ from q(θ). In the sample computation, reweigh the samples according
to p(θ)/q(θ). That is, θ that are likely under p contribute more to the sample mean calculation
than other samples.

� Marginal (one-dimensional) sampling: Systematically update θ one component at a time by sam-
pling from the marginal conditional posterior p(θi|θ−1|y), i.e. condition on all other components of
θ. This marginal conditional posterior may have a much more simple form than the joint posterior.

All of these schemes generate a Markov chain of updates θm and one can show that under some
restrictions on how you sample (e.g. form of q), this Markov chain converges and its stationary distribution
is the posterior!!! This is a very important result. The construction of sampling schemes above are not
so difficult, but the end-result something that looked intractable. This Markov Chain Monte Carlo
(MCMC) was a huge hot topic in the 90’s and lead to a revolution for Bayesian statistics.

1.2 The Gibbs sampler

To simplify the process of sampling from the multi-dimensional posterior, Gibbs sampling iterates over
a systematic sampling over one-dimensional posteriors: one component of the parameter vector Θ at at
time. That is, the algorithm is

� for m = m+ 1 until convergence do:

– for component i = 1, · · · , p do

– draw sample from θmi ∼ P (θi|θmj , j 6= i, y)

Of course, you can do this updating in a more random fashion. In addition, you can make the updating
parallel if there are disjoint sets of θ given other sets (convenient for e.g. image processing).

Example:

� Change-point example.

� yi ∼ Poi(λ1) for i = 1, · · · ,M and yi ∼ Poi(λ2) for i = M + 1, · · · , n.

� We want to estimate both the location of, M , of the change of behaviour of the data, and the local
behaviour statistics λ1 and λ2.

� Bayesian method: assume a prior for each Poisson intensity parameter λj as Gamma(αj , βj).

� Assume a uniform distribution for M on the {1, n}.

� The data likelihood is

l(y) =

M∏
i=1

e−λ1λyi1
yi!

n∏
i=M+1

e−λ2λyi2
yi!

� Add the prior and construct the joint distibution

joint

M∏
i=1

e−λ1λyi1
yi!

n∏
i=M+1

e−λ2λyi2
yi!

1

Γ(α1)
λα1−1
1 βα1

1 e−β1λ1
1

Γ(α2)
λα2−1
2 βα2

2 e−β2λ2

The posterior is proportional to the joint. Collect the terms of interest to find that:

posterior ∝ λ
α1−1+

∑M

i=1
yi

1 e−(β1+M)λ1λ
α2−1+

∑n

i=M+1
yi

2 e−(β2+n−M)λ2 ∗ c

From this, we construct the Gibbs sampler. The marginal conditional for λj , j = 1, 2 is seen to be
Gamma-distributed by matching elements of the distribution depending on λj to a Gamma. That
is

λ1|λ2, y,M ∼ Gamma(α1 +

M∑
i=1

yi, β1 +M)
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λ2|λ1, y,M ∼ Gamma(α2 +

n∑
i=M+1

yi, β2 + n−M).

To update M we need to search over M = {1, · · · , n} evaluating over the marginal posterior

M |λ1, λ2, y ∝ λ
∑M

i=1
yi

1 λ

∑n

i=M+1
yi

2 e(λ2−λ1)M

1.3 Metropolist-Hastings

MH sampling is the first kind of MC construction for posterior sampling (50’s - 70’s). Gibbs sampling
came along in the 80’s (general construction). I strongly encourage you to read Geman and Geman ’84
which is a beautiful paper explaining Gibbs + MH sampling (simulated annealing) in the context of
image processing.

MH sampling is related to rejection sampling. Gibbs sampling doesn’t always work out, meaning
the one-dimensional posteriors don’t have a much more convenient format over the joint. MH sampling
works like this:

1. Generate a proposal θ∗ from the distribution q(θm, θ∗) = q(θ∗|θm). θm is a current estimate of the
parameter vector, so think of q as a map q(x, y) from the current state of θ to a new state.

2. Compute

α(θm, θ∗) = min{1, p(θ
∗|y)

p(θm|y)

q(θ∗, θm)

q(θm, θ∗)
}

3. With probability α, accept the proposal θ∗ in place of θm.

If q is symmetric, meaning it’s equally likely to move from θm to θ∗ as from θ∗ to θm, the α is 1 for
any θ that has higher posterior probability than θm. Otherwise you may still accept this proposal with
a probability α. If q is not symmetric, we also adjust this ratio according to the q sampling direction.

The proposal distribution q can be quite arbitrary. However, some technical conditions are needed for
MH to converge to the posterior. Note, we can use a very simplistic scheme where q(θm, θ∗) = q(θ∗),
i.e. the sampling does not depend on the current state of θ. This is called independence chain sampling.
Note, we want q to be quite rich or ”wild”. If q is restricted we get stuck near our starting value. On the
other hand if q is too wild (has very high variance), the samples generated are likely to be rejected and
we also get stuck. The variance of q is a tuning parameter of the MC scheme.

Why does MH work? Here’s a short review of Markov Chains. We assume that the states of the chain
xt have the following property:

P (Xt+1 = xt+1|Xt = xt) = P (Xt+1 = xt+1|Xt = xt)

Note, Xt refers to the history of Xt+1, i.e. all previous values of the X-process. The Markov chain moves
from state to state according to the transition kernel (or matrix when the states are a discrete set) as

P (i, j) = P (Xt+1 = j|Xt = i)

The marginal state distribution at time t in the chain is denoted as

πi(t+ 1) = P (Xt+1 = i) =
∑
k

P (Xt+1 = i|Xt = k)πk(t)

Using the above across all state, we see that we can write the marginal distribution as

π(t+ 1) = Pπ(t)

and recursively applying this results we find that

π(t) = P tπ(0)

.
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A stationary distribution for P is one for which

π∗ = Pπ∗

Now, what do we need for our sampling scheme to work? Well, we already have a sampling scheme
that is Markov by construction. We need to verify that it is sensible in terms of the goal we have: sampling
from the posterior. There are some constraints on the transition matrix P for a MC to converge to our
desired goal. First of all, we need the chain to be irreducible: meaning we have to be able to reach a
target state in a finite number of steps. We also need it to be aperiodic. Additional constraints like
invariance (meaning of you start from the posterior distribution, subsequent marginal distributions can’t
move away from the distribution).

The detailed balance criterion is a constraint on the transition along the chain that guarantees a unique
stationary distribution. The condition states that

P (j, k)π∗j = P (k, j)π∗k

meaning the chain is reversible. In our application, π∗ (the stationary distribution), is the posterior
p(θ|y).

Now, for MH sampling our transition kernel is

P (θ, θ′) = q(θ, θ′)α(θ, θ′) = q(θ, θ′) min[
p(θ′)q(θ′, θ)

p(θ)q(θ, θ′)
, 1]

where for q(, ) and α(, ) the first index is the origin and the second the destination. That is, to move
from θ to θ′ you have to first generate the sample θ′ given the current state θ (q(θ, θ′)) and then accept
this sample move (α(θ, θ′)). Now, we need to verify that the MH sampling scheme satisfies the detailed
balance:

P (θ, θ′)p(θ) = P (θ′, θ)p(θ′)

where p() is the posterior. That is, we need

q(θ, θ′)α(θ, θ′)p(θ) = q(θ′, θ)α(θ′, θ)p(θ′)

for all θ and θ′ states.

We now need to verify that the MH transitions satisfy the detailed balance equation. Consider the case
when α = 1. Then the result follows trivially. What if q(θ, θ′)p(θ) ≥ q(θ′, θ)p(θ′)? Then,

α(θ, θ′) =
p(θ′)q(θ′, θ)

p(θ)q(θ, θ′)

and
α(θ′, θ) = 1

since while we move toward a θ closer to the MaP the posterior increases. That means

P (θ, θ′)p(θ) = q(θ, θ′)α(θ, θ′)p(θ) = q(θ, θ′)
p(θ′)q(θ′, θ)

p(θ)q(θ, θ′)
p(θ) =

= q(θ′, θ)p(θ′) = q(θ′, θ)α(θ′, θ)p(θ′) = P (θ′, θ)p(θ′)

and we have proved that the detailed balance holds. Similar steps prove for the case when q(θ, θ′)p(θ) ≤
q(θ′, θ)p(θ′).

OK - so the MH sampling results in a Markov chain whose limit stationary distribution is the posterior.
However, we still need to worry about the rate of convergence. For q that is restrictive or too wild,
convergence can be slow since few proposed samples are accepted. This means we need a ”burn-in”
period before we start recording samples in our sample mean calculation (see beginning of lecture).
When to start collecting samples for computation is decided based on convergence diagnostics, usually
obtained by plotting the traces of the θmi for iterations m of the MC scheme and components i. You look
for when this trace is devoid of a trend. What should the trace look like? If it is too smooth it means
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that the MC carries too much memory, each step is too close to the previous and we have a difficult time
breaking away from starting values (called poor mixing). This may result from q being to restrictive or
too wild, meaning we explore little or Θ space or generate few samples that are accepted.

It is common to plot the θ traces to diagnose convergence. We can also consider comparing different
traces starting from different initial values. The difference between the traces (in terms of local means
over consecutive iterations) constitute a way to determine convergence.

We can also aid in the mixing by throwing in an additional stochastic element: accepting a ”worse”sample
θ′ with a probability that is dependent on the iteration number. This is called ”simulated annealing”. In
the case of symmetric q() we can write the acceptance probability as

α = min[1, (
p(θ′)

p(θ)
)1/T

m

]

where Tm is called the temperature. For Tm = T = 1, this is equivalent to MH. For Tm decreasing from
Tm > 1 to 0, this constitutes a scheme where, initially, we are randomly exploring the θ-space and then
slowly move to a more restrictive sampling geared and finding the MaP. Why is thus useful? It allows
us to be less dependent on the starting values since we can ”escape” local optima through accepting a
locally ”bad” move. Simulated annealing is a very useful algorithm in complex searching, e.g. related to
model selection.

Finally, some notes on how to choose q(). In general, most q() are some kind of random walk or
independence sampling scheme, often involving a tuning parameter. The tuning parameter controls how
well the MC scheme that results is mixing - exploring θ space. You need to diagnose the convergence of
the MC scheme by plotting the θ traces and either graphically, or more formally using time series analysis,
decide if you have reached a point of convergence. Don’t save all θ values - you only need to save enough
to decide that you have converged and then collect enough thereafter to compute a reasonable integral
estimate.

1.4 Homework

Consider a bivariate normal distribution.
(a) Assume that out of n samples, the first k are missing values for the second coordinate. Derive the
EM steps for estimating the bivariate normal parameters.
(b) Assume n samples (no missing values). If you assume a normal, independent prior for the mean
parameters (you can also use a prior for the covariance if you want), what is the posterior distribution?
(c) Implement a MC scheme to generate samples from the posterior in (b). How well does it agree with
the analytical solution?
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