Problem 1

Let $(X_i, i = 1, ..., n)$ be a normally distributed random sample with $X_i \sim \mathcal{N}(\mu, \sigma^2)$ for i = 1, ..., n. Denote the sample mean by $\bar{X} := 1/n \sum_{i=1}^n X_i$ and the sample variance by $S^2 := 1/(n-1) \sum_{i=1}^n (X_i - \bar{X})^2$.

- (a) Show that the family of normal pdfs is an exponential family.
- (b) Show that (\bar{X}, S^2) is a minimal sufficient statistic for (μ, σ^2) .
- (c) Derive the likelihood function for σ^2 . Compute the maximum likelihood estimator $\hat{\sigma}^2$ for σ^2 , where you are allowed to assume that the maximization with respect to μ can be done independently and the maximum likelihood estimator is known to be $\hat{\mu} = \bar{X}$.
- (d) Define the mean squared error of an estimator of a parameter and compute it for S^2 as well as for $\hat{\sigma}^2$. (Hint: You are allowed to use that $\mathsf{Var}(S^2) = 2\sigma^4/(n-1)$.)
- (e) Give at least one reason why S^2 should be preferred over $\hat{\sigma}^2$ and at least one reason why $\hat{\sigma}^2$ performs better than S^2 .

(23 points)

Problem 2

Let f be a unimodal pdf. If the interval [a, b] satisfies

(i)
$$\int_{a}^{b} f(x) dx = 1 - \alpha$$
,

- (ii) f(a) = f(b) > 0,
- (iii) $a \le x^* \le b$, where x^* is a mode of f,

then [a, b] is a shortest among all intervals that satisfy (i).

- (a) Prove the claim by contradiction by assuming that there exists a shorter interval [a',b'] that satisfies (i) with a'>a and that the claim is already proven for $a'\leq a$.
- (b) Give a counterexample to show that the shortest interval that satisfies(i) is not necessarily unique.
- (c) Let $(X_i, i = 1, ..., n)$ be a random sample with $X_i \sim \mathcal{N}(\mu, \sigma^2)$ for i = 1, ..., n. For fixed $\alpha \in (0, 1)$ compute the shortest 1α confidence interval for the parameter μ .

(13 points)

Problem 3

Let $(X_i, i = 1, ..., n)$ be a random sample with $X_i \sim \mathcal{N}(\theta, \sigma^2)$ for i = 1, ..., n and suppose that the prior distribution on θ is $\mathcal{N}(\mu, \tau^2)$, where σ^2 , μ , and τ^2 are assumed to be known. In an exercise it was shown that the posterior distribution $\pi(\cdot|\bar{x})$ is normal with

$$\mathbb{E}(\theta|\bar{x}) = \frac{\tau^2}{\tau^2 + \sigma^2/n} \bar{x} + \frac{\sigma^2/n}{\tau^2 + \sigma^2/n} \mu \quad \text{and} \quad \mathsf{Var}(\theta|\bar{x}) = \frac{\tau^2 \sigma^2/n}{\tau^2 + \sigma^2/n},$$

where \bar{X} denotes the sample mean of the random sample.

- (a) Introduce the Bayesian approach to statistics.
- (b) Recall the definition of a conjugate family and give an example.
- (c) What is a possible point estimate in the Bayesian framework? Compute this explicitly for the parameter θ .
- (d) Construct a Bayesian test for the hypothesis $H_0: \theta \leq \theta_0$ vs. $H_1: \theta > \theta_0$ by deriving an acceptance region.
- (e) Give the definition of a credible set and construct for fixed $\alpha > 0$ a 1α credible set for θ such that it is the highest posterior density region. What is an interpretation of a 1α credible set?

(16 points)

Problem 4

Let $(W_n, n \in \mathbb{N})$ be a consistent sequence of estimators of a parameter θ and $(a_n, n \in \mathbb{N})$ and $(b_n, n \in \mathbb{N})$ real-valued sequences such that $\lim_{n \to +\infty} a_n = 1$ and $\lim_{n \to +\infty} b_n = 0$.

- (a) Give the definition of a consistent sequence of estimators of a parameter θ .
- (b) Show that $(a_n W_n + b_n, n \in \mathbb{N})$ is a consistent sequence of estimators of θ
- (c) What does the result imply for observations of finite size and consistency in the sense of this problem?

(8 points)