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1 Recap

Last lecture we talked about point estimates. We compared Method of Moment estimators and Maximum
Likelihood estimators. MoMs tend to be easy to compute, but are usually not the best in terms of
variance. MLEs are sometimes difficult to compute and may be biased for small n. However, as n
increases, MLEs tend to be the better estimates.

Speaking of ”best” estimator, we talked about Best Unbiased estimators last lecture. We focused on
unbiased estimators (classical) for which variance is the performance measure of interest. We had the
Cramer-Rao theorem that gave us a bound for the minimum achievable variance among unbiased esti-
mators W of τ(θ) as

V arθ[W ] ≥ τ ′(θ)2

Eθ[(
d
dθ log f(X̃|θ))2]

.

If an estimator W achieves the CR bound, we know it is the UMVUE (be careful about checking that the
assumptions for the CR theorem holds, i.e. that the order of integration and derivation can be changed).
However, the CR bound is not tight. We may have a UMVUE W , but it may not achieve the bound and
so we have not been able to verify that it is UMVUE.

However, a corollary to the CR theorem states that if W is an unbiased estimator for τ(θ) and the pdf
is such that

a(θ)[W (X̃)− τ(θ)] =
d

dθ
logL(θ)

for some a(θ), then W achieves the CR bound. That is, everything works out if W − τ(θ) is proportional
to the derivative of the loglikelihood function.

This doesn’t solve the problem for pdf f where the CR conditions do not apply or when the estimator
does not have the form above. What do we do then?

2 Rao-Blackwell, Linking sufficiency and unbiasedness

Things get a lot easier when we stay within the exponential family of distributions. Why?

Let’s first start by revisiting the idea of sufficient statistics. We have the following result by Rao and
Blackwell:
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Rao-Blackwell: Let W be any unbiased estimator of τ(θ) and T a sufficient statistic for θ.
If we construct a new estimator Q(T ) = E[W |T ], then

� Eθ[Q(T )] = τ(θ), so Q ”inherits” the unbiasedness of W

� and V arθ[Q(T )] ≤ V arθW for all θ

Proof: Using the standard results for complete and conditional expectations and variance we have

τ(θ) = Eθ[Q] = Eθ[E(Q|T )] = Eθ[Q(T )] and

V arθ[W ] = V arθ[E(Q|T )] + Eθ[V ar(Q|T )] ≥ V arθ[Q(T )]

The results isn’t really interesting unless we insist on T being sufficient. While conditioning on something
reduces the variability or randomness, it doesn’t guarantee we get a useful estimator as a result. Here’s
an example (from Casella/Berger).

� Take X1, X2 iid N(θ, 1). An unbiased estimator for θ is X̄ with variance V (X̄) = 1/2.

� Condition on the first sample, X1, and we get

Q = Eθ[X̄|X1]

where we have Eθ[Q(X1)] = θ (unbiased) and V arθ[Q(X1)] ≤ V arθ[X̄]. (Note, we are working
under the assumption that Xi are iid N(θ, 1) so X2|X1 ∼ N(θ, 1) and X̄ ∼ N(θ, 1/n). What would
happen if the Xs were correlated?)

� However, Q(X1) = Eθ[X̄|X1] = 1
2E[X2|X1]+ 1

2X1 = 1
2θ+ X1

2 which is useless as an estimator since
it depends on the unknown θ. (Try at home: What if Xi were Be(θ)? and n = 2?)

� If T is sufficient (what we condition on), then we know Q|T does not depend on θ except through
T and everything works out. In the above example, X1 is not sufficient.

Rao-Blackwell guarantees that we can always get smaller a variance for an unbiased estimator by con-
ditioning it on a sufficient statistic to form a new estimator. Of course, we don’t know that this gets us
the best unbiased estimator, but we’re almost done.

Consider a sufficient statistic, T (X̃) (this is pretty to easy to obtain as we’ve seen in lecture 1).
Construct a new estimator Q(T ) = Eθ(Q(X̃)|T (X̃))
If Q(T ) achieves the CR bound, it is the best unbiased estimator.

If Q(T ) does not achieve this bound, we’re stuck again. On the other hand, it turns out that if we can
go ahead to find the best unbiased estimator if we can show that our estimator is uncorrelated with all
unbiased estimators of 0. Consider an estimator Q′ = Q + aZ, for some constant a. It is still unbiased
for τ(θ) if the expected value of Z is 0. Now

V ar(Q′) = V ar(Q) + a2V ar(Z) + 2aCov(Q,Z)

Q is UMVUE if a2V ar(Z) + 2aCov(Q,Z) ≥ 0. But this function can be negative, for some values of a
if Cov(Q,Z) is non-zero. If Q and Z are uncorrelated, V ar(Q′) ≥ V ar(Q).

This looks difficult to work with. To see that Q is UMVUE we need to check its correlation with all
unbiased estimators of 0...
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However, what if we knew that for our f(x|θ) there are no unbiased estimators of 0, except for 0 itself, then
we’re OK since 0 is always uncorrelated with any other variable. This should remind you of completeness
from lecture 1. Recall,

Completeness: f(t|θ) is a complete family of pdf’s for statistic T (X). If Eθ[g(T )] = 0 for all θ
implies g(T ) = 0 for all θ, then T (X) is a complete statistic (and vice versa).

Now we’re home.

Let T be a complete sufficient statistic for θ and Q(T ) be an estimator based only on T (as we would
get if we use Q(T ) = Eθ[Q|T ]). Then Q(T ) is the unique best unbiased estimator of its expectation
Eθ[Q].

What this means is that, for any (any you can come up with - fairly easy task) unbiased estimator
for τ(θ) and we have a complete sufficient statistic T for θ, then we can construct the best unbiased
estimator as above. As we saw in lecture 1, the tricky part is really the completeness.... which turned
out to not be tricky at all if we stayed within the exponential family of distributions. Note, we have
not shown that this estimator achieves the CR bound though. It may not, in which case there are no
unbiased estimators that do.

Example

� Let Xi iid with f(x|θ) = θxθ−1, 0 < x < 1, θ > 0.

� We can write f(x|θ) = exp[(θ − 1) log(x) + log(θ)] and so f belongs to the exponential family of
distributions with t(x) = log(x) and the complete sufficient statistic is T (X̃) =

∑
i log(xi)

� The likelihood is L(θ|x̃) =
∏
i θx

θ−1
i , which is easier to work with on a log-scale.

� The loglikelihood is l(θ|x̃) =
∑
i(θ − 1) log(xi) + n log(θ).

� The derivative is d
dθ l(θ|x̃) =

∑
i log(xi) + n/θ, which gives us a zero-crossing at θ̂ = −n∑

i
log(xi)

� This is indeed a maximizer of L since d2l
dθ2 = −n/θ2 < 0

� The CR bound is 1/Eθ[(
d
dθ l(θ|X̃))2], where here we have that

Eθ[(
∑
i

log(Xi) + n/θ)2] =
n2

θ2
+

2n

θ

∑
i

Eθ[log(Xi)] + Eθ[(
∑
i

log(Xi))
2]

Eθ[log(X)] = −1/θ, Eθ[(log(X))2] = 2/θ2

and so
Eθ[(

∑
i

log(Xi) + n/θ)2] =

=
n2

θ2
− 2n2

θ2
+
∑
i

E[log(Xi)
2]+2

∑
1≤i<j≤n

E[log(Xi) log(Xj)] =
−n2

θ2
+

2n

θ2
+2

n(n− 1)

2
(
−1

θ
)(
−1

θ
) =

=
n

θ2

and so the CR bound is θ2/n

� But does the MLE achieve this? First of all, is it unbiased? Try to check this at home (you can do
it by simulation if you want). We will go through the delta-method next week. What if we want
to estimates g(θ) = 1/θ?

� What do we know about MLEs? We know that they’re asymptotically unbiased, but may be quite
bad for small n. As we shall see, we also know MLEs asymptotically achieve the CR bound, i.e. for
large sample sizes n the MLE is UMVUE.
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Example

� Let Xi ∼ Poi(λ) but we care about parameter θ = e−λ.

� What is the UMVUE for θ = e−λ?

� We have that L(θ|x̃) = f(x̃|θ) = h(x̃)
∏
i θ(− log θ)xi

� The loglikelihood is l(θ|x̃) = n log(θ) + log(− log(θ))
∑
i xi + constant

� At home, come up with the MLE for θ.

� This is an exponential family so the complete sufficient statistic is T (X̃) =
∑
iXi

� Now we need an unbiased estimator for θ. Well, θ = e−λ is the probability that the Poisson r.v.
takes on value 0, i.e. P (X = 0). An unbiased estimator for θ is thus

∑
i 1{Xi = 0}/n

� We could now try to figure out what Q(T ) = Eθ[
∑
i 1{Xi = 0}|T =

∑
iXi] is, but that looks

pretty hard.

� The point is we don’t need to go for the ”best”estimator of θ at this stage since it is the conditioning
that makes the trick. Let’s instead consider the estimator 1{X1 = 0}, i.e. just checking the first
sample value. It is an unbiased estimator for θ, just not a very efficient one since it uses only one
sample value.

� We can improve upon it by conditioning on T : E[X1 = 0|
∑
iXi = t] = P (X1 = 0|

∑
iXi = t) =

P (X1=0,
∑n

i=2
Xi=t)

P (
∑

i
Xi=t)

� The sum of K iid Poi(λ) has distribution Poi(Kλ) (compound poisson) and so

E[X1 = 0|
∑
i

Xi = t] =
e−λe−(n−1)λ((n− 1)λ)t

e−nλ(nλ)t
= (1− 1

n
)t

� Our estimator is thus θ̂ = (1− 1
n )

∑
i
xi .
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