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1 Properties of the MLE

We will continue with the properties of the MLE in this lecture. Let us first review what we already
know. Last week we showed that

Eθ[S(θ)] = 0, V arθ[S(θ)] = −Eθ[
d2

dθ2
logL(θ)]

under regularity conditions (smoothness of pdf fθ). The last quantity is called the Fisher Information
or expected information, FI(θ), and is the expected value of the curvature of the loglikelihood function.

The observed information I(θ) = − d2

dθ2 l(θ) says something about the uncertainty about θ given this
sample.

We have already seen that the exponential family of distributions are easy to work with and show results
for (like UMVUE etc). Here is another fact about exponential families. It turns out that the observed

and expected information coincide at θ̂ (the MLE) and in the special case of canonical parameters the
entire function I(θ) and FI(θ) coincide!

Here’s the proof.

� The pdf of an exponential family can be written as pθ(x) = exp(w(θ)T (x)−A(θ) + c(x))

� For an iid sample we have pθ(x̃) = exp(w(θ)
∑
i T (xi)−nA(θ) + c(x̃)), where

∑
i T (xi) = T (x̃) and

nA(θ) = Ã(θ).

� If w(θ) = θ this is the canonical form

� One can show that Eθ[T (x̃)] = Ã′(θ) and V ar(T (x̃)) = Ã′′(θ) (Proof via moment generating
functions).

� The score can be written as S(θ) = w′(θ)T (x̃)− Ã′(θ) and the MLE is thus given by

θ̂ = {θ : w′(θ)T (x̃) = Ã′(θ)}

� In the canonical case θ̂ = {θ : T (x̃) = Ã′(θ)}

� The information is I(θ) = −w′′(θ)T (x̃) + Ã′′(θ). In the canonical case I(θ) = Ã′′(θ)

� The Fisher information is FI(θ) = −w′′(θ)Eθ[T (X̃)] + Ã′′(θ) which in the canonical case is Ã′′(θ).

� So, I(θ) = FI(θ) in the canonical case.

� Now, we know that Eθ[S(θ)] = 0 = Eθ[w
′(θ)T (X̃)− Ã′(θ)] and so w′(θ)Eθ[T (X̃)] = Ã′(θ) for all θ.

� We have that FI(θ) = Ã′′(θ)− w′′(θ)Eθ[T (X̃)] where w′(θ)Eθ[T (X̃)] = Ã′(θ)

� On the other hand, at the MLE we have I(θ̂) = Ã′′(θ̂)− w′′(θ̂)T (x̃), where w′(θ̂)T (x̃) = Ã′(θ̂).

� Thus, I(θ̂) = FI(θ̂)
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1.1 Multiparameter case

What if θ = {θ1, · · · , θp}? Well, the score function S(θ) is now a vector of derivatives with respect to
one parameter at a time.

S(θ) =

 d
dθ1

l(θ)

...
d
dθp

l(θ)


The observed information is a p× p matrix with elements Iij(θ) = −d2

dθidθj
l(θ), and the Fisher information

contains elements FI(θ)Eθ[
−d2
dθidθj

l(θ)]

One can show that Eθ[S(θ)] = 0p×1 and V arθ[S(θ)] = FI(θ), where FI is the p×p matrix with elements
FIij(θ).

A CR-bound can be established in the multiparameter case as well.

CR bound for multiple parameter case: Let W (X̃) be an unbiased estimator of scalar g(θ) (that is,
g is a function that maps the p-dimensional θ into another parameter. We then have that

V arθ(W (X̃)) ≥ ∇θg(θ)TFI(θ)−1∇θg(θ)

In the special case g(θ) = (θ1, 0, · · · , 0) we have that

V arθ(θ̂1) ≥ FI(θ)−1
11

It is very important to note that
FI(θ)−1

11 6= FI(θ1)−1

where the RH term denotes the Fisher information for the one-parameter problem. In fact, in general

1

FI(θ1)
≤ FI(θ)−1

11

meaning that it is easier to estimate one parameter and estimation precision of θ1 is affected by estimation
of other parameters. In special cases, the FI is diagonal meaning the estimation precision decouples for
the different parameters.

2 Intro to asymptotics

We have that Eθ0 [S(θ0)] = 0 and V arθ0 [S(θ0)] = FI(θ0), where I write θ0 to emphasize that we’re
integrating w.r.t. the true value of θ.

Now, the score S(θ) =
∑
i log pθ(xi) is a r.v., and by the above it has mean 0 when we integrate with

respect to the true θ0 (i.e. match where we evaluate the score and what we average it with respect to).
Let us approximate the loglikelihood function l(θ) near some value θ0:

l(θ) = l(θ0) + (θ − θ0)l′(θ0) +
1

2
(θ − θ0)2l′′(θ0)

and so
S(θ) = S(θ0) + (θ − θ0)l′′(θ0)

Specifically, at θ̂
0 = S(θ̂) = S(θ0)− (θ̂ − θ0)l′′(θ0)

Equivalently, we can write

(θ̂ − θ0) =
S(θ0)

−l′′(θ0)
=
S(θ0)

I(θ0)
,
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where I(θ0) is the observed information at θ0.
We can rewrite this as

(I(θ0))−1/2S(θ0) = I(θ0)1/2(θ̂ − θ0)

We will now derive the sampling distribution for the RH side of the above equation, which thus gives us
the sampling distribution for the LH side, i.e. the sampling distribution of the MLE.

� We have that S(θ) =
∑
i
d
dθ logpθ(xi) =

∑
i yi for iid r.v. yi.

� We know that Eθ0 [yi] = 0 and Eθ0 [
∑
i yi] = 0 under regularity conditions.

� We also know that V arθ0 [yi] = FI(θ0) where FI(θ) = Eθ[− d
dθ2 logpθ(X)] and so V arθ0 [

∑
i yi] =

nFI(θ0)

Central Limit Theorem: For iid r.v. Zi with mean µ and variance σ2 we define the sum Sn =∑n
i=1 Zi.

Then
Sn − nµ
σ
√
n
→d N(0, 1)

as n goes to infinity.
We will here apply the CLT to S(θ). That is,

(nFI(θ0))−1/2S(θ0)→d N(0, 1)

There is just one small problem with the above result. In our approximation of the score, we have I(θ0)
not nFI(θ0). That is, we have the observed information at the MLE which is an estimate of the expected
information (true variance of the score). Can we just replace nFI(θ) with I(θ0) and expect the CLT still
to hold?

Well, we have by the weak law of large numbers (WLLN) that

1

n

∑
i

d2

dθ2
logpθ(xi)→ Eθ[

d2

dθ2
logpθ(X)]

and so
I(θ)

n
→p FI(θ) for all θ

Moreover, we have the following theorem:

Slutsky’s theorem:

� If Xn →d X (convergence in distribution)

� and An →p a, where a is a constant. (convergence in probability)

� then AnXn →d aX

Here we have that

(I(θ0))−1/2S(θ0) = (nFI(θ0))−1/2S(θ0)(
I(θ0)/n

FI(θ0)
)−1/2

where by the CLT the first term converges to N(0, 1) and the second converges in probability to 1
(appealing to the WLLN and the continuous mapping theorem for the function of a r.v. converging in
probability), and so by S

Finally, we can thus conclude that

(I(θ0))1/2(θ̂ − θ0)→d N(0, 1)
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Now, this is not an entirely practical result since I(θ0) depends on the true value of the parameter.

However, relying on the consistency (to be shown next) of θ̂) and that I() is continuous in θ, the
following result is also true:

(I(θ̂))1/2(θ̂ − θ0)→d N(0, 1)

We can use this to construct confidence intervals for θ as

[θ̂ ± z1−α/2I(θ̂)−1/2]

Sometimes it is more convenient to use the following alternative results:√
nFI(θ̂)(θ̂ − θ0)→d N(0, 1)

That is, here we replace the observed information by the Fisher information.

We can arrive at the same result if we instead approximate the loglikelihood near θ̂ above, again
relying on the consistency of θ̂ is the last part of the proof.
What’s the take home message? The sampling distribution of θ̂ is asymptotically normal. Moreover,
the estimation variance of θ̂ is well approximated by the inverse of the Fisher information for large n
(V ar(θ̂) = (nFI(θ̂))−1) or by the inverse of the observed information. The result also holds in the
multiple parameter case when FI(θ) is a p× p matrix.

Consistency of the MLE

Consistency means that
P (|θ̂ − θ| > ε)− → 0

or
P (|θ̂ − θ| ≤ ε)− → 1

That is, eventually θ̂ is in a small neighborhood of the true θ.

This is not a trivial result. The MLE is the maximizer of the observed loglikelihood. To prove that it
has the right limit we will have to show that we have equality of the max of a limit and the limit of a
max.

We start with some notation:

� Normalized loglikelihood l̄(θ|X̃) = 1
n

∑
i logpθ(Xi) (here written as a random variable)

� By the WLLN we have that l̄(θ)→p Eθ0 [l(θ|X)] =
∫

(logpθ(x))pθ0(x)dx

� We denote this last term by l0(θ)

� That is, for large n we expect the observed likelihood l̄(θ) to be close to its expected value l0(θ).
We therefore expect the maximum of l̄ to be close to the maximum of l0.

What is the maximum of l0? Here we use the Information inequality or the Kullback-Leibler (KL)
divergence.

The KL measures the discrepancy between two models f and g, with respect to model f (so KL is not
symmetric). That is

KL(f, g) = Ef [log
f(X)

g(X)
] =

∫
(log

f(x)

g(x)
)f(x)dx

Now, we can show that KL(f, g) ≥ 0 with equality only when f = g. The results follows from applying
Jensen’s inequality.
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� Jensen’s inequlity. For r.v. Z and convex function h() we have E[h(Z)] ≥ h(E[Z])

� Here, use h(z) = −log(z)

� KL(f, g) = Ef [−log g(X)
f(X) ] ≥ −logEf [ g(X)

f(X) ] = −log
∫
g(x)dx = 0

We now apply this result to the pdf pθ compared to the true model pθ0 and obtain

Eθ0 [− log
pθ(X)

pθ0(X)
] ≥ 0

or
l0(θ0) ≥ l0(θ)

and so, θ0 is the maximizer of the expected loglikelihood l0(θ).

We now need to show that the sequence of estimators θ̂(Xn) converges to θ0 in probability (here I
use the notation Xn instead of X̃ to emphasize the dependency on the sample size). We already have
that

� θ̂(Xn) is the maximizer of l̄(θ|Xn)

� θ0 is the maximizer of l0(θ)

� l̄(θ|Xn)→p l0(θ) by WLLN for all θ

See, this is where we need one more step: that the limit of the maximizer (limitn ˆθ(Xn)) is the
maximizer of the limit (θ0). What is needed to make this leap?

� Compactness of the parameter space Θ (a technical condition, trying to guarantee that l̄ doesn’t
act crazy for unbounded θ etc).

� Uniform convergence for l̄
Pθ0(sup

θ∈Θ
|l̄(θ|Xn)− l0(θ)| > ε)→ 0

� We also need some conditions on pθ, l(θ), l0(θ) continuous in θ and that θ0 is the unique maximizer
of l0.

Here is a proof:

� We want to prove that θ̂(Xn) is guaranteed to be in a smaller neighborhood Θ(ε) = (θ0− ε, θ0 + ε)
eventually (for large enough n).

� Consequently, we need to make sure that Xn eventually is such that l̄(θ) is maximized in Θ(ε)

� To prove this we consider two possibilities: Θ(ε) (what we want) and Θ(ε)c (all of Θ not in Θ(ε))

� As n goes to ∞, can we show that θ̂(Xn) falls in Θ(ε) with probability 1?

� Well, this depends on how l̄(θ|Xn) behaves in both Θ(ε) and Θ(ε)c.

The proof is rather cute. We will first find a set of events that are eventually true, i.e. have probability
1 in the limit. Then we will show that if these events are true, then θ̂ has to be in the desired neighborhood.

We start with the region we don’t want to end up in: Θ(ε)c. Now, we assume that l0 is continuous
and that this region of θ is compact, then l0 attains some maximum at some value θ∗ ∈ Θ(ε)c.
Since θ0 is the unique maximizer of l0(θ) we have that

l0(θ∗) < l0(θ0)

or
l0(θ0)− l0(θ∗) = δ > 0
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for some δ. This is what we know for the expected likelihood. Now to the sample outcome:

We define an event
A(Xn) = [ sup

θ∈Θ(ε)c
|l̄(θ|Xn)− l0(θ)| < δ/2

i.e., samples Xn such that the observed loglikelihood and the expected loglikelihood functions are not
very far apart for any θ in this region. (Note, the event is defined for the same δ as above).

For such Xn, i.e. when A(Xn) is true, then

l̄(θ) < l0(θ) + δ/2

(I just open up the interval inside A and pick on direction). But

l̄(θ) < l0(θ) + δ/2 ≥ l0(θ∗) + δ/2 = l0(θ0)− δ + δ/2 = l0(θ0)− δ/2

from the results on l0 above.

What this says is that, if A(Xn) is true, then for θ ∈ Θ(Xn) we have

l̄(θ) < l0(θ0)− δ/2

We now look in the other region: Θ(ε). Here we know that l0(θ) attains its maximum at θ0. We
define a sample event

B(Xn) = [ sup
θ∈Θ(ε)

|l̄(θ|Xn)− l0(θ)| < δ/2]

That is, when B(Xn) defines sample events where the observed and expected likelihood are close in the
entire range of θ ∈ Θ(ε). Note, A(Xn) and B(Xn) are sample events defined through different values
of θ (remember, you can evaluate the likelihood, observed and expected at different θ), so one might be
true for a given Xn and one might not.

If B(Xn) is true then
l̄(θ|Xn) > l0(θ)− δ/2

(here I just open up the interval inside the B and look in the other direction compared with what I did
for A). In particular,

l̄(θ0|Xn) > l0(θ0)− δ/2
since θ0 is among the θ where the sample event B is evaluated.

For finite n, we can have A(Xn) and/or B(Xn) be true so we cannot really say that the maximizer
of l̄(θ) will fall in Θ(ε) with probability 1. However, when we let n go to ∞, the uniform convergence
assumption on l̄ guarantees that both A and B are true with probability 1.

Pθ0(A(Xn) ∪B(Xn)) = Pθ0(sup
Θ
|l̄(θ)− l0(θ)| ≤ ε)→ 1

But if both A and B are true, we have

� Θ(ε): l̄(θ) > l0(θ)− δ/2 and l̄(θ0) > l0(θ0)− δ/2

� Θ(ε)c: l̄(θ) < l0(θ)− δ/2

But we get θ̂ by maximizing l̄(θ) and so, comparing the two bullets above, we will have to have θ̂ in Θ(ε).
That is,

� If A and B are true, θ̂ is in Θ(ε)

� But by the uniform convergence assumption on l̄, A and B are true eventually with probability 1

� Therefore Pθ0(θ̂ ∈ Θ(ε))→ 1 and θ̂ is consisten.

Proving the uniform convergence could be a more difficult nut to crack, but for nice pdfs it’s not a
problem.
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