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1 Likelihood

The likelihood is proportional to the joint pdf of the sample. However, while the pdf has a probabilistic
interpretation (data generating given a parameter value θ), the likelihood does not. We think of the
likelihood as a function of θ given an observed data sequence.

 L(θ|x̃) = f(x̃|θ)

 If iid, L(θ|x̃) =
∏n

i=1 f(xi|θ)

 Gives evidence of the plausability of θ given a sample.

Likelihood principle: If L(θ|x̃) = C(x̃, ỹ)L(θ|ỹ) then x̃ and ỹ carry the same evidence about θ. We
don’t care about the absolute likelihood, only its relative value for different θ.

We can focus our attention on the scaled quantity

L(θ|x̃)
maxθ L(θ|x̃)

Invariance principle: Let’s say we make a change of variables transformation, Y = g(X). The model
family {f(x|θ), θ ∈ Θ} is invariant w.r.t. transformations G if for all θ ∈ Θ and all g ∈ G there is a
θ′ such that Y = g(X) has distribution f(y|θ′) if X has distribution f(X|θ).
Then the likelihood inference is unaffected by the transformation.
This means simple data transformations like change-of-units etc should not alter the analysis con-
clusions.

Let’s look at a few examples of likelihood functions.
In Figure 1 I depict the likelihood function of a binomial sample with different sample size n and dif-
ferent outcomes x. The more data we have, the ”sharper”the likelihood function is. What does this mean?

Well, the maximizer of the likelihood function is a natural estimate for θ if we think of L(θ|x̃) as
measuring the plausability of θ as being capable of generating sample x̃. However, the shape of L(θ|x̃)
is also important. The shape tells us how easy or difficult it is to identify the maximizing θ. As we shall
see later, this carries over the estimation uncertainty for θ.

The shape of the likelihood is even more important to consider when we have more than one parameter
θ = (θ1, . . . , θr).
In Figure 2 I depict two examples when θ is two-dimensional. In the left panel is an example where the
model is almost over-specified. That is, the two parameters ”control” the distribution in almost the same
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Figure 1: Likelihood functions for X ∼ Bin(n, θ). (Left): n = 10 and x = 1 (black) and x = 5 (red).
(Right): n = 100 and x = 10 (black) and x = 50 (red).
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Figure 2: Likelihood functions for two-dimensional θ. (Left): An example with near-redundancy. (Right):
A complex shape for the likelihood.

way and perhaps only one is needed (this can happen in regression models when you have too many
predictors included). Notice that the likelihood is near flat along a ridge. The right panel is a likelihood
from a mixture of distributions and as you can see, the likelihood can take on quite a complex shape.
Here it is bimodal.

If we think back to the previous lecture, we had that the pdf could be factorized as

f(x̃|θ) = h(x̃)g(T (x̃)|θ).

Now, with L(θ|x̃) and its relative magnitude only playing a role, we can conclude that the likelihood is
a function of the sufficient statistic T (X̃)! It follows that our maximum likelihood estimator is also a
function of the sufficient statistic T (X̃).

This also hold true for Bayesian inference. To see this, recall Bayes theorem:

π(θ|x̃) = f(θ|x̃)π(θ)
f(x̃)

=
g(T (x̃)|θ)π(θ)h(x̃)

∫

g(T (x̃)|θ)π(θ)h(x̃)dθ

and the h(x̃) terms cancel. So, the part of the posterior distribution that involves θ, like the likelihood,
is a function of the sufficient statistic.
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2 Point estimation

Before we go into detail about maximum likelihood estimation, let us think about the estimation problem
in more general terms.

The standard notation for an estimator is θ̂. It is a function of the data so θ̂ = W (X̃) for some
statistics W . Is W a good estimator? To answer this question we have to decide what we mean by
”good”.

 Bias: bias(θ̂) = Eθ[θ̂]− θ. Is there a tendency to over or underestimate θ?
Traditionally, unbiased estimators have been very popular. However, recently there has been much
more focus on estimators that relax this constraint in favor of reduced...

 Estimation variance: V arθ(θ̂). How much does each estimate θ̂ vary from sample to sample
(from true distribution fθ).

 We commonly combine bias and variance into the MSE, Mean squared error = Eθ[θ̂ − θ]2 =

(biasθ(θ̂))
2 + V arθ(θ̂)

 Consistency. Where bias addresses what happens on average across different samples (if we could
repeat the experiments under the same conditions), consistency ask how the estimator behaves if
we were able to increase the sample size in the same experiment (of course, if iid new samples can
just be tagged on to old ones to form a bigger sample). An estimator is consistent if

θ̂ → θ, n → ∞

 Sampling distribution. For interval estimation and testing, we need to know more than just the
first and second order moments of θ, we need to know the distribution of θ̂. In many cases, we will
appeal to large n results (asymptotics) which results in θ̂ normally distributed.

We will look at these quantities in more detail later. For now, let’s look at some alternative estimators.

Method of Moments, MoM:

We can compute the moments Eθ[X
k] for different k and match to the sample moments X̄, X̄2, . . . X̄k.

By equating the theoretical moments to the observed ones, we get an equation system that we can solve
for θ. This means that there are many possible MoMs to choose from.
MoM tend to be easy to compute, but are usually not as good as say maximum likelihood estimators.
However, they can provide sensible starting values for numerical searches in complex likelihood inference.

Maximum likelihood, MLE:
As we already discussed, maximizing the likelihood function w.r.t. θ seems a sensible way to go. The
benefit of MLEs are many (as we shall see), but you should be a bit careful. First, MLEs may be difficult
to compute. They can also be quite bad when the sample size is small. Be especially cautious when
you derive MLEs in cases where the support of the pdf depends on θ and boundary values for θ come
into play. You need to check that the estimator you obtain using standard optimization techniques (like
zero-crossing of the derivative) really gives you a global maximum.

Examples:

 Let Xi ∼ i.i.d. Be(p). Now, p̂ = X̄ is a intuitive estimator for p.

It is unbiased and its variance is V (p̂) = p(1−p)
n

An alternative estimate for p is p̂B = nX̄+a
n+a+b = wX̄+(1−w) a

a+b , where w = n/(n+a+b). That is,

we can consider a weighted average of the intuitive estimate X̄ and an a priori guess for p = a
a+b .

The above is in fact the Bayes estimate when we assume a Beta(a, b) prior for p (we will return to
this later in the lectures).

3



Now, clearly the estimator p̂B is biased (since p̂ is unbiased). It’s variance is given as w2V (p̂).
Combining the two we get

MSE(p̂B) =
np(1− p)

(n+ a+ b)2
+ (

np+ a

n+ a+ b
− p)2

Clearly, for some a, b and some n and p the MSE of p̂B will be less than the MSE of p̂.
What if we believe a priori that p = .5? This corresponds to a = b in which case

MSE(p̂B) =
p(1− p)(n− 4a2) + a2

(n+ 2a)2

This is still a function of the true p. What if we are interested in the performance of the estimator
not being a function of p. This happens if we choose a =

√

n/4 for which the MSE is

MSE =
n

4(n+
√
n)2

We can now compare p̂ and p̂B for this choice of a = b =
√

n/4. p̂B is better than p̂ (in a MSE
sense) when

n

4(n+
√
n)

<
p(1− p)

n

or

4(1 +
1√
n
)p(1− p) > 1

We can now clearly see that this happens when n is small, for almost all p, whereas when n gets
larger and larger this only happens for p close to 1/2. (Try this at home. Plot the MSEs.)
We shall return to this example when we talk about minimax estimation.

 Here’s an example about the likelihood. Let’s say Xi iid U [0, θ]. The likelihood function is

L(θ|X̃) =
∏

i

1

θ
1{0 < xi < θ} =

1

θn
1{0 ≤ x(1) ≤ x(n) ≤ θ}

from which if follows that the likelihood is maximized for θ̂ = x(n).

 Let’s say Xi iid f(x|θ = 0) = U [0, 1], f(x|θ = 1) = 1
2
√
x
, 0 < x < 1. (Draw a picture of these two

functions.)

If we have only one sample, it’s easy to see that the MLE is θ̂ = 1{x < 1/2}
What happens when we have n samples?

L(θ = 0|x̃) = 1, 0 < xi < 1, L(θ = 1|x̃) =
∏

i

1

2
√
xi

To determine if θ is 0 or 1 we compare the likelihood ratio to 1:

L(0|x̃)
L(1|x̃) = 2n

∏

i

√
xi > 1

If the above is true, the MLE is θ̂ = 0 and otherwise it is 1.

3 Best unbiased estimator

As mentioned above, it has become much more common in recent years to focus on biased estimators
that control estimation variance. However, we will first look more closely at unbiased estimators.

Is there such a thing as a ”best” unbiased estimator? If MSE is our performance measure, the question
can be rephrased as ”among all unbiased estimators, is there a unique one with minimum variance?”.
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Best unbiased estimator: Let W ∗ be an unbiased estimator for θ. If V arθ(W
∗(X̃) ≤ V arθ(W (X̃))

for all unbiased estimators W , then W ∗ is UMVUE (uniform minimum variance unbiased estimator)
for θ.

The above is not easy to check. You would have to be able to list all unbiased estimators W to check
the statement. However, there is famous results by Cramer and Rao that help us out.

Cramer-Rao: Let X̃ ∼ f(x̃|θ) and W (X̃) be an estimator of θ. Further assume that EθW (X̃) is
differentiable in θ.
If f(x̃|θ) is such that

d

dθ

∫

· · ·
∫

q(x̃)f(x̃|θ)dx1 · · · dxn =

∫

· · ·
∫

q(x̃)
d

dθ
f(x̃|θ)dx1 · · · dxn

for all q(x̃) with Eθ|q(x̃)|, then

V arθ(W (X̃)) ≥ ( d
dθEθW (X̃))2

Eθ[(
d
dθ log f(X̃|θ))2]

and iff Xi are iid f(xi|θ) we can write

V arθ(W (X̃)) ≥ ( d
dθEθW (X̃))2

nEθ[(
d
dθ log f(X|θ))2]

Specifically, if EθW (X̃) = θ, then

V arθ(W (X̃)) ≥ 1

nEθ[(
d
dθ log f(X|θ))2]

The term nEθ[(
d
dθ log f(X|θ))2] = In(θ) = nI(θ) is called the Information bound or Cramer-Rao lower

bound. Note that the bound in the iid case can be computed by a scaling factor n (sample size) and the
Information I(θ) for a generic sample X from f(x|θ).

Why is this an important results? Well, now we know what to compare the variance of an unbiased
estimator W to. If it achieves the bound above, we know it is the UMVUE. It also turns out that the
MLE can achieve this bound, at least asymptotically, which is one reason it plays such a large role in
estimation.

For EθW (X̃) = τ(θ), the CR bound is

V arθ(W (X̃)) ≥ τ ′(θ)2

nI(θ)

Example:

 Let’s revisit the example Xi ∼ U [0, θ].

We have that d log f(x|θ)
dθ = d log(1/θ)

dθ = −1/θ and so from the CR theorem it follows that

V arθ(W (X̃)) ≥ θ2/n

for all unbiased estimators W .

 The MLE is θ̂ = x(n) (see above). Is it unbiased?

 P (X(n) < z) = P (all Xi < z) =
∏

i P (Xi < z) = (z/θ)n

5



 Which gives us fX(n)
(z|θ) = nzn−1/θn, 0 < z < θ as the pdf for the maximum of a sample of n

observations from U [0, θ].

 We can now compute E[X(n)] =
∫ θ

0
nzn

θn dz = n
n+1θ.

 That is, the MLE is biased. However, as n goes to infinity, the bias disappears. This asymptotic
unbiasedness is a property of the MLE.

 We do a bias correction and form a new estimator Y = n+1
n X(n).

 What is its variance? V arθ[
n+1
n X(n)] = (n+1

n )2(E[X2
(n)]− ( n

n+1θ)
2) = θ2

n(n+2)

 Wait a minute! This is actually less than the CR bound θ2/n!!!! How is that possible?

 This was actually an example when the CR did not apply. Check at home if you really can change
the order of integration and expectation for this example.

 In general, be careful when the support of f depends on θ.

The CR bound is not a so-called sharp bound. That is, we have a lower limit, but we don’t actually
know that there is an estimator that can achieve this variance. If we add some additional constraints to
the pdf of X we can get a sharp bound.

Cramer-Rao and the MLE: Let Xi iid f(x|θ), where f satisfies the conditions of the CR theorem.
L(θ|x̃) =

∏

i f(xi|θ) is the likelihood function and we denote by W (X̃) an unbiased estimator for
τ(θ). W achieves the CR bound iff

a(θ)[W (X̃)− τ(θ)] =
d

dθ
logL(θ|x̃)

for some a(θ).
That is, we hit the bound with the MLE under certain transformations of θ where W (X̃) − τθ is
proportional to the derivative of the loglikelihood.

This solves our question about the best unbiased estimators in part, but not when we have a problem
where the conditions for the CR do not hold and not when our natural estimators don’t take the form
as above. Here’s a very nice example from Casella and Berger:

Example:

 The normal pdfN(µ, σ2) satisfies the CR conditions. A natural estimate for σ2 is S2 = 1
n−1

∑

i(Xi−
X̄)2. However, the MLE is actually σ̂2 = (n−1)

n S2 which is biased (since S2 is unbiased).

 The variance of S2 is 2σ4

n−1

 However, the CR bound is 2σ4/n so S2 does not achieve it.

 Can one achieve this bound?

 Checking the above statement, we need to find d
dσ2 logL(µ, σ

2|x̃) = n
2σ4 (

∑

i
(xi−µ)2

n − σ2) and
equate it to the components in the box above.

 We see that a(σ2) = n
2σ4 and the best estimator for σ2 is

∑

i(xi − µ)2/n

 Wait a minute... this involves the unknown µ, so we cannot achieve the CR lower bound in this
case.
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