Problem 1

Let $(X_i, i = 1, ..., n)$ be a normally distributed random sample with $X_i \sim \mathcal{N}(\theta, \sigma^2)$ for i = 1, ..., n. Denote the sample mean by $\bar{X} := 1/n \sum_{i=1}^n X_i$ and assume that σ^2 is known.

- (a) Show that \bar{X} is a minimal sufficient statistic for θ .
- (b) Show that the family of normal pdfs with σ^2 known is an exponential family.
- (c) Show that \bar{X} is a complete statistic for θ .
- (d) Derive estimators for θ and σ^2 with the method of moments and show if the estimators are unbiased, where you are allowed to use your knowledge about S^2 .
- (e) Derive the likelihood function for θ . Compute the maximum likelihood estimator for θ .
- (f) Define the mean squared error of an estimator of a parameter and compute it for \bar{X} .

(22 points)

Problem 2

Let $(X_i, i = 1, ..., n)$ be a normally distributed random sample with $X_i \sim \mathcal{N}(\theta, \sigma^2)$ for i = 1, ..., n. Assume that σ^2 is known and consider the hypothesis test $H_0: \theta \leq \theta_0$ versus $H_1: \theta > \theta_0$.

- (a) Give the definition of a likelihood ratio statistic λ and use it to define a likelihood ratio test.
- (b) Compute the likelihood ration test for the given scenario by giving the rejection region of the test with respect to $c \in [0, 1]$.
- (c) Give the definition of a monotone likelihood ration and show that the family of normal distributions with σ^2 known has a monotone likelihood ratio.
- (d) Define what a uniformly most powerful level α test is and construct such a test for the given scenario by using \bar{X} as estimator for θ , where you should not forget to show that your constructed test has the desired properties.
- (e) Construct a valid p-value for the estimator \bar{X} of θ within the given test scenario.

(16 points)

Problem 3

Let $(X_i, i = 1, ..., n)$ be a normally distributed random sample with $X_i \sim \mathcal{N}(\theta, \sigma^2)$ for i = 1, ..., n. Denote the sample mean by $\bar{X} := 1/n \sum_{i=1}^n X_i$ and assume that σ^2 is known.

- (a) Define what a pivot is and show that $\bar{X} \theta$ is a pivot for θ .
- (b) For a given $\alpha \in [0, 1]$, compute the shortest possible 1α confidence interval for θ by using the pivot $\bar{X} \theta$.

(9 points)

Problem 4

Prove the following statements:

(a) Define first what a best unbiased estimator W of $\tau(\theta)$ is. Show further that the best unbiased estimator W of $\mathbb{E}_{\theta}(W)$ satisfies that

$$Cov_{\theta}(W,U)=0$$

for all $\theta \in \Theta$, where Θ denotes the parameter space and U is any unbiased estimator of 0.

(b) For each $\theta_0 \in \Theta$, let $A(\theta_0)$ be the acceptance region of a level α test of $H_0: \theta = \theta_0$ versus $H_1: \theta \neq \theta_0$. For each $x \in \mathcal{X}$, define the set C(x) in the parameter space by

$$C(x) := \{ \theta_0 \in \Theta, x \in A(\theta_0) \},\$$

where \mathcal{X} denotes the sample space. Show that the random set C(X) is a $1-\alpha$ confidence set.

- (c) Give the definition of a consistent sequence of estimators of a parameter θ . Show that $(W_n, n \in \mathbb{N})$ is a consistent sequence of estimators of θ if for all $\theta \in \Theta$
 - (a) $\lim_{n\to\infty} \mathsf{Var}_{\theta} W_n = 0$ and
 - (b) $\lim_{n\to\infty} \mathsf{Bias}_{\theta} W_n = 0.$

(13 points)