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1 The Score function

Let’s revisit the likelihood function. We have that L(θ|x̃) is a function of θ. A natural estimator for θ is

the maximizer of this function: θ̂n = argmaxθ L(θ|x̃).

Properties of the MLE

 Consistent: θ̂n → θ in probability.

 Equivariant: If θ̂n is the MLE of θ, then g(θ̂n) is the MLE of τ = g(θ)

 Asymptotically normally distributed

 Asymptotically most efficient (minimum variance among unbiased estimators)

In the upcoming lectures we will go through these properties.

Let us first establish the notation.

 The likelihood function L(θ|x̃) = Ln(θ). We write with subscript n to emphasize that the likelihood
depends on the sample.

 The loglikelihood function ln(θ) = logLn(θ).

 The Score function Sn(θ) =
d
dθ ln(θ) (often written without the n, just remember it depends on the

sample).

 The MLE (maximum likelihood estimator) is given by the zero-crossing of the score function:

θ̂n = {θ : Sn(θ) = 0}

Now, under so-called regularity conditions (such that we can change the order of integration and deriva-
tion, puts some smoothness constraints on the pdf fθ(x)) we have

Eθ[Sn(θ)] = 0

This follows from

Eθ[Sn(θ)] =

∫
· · ·

∫
d log f(xi|θ)

dθ
dx1 · · · dxn =

∫
· · ·

∫ df(x̃|θ)
dθ

f(x̃|θ)
f(x̃|θ)dx1 · · · dxn =

d

dθ

∫
· · ·

∫
f(x̃|θ)dx1 · · · dxn = 0

So, the expected value of the score is 0 if we take the expectation at the same θ as we compute the score
at. This motivates using the zero-crossing of the observed score as our estimator for θ.

As we discussed in previous lectures, it is not only the maximizer of the likelihood function that is of
interest, but also its shape since the shape tells us how ”easy” or ”difficult” the estimation problem is.
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How can we summarize the shape? The complete shape is only captured if we look at l(θ) or L(θ) in
its entirety. However, locally near the maximum peak of l(θ) we can summarize the function by the
curvature l′′(θ). The curvature of the loglikelihood function is

l′′(θ) =
d2

dθ2
log f(x̃|θ).

We evaluate this at the maximum and denote this quantity as the observed Fisher information

i(θ̂) = l′′(θ̂)

The expected value of the curvature is called the Fisher information:

FI(θ) = In(θ) = Eθ[i(θ)]

We have Eθ[S(θ)] = 0 and so it follows that

V arθ[S(θ)] = Eθ[S(θ)
2] = Eθ[(

d

dθ
log f(x̃|θ))2]

We can write this on a form that is easier to compute:

d2 log f(x̃|θ)

dθ2
=

d

dθ
(

d
dθf(x̃|θ)

f(x̃|θ)
) =

f(x̃|θ) d2

dθ2 f(x̃|θ)− ( d
dθf(x̃|θ))

2

(f(x̃|θ))2
=

=
d2

dθ2 f(x̃|θ)

f(x̃|θ)
− (

d
dθf(x̃|θ)

f(x̃|θ)
)2

Take the expected value and we have that

Eθ[−
d2l(θ)

dθ2
] = Eθ[(S(θ))

2]− Eθ[
d2

dθ2 f(x̃|θ)

f(x̃|θ)
] = Eθ[(S(θ))

2]

It is often easier to compute the expected value of l′′(θ) than the expected value of the square of the
score.

Now, we have that θ̂ is the zero-crossing of the score function. We also know that the score has expected
value 0 if we match the θ of derivation and expectation (i.e. no model misspecification). In addition, we

have that the variance of the score function is Eθ[−
d2l(θ)
dθ2 ]. We will see later that these properties of the

score function directly translates to properties of the MLE.

2 Regular likelihood function, quadratic approximation

Let us again consider the likelihood function in its total. Now, if l(θ) is quadratic, then the location
of the peak and the curvature at the peak is sufficient to summarize the entire function. Even if the
entire function is not quadratic, it could be that l(θ) is near quadratic near its peak. If so, we call the
loglikelihood function regular and we can derive many results useful for inference in this case.

How well the likelihood function can be approximated by a quadratic depends on the underlying model
family, the sample size and the particular outcome. In Figure 1 we see some examples. Locally, all of
these likelihood functions are quite well approximated by a quadratic, especially when x = 5. What
am I comparing the loglikelihood functions to in the figures? Well, I use a Taylor expansion of the
loglikelihood function hear θ̂ to obtain

logL(θ) ' logL(θ̂) + S(θ̂)(θ − θ̂)−
1

2
I(θ̂)(θ − θ̂)2.
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This follows from the definition of the score and information function (note, here the observed informa-

tion). Since θ̂ is obtained at the zero-crossing of the score function, the linear term goes away and we
have

log
L(θ)

L(θ̂)
' −

1

2
I(θ̂)(θ − θ̂)2.

For the Binomial example, we have that

S(θ) =
x

θ
−

n− x

1− θ
, θ̂ = x/n

and
d2l

dθ2
=

−x

θ2
+

n− x

(1− θ)2

and so the observed information is

I(θ̂) =
n

θ̂
−

n

1− θ̂
=

n

θ̂(1− θ̂)

I plot logL(θ)/L(θ̂) (solid lines) and (−1/2) ∗ I(θ̂)(θ− θ̂)2 in the figure (dashed line). (Try this at home
with a smaller or larger sample size and for different x.)
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Figure 1: loglikelihood functions for X ∼ Bin(n, θ). (Left): n = 10 and x = 1 (black), quadratic
approximation (red). (Right): n = 10 and x = 5 (black) and quadratic approximation (red).

Now, let us take the derivative of the relative loglikelihood and the quadratic approximation and equate
the two parts:

d

dθ
log

L(θ)

L(θ̂)
= S(θ) ' I(θ̂)(θ̂ − θ).

We have that Eθ[S(θ)] = 0 and V arθ[S(θ)] = Eθ[I(θ)].
I use these properties to standardize the score function on the LH above (note, here I am replacing the
expected value by its observed - we will return to check if this is OK later):

I−1/2(θ̂)S(θ) ' I1/2(θ̂)(θ̂ − θ)

The right hand (RH) is of great interest to us: from this we should be able to say something about the

properties of θ̂. The LH side has now variance 1 and so it follows that the variance of θ̂ is I−1(θ̂). What
does this tell us? Well, the curvature of the likelihood is measured by the information and the sharper
the curvature the smaller the estimation variance for θ̂!

Example:

 Let Xi be iid f(x|θ, ν) = θνθ

xθ+1 I{ν,∞}(x)

3



 It follows that the likelihood function is

L(θ, ν) =
θnνnθ

(
∏

i xi)θ+1
I{x(1) > ν}

 We see that X(1),
∏

i Xi are the sufficient statistics for θ, ν.

 If θ is known, the loglikelihood for ν is increasing in ν and gives ν̂ = x(1)

 Given ν and x(1) ≥ ν we have the score for θ

S(θ) =
n

θ
+ n log(ν)−

∑
i

log(xi)

from which we find θ̂ = n∑
i
log(xi)−n log(ν)

.

Example:

 Let Xi iid double-exponential pdf: f(x|θ) = 1
2e

−|x−θ|.

 The likelihood function is L(θ) = 1
2n e

−
∑

i
|xi−θ|.

 L(θ) is maximized when
∑

i |xi − θ| is minimized

 To simplify this expression, consider the case x(j) ≤ θ ≤ x(j+1). We can then divide the sum above
into two parts:

∑
i

|xi − θ| =

j∑
i=1

θ − x(i) +
n∑

i=j+1

x(i) − θ

= (2j − n)θ −

j∑
i=1

x(i) +
n∑

i=j+1

x(i)

 This is linear in θ and decreases for j less than n/2 and increases for j greater than n/2

 If n is even, the likelihood is constant between x(n/2) and x(n/2+1) and so any θ in this interval is
the MLE, we usually take the midpoint.

 If n is odd, the likelihood is maximized for θ̂ = x(n+1/2)

 This is the median

Example:

 Let Xi be iid f(x|θ) = log(θ)θx/(θ − 1), 0 < x < 1, θ > 1

 We compute the score function:

d

dθ
logL(θ) =

d

dθ

∑
i

[log log θ − log(θ − 1) + xi log(θ)] =

=
∑
i

(
1

θ log(θ)
−

1

θ − 1
) +

1

θ

∑
i

xi =
n

θ log(θ)
−

n

θ − 1
+

nx̄

θ
=

n

θ
[x̄− (

θ

θ − 1
−

1

log(θ)
)]

 Remember the Cramer-Rao bound is achieved for estimators W of τ(θ) for which W − τ(θ) is
directly proportional to the score (linear in the score).

 Therefore, x̄ is an unbiased estimator of ( θ
θ−1 −

1
log(θ) ) and achieves the CR bound for this function

of θ.

Example:

 Xi are independently distributed fXi
(x|λ) = λwie

−λwix, x > 0, λ > 0 with known constants wi
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 The likelihood function is L(λ) = λn(
∏

i wi)e
−λ

∑
i
wixi1{x(1) > 0}

 This is an exponential family, so T =
∑

i wiXi is a complete sufficient statistic for λ

 The loglikelihood is l(λ) = n log(λ) + log(
∏

i wi)− λ
∑

i wixi

 The score function is S(λ) = l′(λ) = n
λ −

∑
i wi

 We obtain the MLE as λ̂ =

∑
i
wiXi

n

 Does it achieve the CR bound?

 Well, the score can be written as S(λ) = −n(

∑
i
wixi

n − 1
λ ) and so, by the corollary of the CR

theorem, W (X̃) =

∑
i
wixi

n achieves the CR bound if it is an unbiased estimator of 1
λ

 We have that E[W ] = 1
n

∑
i wiE[Xi] =

1
λ so W achieves the CR bound for estimating 1

λ . The
MLE for 1

λ is W (since 1

λ̂
= W )

 The MLE for λ is not of the required form for achieving the CR bound, but it does so asymptotically.

 What are the CR bounds for λ and 1/λ respectively?

 For 1/λ we can get to it in two ways (since we know W achieves the CR bound). First, we compute
E[−l′′(λ)] = E[ n

λ2 ] and so we get that the CR bound for estimating λ is λ2/n.

 The expected value of W is τ(λ) = 1/λ and so the CR bound is (τ ′(λ))2

n/λ2 = 1
nλ2

 We know from above that W achieves this bound. We can also compute this directly in this case:
V (W ) =

∑
i w

2
i V (Xi)/n

2, where V (Xi) = E(X2
i ) − (E(Xi))

2 = 2
λ2w2

i

− ( 1
λwi

)2 = 1
λ2w2

i

and so

V (W ) = 1
nλ2
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