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1 Bayesian inference

1.1 Philosophy

Frequentist:

� Parameters are fixed, unknown constants

� It’s all about long-run frequency behaviors - what would happen if we could repeat the experiment
under the exact same conditions again and again. E.g. a 95% confidence interval covers the true θ
in 95% such experiments.

Bayesian:

� probability - belief, not a long-run frequency

� can make probability statements on parameters

� inference based on probability distribution for θ

When to be Bayesian?

� Depends on who you ask! But here’s what I think

� when freq methods are too uncertain - need to regularize estimation (e.g. small sample size, complex
model)

� prior knowledge exists (e.g. population incidence rates of disease)

� logical to do so - inference that we want is of the form Pr(θ|Data)

1.2 Setup

L(θ|x̃) =
∏n
i=1 f(xi|θ) is the likelihood. We assume a prior π(θ) for the parameter. This distribution

can also depend on parameters that can be assumed to come from a distribution (hyperprior, hyperpa-
rameters).

The posterior distribution is

π(θ|x̃) =
L(θ|x̃)π(θ)∫
L(θ|x̃)π(θ)dθ

For large n, the likelihood dominates this expression. Frequently, we need only concern ourselves with
the numerator above, i.e. the product of the likelihood and the prior. The denominator is normalizing
constant.

How do we use this setup? We can construct point estimates from the posterior, frequently just the
posterior mean is used

θ̂B = E(θ|x̃) =

∫
θπ(θ|x̃)dθ
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We can also construct interval estimates from the posterior. Find the shortest interval [a, b] with a
probability mass exceeding 1− α: ∫ b

a

π(θ|x̃)dθ = 1− α

is a 1− α credible region for θ.

However, it is really the entire posterior distribution that is the Bayesian result.

Example

� Xi, i = 1, · · · , n is iid Be(p). Assume prior for p to be U [0, 1]

� the posterior is π(p|tix) ∝ π(p)L(p|x̃) = 1p
∑

xi(1− p)n−
∑

xi

� Alternatively, let π(p) be Beta(α, β)

� That is, π(p) = Γ(α+β)
Γ(α)Γ(β)p

α−1(1− p)β−1

� The prior mean is α
α+β

� The posterior is

π(p|x̃) = pα−1p
∑

x(1− p)β−1(1− p)n−
∑

xc(
∑

x, α, β)

� That is
π(p|x̃) = pα+

∑
x−1(1− p)n−

∑
x+β−1c(

∑
x, α, β)

which is a Beta(
∑
x + α, n −

∑
x + β) distribution (all we need to do is match the normalizing

constant)

� The posterior mean is thus

p̂B =

∑
x+ α

n+ α+ β
= x̄(

n

n+ α+ β
) + (

α

α+ β
)(1− n

n+ α+ β
)

That is, a weighted average of the freq estimate x̄ and the prior mean. The larger n is, the closer
this estimates gets to just the MLE x̄. The larger α + β is, the closer the estimate is to the prior
mean. You can think of α+ β as representing ”extra” data that has mean α/(α+ β).

� If we choose α = β = 1 we call this a ”flat prior” with prior mean p = 1/2. If we choose β > α, our
prior belief is that p is small.

The above is an example of using a conjugate prior. If we carefully match the data generative
distribution fθ and the prior π, we obtain a posterior of the same family as the prior. Other examples
include: Poisson - Gamma, Normal-Normal, Binomial-Beta.
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