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1 Testing

We can think of testing as a particular kind of estimation problem. Let δ(X̃) be a statistic that takes
on values 0 or 1. A value of 0 means you don’t reject a hypothesis (to be specified later) and a value of
1 means you reject. Then Eθ0 [δ(X̃)] = Pθ0(δ(X̃) =) relates to the test outcome under a particular true
value for the parameter θ0. The outcome can be correct or incorrect.

1.1 Setup

We have X̃ iid fθ(x) with θ ∈ Θ indexing a known model family. We consider two hypotheses: H0 : θ ∈ Θ0

is called the null hypothesis and H1 : θ ∈ Θc
0 the alternative. Together they comprise the whole param-

eter space.

We construct a rule δ(X̃) s.t. δ(X̃) = 1 means we reject H0. Usually this rule is a function of a statistic
T (X̃) and not X̃ directly - just like when we did estimation of a function q(θ). To go from a statistic
T (X̃) to a rule δ we define a rejection region such that

δ(X̃) = 1{T (X̃) ∈ R} = 1{X̃ ∈ R′}

Example:

� We play a coin tossing game. The probability of a win in each game is θ

� We want to test the hypothesis H0 : θ ≥ 1/2 against H1 : θ < 1/2.

� We play n times and get X wins with T (X) = X/n the proportion of wins in the game.

� Consider two different rejection regions: R1 = {x : T (x) < 1/2} and R2 = {x : T (x) < 0.35}

� What if θ0 = 1/2? With rejection region R1 we reject this hypothesis with probability

Pθ0(T (x) < 1/2) = P (Bin(n, 1/2) < n/2)

which is 0.54 for n = 100 and 0.63 for n = 10

� Using R3 these probabilities are 0.001 and 0.17 respectively

� So, using R3 means you do not falsely reject the hypothesis θ0 = 1/2 as frequently

� What if the true θ0 = 1/4 meaning H0 is false?

� Using R1 we reject the null 100% of the times when n = 100 and 98% of the time when n = 10

� Using R2 this is reduced to 99% and 78% respectively.

� The example illustrates that it is difficult to construct a test that behaves as desired in the region
of the null AND in the region of the alternative
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1.2 Type errors

The above can be summarized by two kinds of errors:

� Type I error: rejecting H0 when H0 is true

� Type II error: failing to reject H0 when H0 is false

� Correct decision: rejection H0 when H0 is false, failing to reject H0 when H0 is true

Note that I always say ”fail to reject” never ”accept”. The reason for this is that all calculations done to
construct tests are done under the assumption that the null is true. ”Accept” sounds like you can prove
the null to be true, but that would be a circular argument.

We look more closely at the two errors:

P (type I) = P (δ(X) = 1|H0) = P (X ∈ R|H0)

This error rate is usually fairly easy to retrieve - we only need to evaluate it for θ ∈ Θ0 and often only
for values on the boundary.

P (type II) = P (δ(X) = 0|H1) = P (X /∈ R|H1)

This can be more tricky. This error rate depends on the actual value θ ∈ Θc
0 and its distance from the

Θ0. It is more common to convert the type II error rate into a power function:

β(θ) = Pθ(δ(X) = 1)

We want this power function to be as small as possible for θ ∈ Θ0 (to control the type I error rate) and
as large as possible for θ ∈ Θc

0 (to enable detection of the null not being true). Since you can’t optimize
these two goals at the same time, one working against the other, we usually make controlling the type I
error rate our priority and look for tests with maximum power from those that control the type I error.
We say that a test has level α if P (typeI) ≤ α.

1.3 Hypothesis testing

A simple hypothesis test compares two specific values of θ, e.g. θ0 vs θ1. A complex or composite hy-
pothesis test is one that compares sets of parameter values, e.g. θ ≤ θ0 vs θ > θ0.

We can say much more about the behaviour of simple hypothesis tests. For a simple test we can find R
such that

Pθ0(δ(X) = 1) = Pθ0(X ∈ R′) = α

(perhaps not exact if we have discreet distributions, but then ≤ α). We can also compute

β(θ1) = Pθ1(δ(X) = 1)

In the complex case we look at

PH0
(δ(X) = 1) = PH0

(X ∈ R′) ≤ α, for all θ ∈ Θ0

and we need the inequality to be an equality for at least one point or R is too small. We then compute

β(θ) = P (X ∈ R′|θ), for all θ ∈ Θc
0

The power function is especially interesting to look at for values of θ near the null. The sharpness
of the power curve tells you how easy/difficult it is to distinguish between the null and the alternative.
For values of θ far from the null almost any test will do the right thing and reject the null, but it’s the
behaviour near the boundary that tells you how useful the test will be in practise. As n gets larger, the
power curve β(θ) gets sharper - meaning testing, like estimation, behaves better for large sample sizes.

We want to maximize the power outside the null parameter region while constraining the type I error
rate at level α.
Example:
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� Let’s look at a multinomial example: outcomes A and B occur with probability θ and outcome C
with probability 1− 2θ.

� We want to test H0 : θ ≤ θ0 = 1/4 against H1 : θ > θ0

� In n games we get X1 A’s, X2 B’s and n− (X1 +X2) C’s.

� Test 1: Reject H0 if X1 is too large: R1 = {X : X1 > x}

� Test 2: Reject H0 if X1 +X2 is too large: R2 : {X : X1 +X2 > y}

� Is one test better than the other?

� We have L(θ|X̃) = θX1θX2(1− 2θ)n−X1−X2const

� That is, L(θ|X̃) = θX1+X2(1− 2θ)n−X1−X2const and so T (X) = X1 +X2 is a sufficient statistic.

� Test 1: P (X1 > x|θ ≤ 1/4) = P (Bin(n, θ) > x|θ ≤ 1/4). We want this to be less than α

� Test 2: P (T (X) > y|θ ≤ 1/4) = P (Bin(n, 2θ) > y|θ ≤ 1/4)

� Test 1: using a large sample approximation that Bin(n, p) ∼ N(np, np(1− p) we can compute

P (
X − np√
np(1− p)

= Z >
x− np√
np(1− p)

|p ≤ 1/4) = α

at p = 1/4. This gives us that

x = np+ z1−α
√
np(1− p)

where zq are quantiles of the standard normal. For n = 100 and α = .05, x = 32.

� Test 2: via the same kind of calculation we find that y = 58 results in a level α = .05 test.

� Let us now say we observe the following data set: n = 100, X1 = 30, X2 = 25. Then we fail to
reject the null in either case.

� What if θ = 1/3 in actuality?

� Test 1:
β(θ = 1/3) = P (X1 > 32|θ = 1/3) = P (Bin(n, 1/3) > 32) = 0.56

� Test 2:
β(θ = 1/3) = P (X1 +X2 > 58|θ = 1/3) = P (Bin(n, 2/3) > 58) = 0.96

� Test 2 is clearly better (more powerful), at least for θ = 1/3.

� Turns out that if you compare the power for other values of θ in the alternative, Test 2 is always
more powerful than Test 1.

� Test 2 is thus uniformly more powerful than Test 1.

UMP test: If a test is uniformly more powerful than any other test of size α, the we call it the UMP
(uniformly most powerful) test.

Usually, such a test does not exist except for special cases such as simple-vs-simple tests or one-sided
tests for one-parameter exponential families. We can still try to construct tests that are as powerful as
possible in principle, and we may not even care about all values of θ. As I said above, it’s more important
that you have a locally powerful test (near the null).
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2 Neyman-Pearson lemma, LRT

NP lemma: We test a simple-vs-simple hypothesis: H0 : θ = θ0 vs H1 : θ = θ1. If we construct a
test from the rejection region

R = {x̃ :
fθ1(x̃)

fθ0(x̃)
> kα}

where kα such that

Pθ0(
fθ1(x̃)

fθ0(x̃)
> kα) = α

then it is the most powerful test.

If we go back to our example above:

� H0 : θ = θ0 and H1 : θ = θ1, note that

fθ1
fθ0

= (
θ1

θ0
)t(

1− 2θ1

1− 2θ0
)n−t

where t = x1 + x2.

� Both terms of this ratio (assuming θ1 > θ0) increases with t and so setting a rejection on the ratio
is equivalent to setting a rejection on t.

� Thus Test 2 is in fact a test of the form of the NP lemma.

Things get more complicated when we don’t have simple-vs-simple hypotheses. The likelihood ratio
test is defined as follows:
LRT, likelihood ratio test:

λ(x̃) =
supΘ0

L(θ|x̃)

supΘL(θ|x̃)
=
L(θ̂0|x̃)

L(θ̂|x̃)

where θ̂ is the MLE and θ̂0 is the maximizer of the likelihood in the restricted parameter space Θ0.
The rejection region is of the form

R = {x̃ : λ(x̃) < cα}

where cα is such that P (λ(x̃) < cα|θ ∈ Θ0) ≤ α

Actually, this doesn’t quite look like just a generalizing of the NP lemma because the denominator is
not the sup over θ in the alternative. However, if the null is very small, these are almost the same,
but foremost this is the chosen form for the LRT because it makes it easie to work out the sampling
distribution for this statistic (the LRT) in practice.

Example

� 2 independent samples: x̃ n samples from exp(θ) and ỹ m samples from exp(µ)

� Test H0 : θ = µ

� The LRT is

λ(x̃, ỹ) =
supθ

1
θn e
−
∑

x/θ 1
θm e

−
∑

y/θ

supθ,µ
1
θn e
−sumx/θ 1

µm e
−
∑

y/µ

� The numerator is maximized at θ0 =

∑
x+

∑
y

n+m and the denominator at θ̂ =
∑
x/n and µ̂ =

∑
y/m.

� Plug this into the LRT to obtain

λ(x̃, ỹ) =
(n+m)n+m(

∑
x)n(

∑
y)m

nnmm(
∑
x+

∑
y)n+m
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� We reject the null when the LRT is less than some c. How can we figure out what c should be to
give us a level α test?

� Denote t = T (x̃, ỹ) =

∑
x∑

x+
∑

y
. Then we can write the LRT as

λ(x̃, ỹ) =
(n+m)n+m

nnmm
tn(1− t)m

� The LRT is maximized at t = n
n+m and is unimodal. So the LRT rejects if λ ≤ c corresponds to

rejecting when T ≤ a or T ≥ b for some a and b with an(1− a)m = bn(1− b)m (to make rejection
as easy in either direction away from the max value).

� Now, sine
∑
x and

∑
y are sums of exponentials they are independent gamma-distributed. A ratio

of the form of t follows a Beta distribution. We can now use the Beta distribution to figure out
what a and b should be (looking at the upper and lower α/2 quantiles of the Beta(n,m).

The LRT is a function of the sufficient statistic (follows from the factorization theorem). Now, the
LRT is not a UMP in general but can be for certain special cases. We can also arrive at a likelihood
based test that is locally most powerful.

We want to find a test with maximum power for θ near θ0, e.g. for θ1 = θ0 + δ. We look at the rate of
change of the power function at θ0 and want to maximize it (sharpness of the power function). Now,
locally, comparing just these two values we can arrive at a test using the NP lemma as

L(θ0 + δ)/L(θ0) > kα

We linearize the numerator (Taylor expansion) and write

L(θ0 + δ)

L(θ0)
' L(θ0) + δL′(θ0)

L(θ0)
> kα

We can write this as

δ
L′(θ0)

L(θ0)
> cα

or (since δ > 0)
L′(θ0)

L(θ0)
> bα.

Using what we know about the derivative of logs we have

d logL(θ)|θ0 > bα

That is, we reject the null when the score S(θ0) is too large. This is called the score test.

5


	Testing
	Setup
	Type errors
	Hypothesis testing

	Neyman-Pearson lemma, LRT

