Martingales

Last updated by Serik Sagitov: May 23, 2013

Abstract

This Stochastic Processes course is based on the book Probabilities and Random Processes by Geoffrey Grimmett and David Stirzaker. Chapters 7.7-7.8, and 12.

1 Definitions and examples

Example 1 Martingale: a betting strategy. Let X_{n} be the gain of a gambler doubling the bet after each loss. The game stops after the first win.

- $X_{0}=0$
- $X_{1}=1$ with probability $1 / 2$ and $X_{1}=-1$ with probability $1 / 2$,
- $X_{2}=1$ with probability $3 / 4$ and $X_{2}=-3$ with probability $1 / 4$,
- $X_{3}=1$ with probability $7 / 8$ and $X_{3}=-7$ with probability $1 / 8, \ldots$,
- $X_{n}=1$ with probability $1-2^{-n}$ and $X_{n}=-2^{n}+1$ with probability 2^{-n}.

Conditional expectation

$$
\mathbb{E}\left(X_{n+1} \mid X_{n}\right)=\left(2 X_{n}-1\right) \frac{1}{2}+(1) \frac{1}{2}=X_{n}
$$

If N is the number of games, then $\mathbb{P}(N=n)=2^{-n}, n=1,2, \ldots$ with $\mathbb{E}(N)=2$ and

$$
\mathbb{E}\left(X_{N-1}\right)=\mathbb{E}\left(1-2^{N-1}\right)=1-\sum_{n=1}^{\infty} 2^{n-1} 2^{-n}=-\infty
$$

Definition $2 A$ sequence of sigma-fields $\left(\mathcal{F}_{n}\right)$ such that $\mathcal{F}_{0} \subset \mathcal{F}_{1} \subset \ldots \subset \mathcal{F}_{n} \subset \ldots \subset \mathcal{F}$ is called a filtration. A sequence of r.v. $\left(Y_{n}\right)$ is called adapted to $\left(\mathcal{F}_{n}\right)$ if Y_{n} is \mathcal{F}_{n}-measurable for all n. In this case the sequence $\left(Y_{n}, \mathcal{F}_{n}\right)$ is called a martingale if, for all $n \geq 0$,

- $\mathbb{E}\left(\left|Y_{n}\right|\right)<\infty\left(\mathbb{E}\left(Y_{n}^{+}\right)<\infty, \mathbb{E}\left(Y_{n}^{-}\right)<\infty\right)$,
- $\mathbb{E}\left(Y_{n+1} \mid \mathcal{F}_{n}\right)=Y_{n}\left(\geq Y_{n}, \leq Y_{n}\right)$.

Definition 3 Let $\left(Y_{n}\right)$ be adapted to a filtration $\left(\mathcal{F}_{n}\right)$. Then $\left(Y_{n}, \mathcal{F}_{n}\right)$ is called a submartingale if

- $\mathbb{E}\left(Y_{n}^{+}\right)<\infty$,
- $\mathbb{E}\left(Y_{n+1} \mid \mathcal{F}_{n}\right) \geq Y_{n}$.

Definition 4 Let $\left(Y_{n}\right)$ be adapted to a filtration $\left(\mathcal{F}_{n}\right)$. Then $\left(Y_{n}, \mathcal{F}_{n}\right)$ is called a supermartingale if

- $\mathbb{E}\left(Y_{n}^{-}\right)<\infty$,
- $\mathbb{E}\left(Y_{n+1} \mid \mathcal{F}_{n}\right) \leq Y_{n}$.

Consider the sequence of means $m_{n}=\mathbb{E}\left(Y_{n}\right)$. We have $m_{n+1} \geq m_{n}$ for submartingales, $m_{n+1} \leq m_{n}$ for supermartingales, and $m_{n+1}=m_{n}$ for martingales. A martingale is both a sub- and supermartingale. If $\left(Y_{n}\right)$ is a submartingale, then $\left(-Y_{n}\right)$ is a supermartingale.

Example 5 Consider a simple random walk $S_{n}=X_{1}+\ldots+X_{n}$ with $\mathbb{P}\left(X_{i}=1\right)=p, \mathbb{P}\left(X_{i}=-1\right)=q$, and $S_{0}=k$. The centered $S_{n}-n(p-q)$ is a martingale:

$$
\mathbb{E}\left(S_{n+1}-(n+1)(p-q) \mid X_{1}, \ldots, X_{n}\right)=S_{n}+\mathbb{E}\left(X_{n+1}\right)-(n+1) p=S_{n}-n(p-q)
$$

Another martingale is $Y_{n}=(q / p)^{S_{n}}$:

$$
\mathbb{E}\left(Y_{n+1} \mid X_{1}, \ldots, X_{n}\right)=p(q / p)^{S_{n}+1}+q(q / p)^{S_{n}-1}=(q / p)^{S_{n}}=Y_{n}
$$

with $\mathbb{E}\left(Y_{n}\right)=\mathbb{E}\left(Y_{0}\right)=(q / p)^{k}$. It is called De Moivre's martingale.
Example 6 Stopped de Moivre's martingale. Consider the same simple random walk and suppose that it stops if it hits 0 or N which is larger than the initial state k. Denote $D_{n}=Y_{T \wedge n}$, where T is the stopping time of the random walk and Y_{n} is the de Moivre martingale. It is easy to see that D_{n} is also a martingale. Put $\mathbb{P}\left(S_{T}=0\right)=\mathbb{P}\left(Y_{T}=1\right)=p_{k}$ and $\mathbb{P}\left(S_{T}=N\right)=\mathbb{P}\left(Y_{T}=(q / p)^{N}\right)=1-p_{k}$. From $\mathbb{E}\left(Y_{T}\right)=\mathbb{E}\left(Y_{0}\right)$ (to be proved later) we derive

$$
(q / p)^{0} p_{k}+(q / p)^{N}\left(1-p_{k}\right)=(q / p)^{k} \quad \Rightarrow \quad p_{k}=\frac{(p / q)^{N-k}-1}{(p / q)^{N}-1}
$$

as long as $p \neq q$.
Example 7 Let $S_{n}=X_{1}+\ldots+X_{n}$, where X_{i} are iid r.v. with zero means and finite variances σ^{2}. Then $S_{n}^{2}-n \sigma^{2}$ is a martingale

$$
\mathbb{E}\left(S_{n+1}^{2}-(n+1) \sigma^{2} \mid X_{1}, \ldots, X_{n}\right)=S_{n}^{2}+2 S_{n} \mathbb{E}\left(X_{n+1}\right)+\mathbb{E}\left(X_{n+1}^{2}\right)-(n+1) \sigma^{2}=S_{n}^{2}-n \sigma^{2}
$$

Example 8 Branching processes. Let Z_{n} be a branching process with $Z_{0}=1$ and the mean offspring number μ. Since $\mathbb{E}\left(Z_{n+1} \mid Z_{n}\right)=\mu Z_{n}$, the ratio $W_{n}=\mu^{-n} Z_{n}$ is a martingale.

In the supercritical case, $\mu>1$, the extinction probability $\eta \in[0,1)$ of Z_{n} is identified as a solution of the equation $\eta=h(\eta)$, where $h(s)=\mathbb{E}\left(s^{X}\right)$ is the generating function of the offspring number. The process $V_{n}=\eta^{Z_{n}}$ is also a martingale

$$
\mathbb{E}\left(V_{n+1} \mid Z_{1}, \ldots, Z_{n}\right)=\mathbb{E}\left(\eta^{X_{1}+\ldots+X_{Z_{n}}} \mid Z_{1}, \ldots, Z_{n}\right)=h(\eta)^{Z_{n}}=V_{n}
$$

Example 9 Doob's martingale. Let Z be a r.v. on $(\Omega, \mathcal{F}, \mathbb{P})$ such that $\mathbb{E}(|Z|)<\infty$. For a filtration $\left(\mathcal{F}_{n}\right)$ define $Y_{n}=\mathbb{E}\left(Z \mid \mathcal{F}_{n}\right)$. The $\left(Y_{n}, \mathcal{F}_{n}\right)$ is a martingale: first, by Jensen's inequality,

$$
\mathbb{E}\left(\left|Y_{n}\right|\right)=\mathbb{E}\left|\mathbb{E}\left(Z \mid \mathcal{F}_{n}\right)\right| \leq \mathbb{E}\left(\mathbb{E}\left(|Z| \mid \mathcal{F}_{n}\right)\right)=\mathbb{E}(|Z|)
$$

and secondly

$$
\left.\mathbb{E}\left(Y_{n+1} \mid \mathcal{F}_{n}\right)=\mathbb{E}\left(\mathbb{E}\left(Z \mid \mathcal{F}_{n+1}\right) \mid \mathcal{F}_{n}\right)\right)=\mathbb{E}\left(Z \mid \mathcal{F}_{n}\right)=Y_{n}
$$

As we show next the Doob martingale is uniformly integrable. Again due to Jensen's inequality,

$$
\left|Y_{n}\right|=\left|\mathbb{E}\left(Z \mid \mathcal{F}_{n}\right)\right| \leq \mathbb{E}\left(|Z| \mid \mathcal{F}_{n}\right)=: Z_{n}
$$

so that $\left|Y_{n}\right| 1_{\left\{\left|Y_{n}\right| \geq a\right\}} \leq Z_{n} 1_{\left\{Z_{n} \geq a\right\}}$. By the definition of conditional expectation $\mathbb{E}\left(\left(|Z|-Z_{n}\right) 1_{\left\{Z_{n} \geq a\right\}}\right)=0$ and we have

$$
\left|Y_{n}\right| 1_{\left\{\left|Y_{n}\right| \geq a\right\}} \leq|Z| 1_{\left\{Z_{n} \geq a\right\}}
$$

which entails uniform integrability, since $\mathbb{P}\left(Z_{n} \geq a\right) \rightarrow 0$ by the Markov inequality.

2 Convergence in L^{2}

Lemma 10 If $\left(Y_{n}\right)$ is a martingale with $\mathbb{E}\left(Y_{n}^{2}\right)<\infty$, then $Y_{n+1}-Y_{n}$ and Y_{n} are uncorrelated. It follows that $\left(Y_{n}^{2}\right)$ is a submartingale. More generally, if $J(x)$ is convex, then $J\left(Y_{n}\right)$ is a submartingale.

Proof. The first assertion follows from

$$
\mathbb{E}\left(Y_{n}\left(Y_{n+1}-Y_{n}\right) \mid \mathcal{F}_{n}\right)=Y_{n}\left(\mathbb{E}\left(Y_{n+1} \mid \mathcal{F}_{n}\right)-Y_{n}\right)=0 .
$$

The second claim is derived as follows

$$
\begin{aligned}
\mathbb{E}\left(Y_{n+1}^{2} \mid \mathcal{F}_{n}\right) & =\mathbb{E}\left(\left(Y_{n+1}-Y_{n}\right)^{2}+2 S_{n}\left(Y_{n+1}-Y_{n}\right)+Y_{n}^{2} \mid \mathcal{F}_{n}\right) \\
& =\mathbb{E}\left(\left(Y_{n+1}-Y_{n}\right)^{2} \mid \mathcal{F}_{n}\right)+Y_{n}^{2} \geq Y_{n}^{2} .
\end{aligned}
$$

Notice that

$$
\mathbb{E}\left(Y_{n+1}^{2}\right)=\mathbb{E}\left(Y_{n}^{2}\right)+\mathbb{E}\left(\left(Y_{n+1}-Y_{n}\right)^{2}\right)
$$

so that $\mathbb{E}\left(Y_{n}^{2}\right)$ is non-decreasing and there always exists a finite or infinite limit

$$
\begin{equation*}
M=\lim _{n \rightarrow \infty} \mathbb{E}\left(Y_{n}^{2}\right) \tag{1}
\end{equation*}
$$

The third assertion is due to the Jensen inequality.
Lemma 11 Doob-Kolmogorov's inequality. If $\left(Y_{n}\right)$ is a martingale with $\mathbb{E}\left(Y_{n}^{2}\right)<\infty$, then for any $\epsilon>0$

$$
\mathbb{P}\left(\max _{1 \leq i \leq n}\left|Y_{i}\right| \geq \epsilon\right) \leq \frac{\mathbb{E}\left(Y_{n}^{2}\right)}{\epsilon^{2}}
$$

Proof. Let $B_{k}=\left\{\left|Y_{1}\right|<\epsilon, \ldots,\left|Y_{k-1}\right|<\epsilon,\left|Y_{k}\right| \geq \epsilon\right\}$. Then using a submartingale property for the second inequality we get

$$
\mathbb{E}\left(Y_{n}^{2}\right) \geq \sum_{i=1}^{n} \mathbb{E}\left(Y_{n}^{2} 1_{B_{i}}\right) \geq \sum_{i=1}^{n} \mathbb{E}\left(Y_{i}^{2} 1_{B_{i}}\right) \geq \epsilon^{2} \sum_{i=1}^{n} \mathbb{P}\left(B_{i}\right)=\epsilon^{2} \mathbb{P}\left(\max _{1 \leq i \leq n}\left|Y_{i}\right| \geq \epsilon\right) .
$$

Theorem 12 If $\left(Y_{n}\right)$ is a martingale with finite M defined by (1), then there exists a random variable Y such that $Y_{n} \rightarrow Y$ a.s. and in mean square.

Proof. Step 1. For

$$
A_{m}(\epsilon)=\bigcup_{i \geq 1}\left\{\left|Y_{m+i}-Y_{m}\right| \geq \epsilon\right\}
$$

we will show that

$$
\begin{equation*}
\mathbb{P}\left(A_{m}(\epsilon)\right) \rightarrow 0, \quad m \rightarrow \infty \text { for any } \epsilon>0 . \tag{2}
\end{equation*}
$$

Put $S_{n}=Y_{m+n}-Y_{m}$. It is also a martingale, since

$$
\mathbb{E}\left(S_{n+1} \mid S_{1}, \ldots, S_{n}\right)=\mathbb{E}\left(\mathbb{E}\left(S_{n+1} \mid \mathcal{F}_{m+n}\right) \mid S_{1}, \ldots, S_{n}\right)=\mathbb{E}\left(S_{n} \mid S_{1}, \ldots, S_{n}\right)=S_{n}
$$

Apply the Doob-Kolmogorov inequality to this martingale to find that

$$
\mathbb{P}\left(\left|Y_{m+i}-Y_{m}\right| \geq \epsilon \text { for some } i \in[1, n]\right) \leq \epsilon^{-2} \mathbb{E}\left(\left(Y_{m+n}-Y_{m}\right)^{2}\right)=\epsilon^{-2}\left(\mathbb{E}\left(Y_{m+n}^{2}\right)-\mathbb{E}\left(Y_{m}^{2}\right)\right)
$$

Letting $n \rightarrow \infty$ we obtain $\mathbb{P}\left(A_{m}(\epsilon)\right) \leq \epsilon^{-2}\left(M-\mathbb{E}\left(Y_{m}^{2}\right)\right)$ and hence (2).
Step 2. Show that the sequence $\left(Y_{n}\right)$ is a.s. Cauchy convergent:

$$
\mathbb{P}\left(\bigcap_{\epsilon>0} \bigcup_{m \geq 1} A_{m}^{c}(\epsilon)\right)=1
$$

which implies the existence of Y such that $Y_{n} \rightarrow Y$ a.s. Indeed, since $A_{m}\left(\epsilon_{1}\right) \subset A_{m}\left(\epsilon_{2}\right)$ for $\epsilon_{1}>\epsilon_{2}$, we have

$$
\mathbb{P}\left(\bigcup_{\epsilon>0} \bigcap_{m \geq 1} A_{m}(\epsilon)\right)=\lim _{\epsilon \rightarrow 0} \mathbb{P}\left(\bigcap_{m \geq 1} A_{m}(\epsilon)\right) \leq \lim _{\epsilon \rightarrow 0} \lim _{m \rightarrow \infty} \mathbb{P}\left(A_{m}(\epsilon)\right)=0
$$

Step 3. Prove the convergence in mean square using the Fatou lemma

$$
\begin{aligned}
\mathbb{E}\left(\left(Y_{n}-Y\right)^{2}\right) & =\mathbb{E}\left(\liminf _{m \rightarrow \infty}\left(Y_{n}-Y_{m}\right)^{2}\right) \leq \liminf _{m \rightarrow \infty} \mathbb{E}\left(\left(Y_{n}-Y_{m}\right)^{2}\right) \\
& =\liminf _{m \rightarrow \infty} \mathbb{E}\left(Y_{m}^{2}\right)-\mathbb{E}\left(Y_{n}^{2}\right)=M-\mathbb{E}\left(Y_{n}^{2}\right) \rightarrow 0, \quad n \rightarrow \infty
\end{aligned}
$$

Example 13 Branching processes. Let Z_{n} be a branching process with $Z_{0}=1$ and the offspring numbers having mean μ and variance σ^{2}. The ratio $W_{n}=\mu^{-n} Z_{n}$ is a martingale with

$$
\mathbb{E}\left(W_{n}^{2}\right)=1+(\sigma / \mu)^{2}\left(1+\mu^{-1}+\ldots+\mu^{-n+1}\right)
$$

In the supercritical case, $\mu>1$, we have $\mathbb{E}\left(W_{n}^{2}\right) \rightarrow 1+\frac{\sigma^{2}}{\mu(\mu-1)}$, and there is a r.v. W such that $W_{n} \rightarrow W$ a.s. and in L^{2}. The Laplace transform of the limit $\phi(\theta)=\mathbb{E}\left(e^{-\theta W}\right)$ satisfies a functional equation $\phi(\mu \theta)=h(\phi(\theta))$.

3 Doob's decomposition

Definition 14 The sequence $\left(S_{n}, \mathcal{F}_{n}\right)$ is called predictable if $S_{0}=0$, and S_{n} is \mathcal{F}_{n-1}-measurable for all $n \geq 1$. It is also called increasing if $\mathbb{P}\left(S_{n} \leq S_{n+1}\right)=1$ for all $n \geq 0$.

Theorem 15 Doob's decomposition. A submartingale $\left(Y_{n}, \mathcal{F}_{n}\right)$ with finite means can be expressed in the form $Y_{n}=M_{n}+S_{n}$, where $\left(M_{n}, \mathcal{F}_{n}\right)$ is a martingale and $\left(S_{n}, \mathcal{F}_{n}\right)$ is an increasing predictable process (called the compensator of the submartingale). This decomposition is unique.

Proof. We define M and S explicitly: $M_{0}=Y_{0}, S_{0}=0$, and for $n \geq 0$

$$
M_{n+1}-M_{n}=Y_{n+1}-\mathbb{E}\left(Y_{n+1} \mid \mathcal{F}_{n}\right), \quad S_{n+1}-S_{n}=\mathbb{E}\left(Y_{n+1} \mid \mathcal{F}_{n}\right)-Y_{n}
$$

To see uniqueness suppose another such decomposition $Y_{n}=M_{n}^{\prime}+S_{n}^{\prime}$. Then

$$
M_{n+1}^{\prime}-M_{n}^{\prime}+S_{n+1}^{\prime}-S_{n}^{\prime}=M_{n+1}-M_{n}+S_{n+1}-S_{n}
$$

Taking conditional expectations given \mathcal{F}_{n} we get $S_{n+1}^{\prime}-S_{n}^{\prime}=S_{n+1}-S_{n}$. This in view of $S_{0}^{\prime}=S_{0}=0$ implies $S_{n}^{\prime}=S_{n}$.
Definition 16 Let $\left(Y_{n}\right)$ be adapted to $\left(\mathcal{F}_{n}\right)$ and $\left(S_{n}\right)$ be predictable. The sequence

$$
Z_{n}=Y_{0}+\sum_{i=1}^{n} S_{i}\left(Y_{i}-Y_{i-1}\right)
$$

is called the transform of $\left(Y_{n}\right)$ by $\left(S_{n}\right)$.
Example 17 Such transforms are usually interpreted as gambling systems with $\left(Y_{n}\right)$ being a supermartingale (the capital after n gambles each involving a unit stake). Optional skipping is one such strategy. Here the gambler either wagers a unit stake or skip the round: S_{n} equals either 1 or 0 .

Theorem 18 Let $\left(Z_{n}\right)$ be the transform of $\left(Y_{n}\right)$ by $\left(S_{n}\right)$. Then
(i) If $\left(Y_{n}\right)$ is a martingale, then $\left(Z_{n}\right)$ is a martingale so long as $\mathbb{E}\left|Z_{n}\right|<\infty$ for all n.
(ii) If $\left(Y_{n}\right)$ is a submartingale and in addition $S_{n} \geq 0$ for all n, then $\left(Z_{n}\right)$ is a submartingale so long as $\mathbb{E}\left(Z_{n}^{+}\right)<\infty$ for all n.

Proof. Both assertions follow immediately from

$$
\mathbb{E}\left(Z_{n+1} \mid \mathcal{F}_{n}\right)-Z_{n}=\mathbb{E}\left(S_{n+1}\left(Y_{n+1}-Y_{n}\right) \mid \mathcal{F}_{n}\right)=S_{n+1}\left(\mathbb{E}\left(Y_{n+1} \mid \mathcal{F}_{n}\right)-Y_{n}\right) .
$$

Example 19 Optional stopping. The gambler wagers a unit stake on each play until the random time T. In this case $S_{n}=1_{\{n \leq T\}}$ and $Z_{n}=Y_{T \wedge n}$. If S_{n} is predictable, then $\{T=n\}=\left\{S_{n}=1, S_{n+1}=0\right\} \in \mathcal{F}_{n}$, so that T is a stopping time.

Example 20 Optional starting. The gambler does not play until the $(T+1)$-th round, where T is a stopping time. In this case $S_{n}=1_{\{T \leq n-1\}}$ is a predictable sequence.

4 Hoeffding's inequality

Definition 21 Let $\left(Y_{n}, \mathcal{F}_{n}\right)$ be a martingale. The sequence of martingale differences is defined by $D_{n}=$ $Y_{n}-Y_{n-1}$, so that D_{n} is \mathcal{F}_{n}-measurable

$$
\mathbb{E}\left|D_{n}\right|<\infty, \quad \mathbb{E}\left(D_{n+1} \mid \mathcal{F}_{n}\right)=0, \quad Y_{n}=Y_{0}+D_{1}+\ldots+D_{n}
$$

Theorem 22 Hoeffding's inequality. Let $\left(Y_{n}, \mathcal{F}_{n}\right)$ be a martingale, and suppose $\mathbb{P}\left(\left|D_{n}\right| \leq K_{n}\right)=1$ for a sequence of real numbers K_{n}. Then for any $x>0$

$$
\mathbb{P}\left(\left|Y_{n}-Y_{0}\right| \geq x\right) \leq 2 \exp \left(-\frac{x^{2}}{2\left(K_{1}^{2}+\ldots+K_{n}^{2}\right)}\right)
$$

Proof. Let $\theta>0$.
Step 1. The function $e^{\theta x}$ is convex, therefore

$$
e^{\theta d} \leq \frac{1}{2}(1-d) e^{-\theta}+\frac{1}{2}(1+d) e^{\theta} \text { for all }|d| \leq 1
$$

Hence if D is a r.v. with mean 0 such that $\mathbb{P}(|D| \leq 1)=1$, then $\mathbb{E}\left(e^{\theta D}\right) \leq \frac{e^{-\theta}+e^{\theta}}{2}<e^{\theta^{2} / 2}$.
Step 2. Using the martingale differences we obtain

$$
\mathbb{E}\left(e^{\theta\left(Y_{n}-Y_{0}\right)} \mid \mathcal{F}_{n-1}\right)=e^{\theta\left(Y_{n-1}-Y_{0}\right)} \mathbb{E}\left(e^{\theta D_{n}} \mid \mathcal{F}_{n-1}\right) \leq e^{\theta\left(Y_{n-1}-Y_{0}\right)} e^{\theta^{2} K_{n}^{2} / 2}
$$

Take expectations and iterate to find

$$
\mathbb{E}\left(e^{\theta\left(Y_{n}-Y_{0}\right)}\right) \leq \mathbb{E}\left(e^{\theta\left(Y_{n-1}-Y_{0}\right)}\right) e^{\theta^{2} K_{n}^{2} / 2} \leq \exp \left(\frac{\theta^{2}}{2} \sum_{i=1}^{n} K_{i}^{2}\right)
$$

Step 3. Due to the Markov inequality we have for any $x>0$

$$
\mathbb{P}\left(Y_{n}-Y_{0} \geq x\right) \leq e^{-\theta x} \mathbb{E}\left(e^{\theta\left(Y_{n}-Y_{0}\right)}\right) \leq \exp \left(-\theta x+\frac{\theta^{2}}{2} \sum_{i=1}^{n} K_{i}^{2}\right)
$$

Set $\theta=x / \sum_{i=1}^{n} K_{i}^{2}$ to minimize the exponent. Then

$$
\mathbb{P}\left(Y_{n}-Y_{0} \geq x\right) \leq \exp \left(-\frac{x^{2}}{2\left(K_{1}^{2}+\ldots+K_{n}^{2}\right)}\right)
$$

Since $\left(-Y_{n}\right)$ is also a martingale, we get

$$
\mathbb{P}\left(Y_{n}-Y_{0} \leq-x\right)=\mathbb{P}\left(-Y_{n}+Y_{0} \geq x\right) \leq \exp \left(-\frac{x^{2}}{2\left(K_{1}^{2}+\ldots+K_{n}^{2}\right)}\right)
$$

Example 23 Large deviations. Let X_{n} be iid Bernoulli (p) r.v. If $S_{n}=X_{1}+\ldots+X_{n}$, then $Y_{n}=S_{n}-n p$ is a martingale. Due to the Hoeffding's inequality for any $x>0$

$$
\mathbb{P}\left(\left|S_{n}-n p\right| \geq x \sqrt{n}\right) \leq 2 \exp \left(-\frac{x^{2}}{2(\max (p, 1-p))^{2}}\right)
$$

In particular, if $p=1 / 2$,

$$
\mathbb{P}\left(\left|S_{n}-n / 2\right| \geq x \sqrt{n}\right) \leq 2 e^{-2 x^{2}}
$$

Putting here $x=3$ we get $\mathbb{P}\left(\left|S_{n}-n / 2\right| \geq 3 \sqrt{n}\right) \leq 3 \cdot 10^{-8}$.

5 Convergence in L^{1}

On the figure below five uppcrossing time intervals are shown: $\left(T_{1}, T_{2}\right],\left(T_{3}, T_{4}\right], \ldots,\left(T_{9}, T_{10}\right]$. If for all rational intervals (a, b) the number of uppcrossings $U(a, b)$ is finite, then the corresponding trajectory has a (possibly infinite) limit.

Lemma 24 Snell's uppcrossing inequality. Let $a<b$ and $U_{n}(a, b)$ is the number of uppcrossings of a submartingale $\left(Y_{0}, \ldots, Y_{n}\right)$. Then $\mathbb{E}\left(U_{n}(a, b)\right) \leq \frac{\mathbb{E}\left(\left(Y_{n}-a\right)^{+}\right)}{b-a}$.

Proof. Since $Z_{n}=\left(Y_{n}-a\right)^{+}$forms a submartingale, it is enough to prove $\mathbb{E}\left(U_{n}(0, c)\right) \leq \frac{\mathbb{E}\left(Z_{n}\right)}{c}$, where $U_{n}(0, c)$ is the number of uppcrossings of the submartingale $\left(Z_{0}, \ldots, Z_{n}\right)$. Let I_{i} be the indicator of the event that $i \in\left(T_{2 k-1}, T_{2 k}\right]$ for some k. Note that I_{i} is \mathcal{F}_{i-1}-measurable, since

$$
\left\{I_{i}=1\right\}=\bigcup_{k}\left\{T_{2 k-1} \leq i-1\right\} \backslash\left\{T_{2 k} \leq i-1\right\}
$$

is an event that depends on $\left(Y_{0}, \ldots, Y_{i-1}\right)$ only. Therefore,

$$
\begin{aligned}
\mathbb{E}\left(\left(Z_{i}-Z_{i-1}\right) I_{i}\right) & =\mathbb{E}\left(\mathbb{E}\left(\left(Z_{i}-Z_{i-1}\right) I_{i} \mid \mathcal{F}_{i-1}\right)\right)=\mathbb{E}\left(I_{i}\left(\mathbb{E}\left(Z_{i} \mid \mathcal{F}_{i-1}\right)-Z_{i-1}\right)\right) \\
& \leq \mathbb{E}\left(\mathbb{E}\left(Z_{i} \mid \mathcal{F}_{i-1}\right)-Z_{i-1}\right)=\mathbb{E}\left(Z_{i}\right)-\mathbb{E}\left(Z_{i-1}\right)
\end{aligned}
$$

It remains to observe that

$$
c \cdot U_{n}(0, c) \leq \sum_{i=1}^{n}\left(Z_{i}-Z_{i-1}\right) I_{i} \Rightarrow c \cdot \mathbb{E}\left(U_{n}(0, c)\right) \leq \mathbb{E}\left(Z_{n}\right)-\mathbb{E}\left(Z_{0}\right) \leq \mathbb{E}\left(Z_{n}\right)
$$

Theorem 25 Suppose $\left(Y_{n}, \mathcal{F}_{n}\right)$ is a submartingale such that $\mathbb{E}\left(Y_{n}^{+}\right) \leq M$ for some constant M and all n. (i) There exists a r.v. Y such that $Y_{n} \rightarrow Y$ almost surely. In addition: (ii) the limit Y has a finite mean if $\mathbb{E}\left|Y_{0}\right|<\infty$, and (iii) if $\left(Y_{n}\right)$ is uniformly integrable, then $Y_{n} \rightarrow Y$ in L^{1}.

Proof. (i) Using Snell's inequality we obtain that $U(a, b)=\lim U_{n}(a, b)$ satisfies

$$
\mathbb{E}(U(a, b)) \leq \frac{M+|a|}{b-a}
$$

Therefore, $\mathbb{P}(U(a, b)<\infty)=1$. Since there are only countably many rationals, it follows that with probability $1, U(a, b)<\infty$ for all rational (a, b), and $Y_{n} \rightarrow Y$ almost surely.
(ii) We have to check that $\mathbb{E}|Y|<\infty$ given $\mathbb{E}\left|Y_{0}\right|<\infty$. Indeed, since $\left|Y_{n}\right|=2 Y_{n}^{+}-Y_{n}$ and $\mathbb{E}\left(Y_{n} \mid \mathcal{F}_{0}\right) \geq Y_{0}$, we get

$$
\mathbb{E}\left(\left|Y_{n}\right| \mid \mathcal{F}_{0}\right) \leq 2 \mathbb{E}\left(Y_{n}^{+} \mid \mathcal{F}_{0}\right)-Y_{0}
$$

By Fatou's lemma

$$
\mathbb{E}\left(|Y| \mid \mathcal{F}_{0}\right)=\mathbb{E}\left(\underset{n \rightarrow \infty}{\liminf }\left|Y_{n}\right| \mid \mathcal{F}_{0}\right) \leq \liminf _{n \rightarrow \infty} \mathbb{E}\left(\left|Y_{n}\right| \mid \mathcal{F}_{0}\right) \leq 2 \liminf _{n \rightarrow \infty} \mathbb{E}\left(Y_{n}^{+} \mid \mathcal{F}_{0}\right)-Y_{0}
$$

and it remains to observe that $\mathbb{E}\left(\liminf _{n \rightarrow \infty} \mathbb{E}\left(Y_{n}^{+} \mid \mathcal{F}_{0}\right)\right) \leq M$, again due to Fatou's lemma.
(iii) Finally, recall that given $Y_{n} \xrightarrow{\mathrm{P}} Y$, the uniform integrability of $\left(Y_{n}\right)$ is equivalent to $\mathbb{E}\left|Y_{n}\right|<\infty$ for all $n, \mathbb{E}|Y|<\infty$, and $Y_{n} \xrightarrow{L^{1}} Y$.

Corollary 26 Any martingale, submartingale or supermartingale $\left(Y_{n}, \mathcal{F}_{n}\right)$ satisfying $\sup _{n} \mathbb{E}\left|Y_{n}\right| \leq M$ converges almost surely to a r.v. with a finite limit.

Corollary 27 A non-negative supermartingale converges almost surely. A non-positive submartingale converges almost surely.

Example 28 De Moivre martingale $Y_{n}=(q / p)^{S_{n}}$ is non-negative and hence converges a.s. to some limit Y. Let $p \neq q$. Since $S_{n} \rightarrow \infty$ for $p>q$ and $S_{n} \rightarrow-\infty$ for $p<q$ we have $Y=0$. Note that Y_{n} does not converge in mean, since $\mathbb{E}\left(Y_{n}\right)=\mathbb{E}\left(Y_{0}\right) \neq 0$.

Example 29 Doob's martingale $Y_{n}=\mathbb{E}\left(Z \mid \mathcal{F}_{n}\right)$ is uniformly integrable, see Example 9. It converges a.s. and in mean to $\mathbb{E}\left(Z \mid \mathcal{F}_{\infty}\right)$, where \mathcal{F}_{∞} is the smallest σ-algebra containing all \mathcal{F}_{n}. There an important converse result: if a martingale $\left(Y_{n}, \mathcal{F}_{n}\right)$ converges in mean, then there exists a r.v. Z with finite mean such that $Y_{n}=\mathbb{E}\left(Z \mid \mathcal{F}_{n}\right)$.

6 Bounded stopping times. Optional sampling theorem

Definition 30 A r.v T taking values in $\{0,1,2, \ldots\} \cup\{\infty\}$ is called a stopping time with respect to the filtration $\left(\mathcal{F}_{n}\right)$, if $\{T=n\} \in \mathcal{F}_{n}$ for all $n \geq 0$. It is called a bounded stopping time if $\mathbb{P}(T \leq N)=1$ for some finite constant N.

We denote by \mathcal{F}_{T} the σ-algebra of all events A such that $A \cap\{T=n\} \in \mathcal{F}_{n}$ for all n.
The stopped de Moivre martingale from Example 6 is also a martingale. A general statement of this type follows next.
Theorem 31 Let $\left(Y_{n}, \mathcal{F}_{n}\right)$ be a submartingale and let T be a stopping time. Then $\left(Y_{T \wedge n}, \mathcal{F}_{n}\right)$ is a submartingale. If moreover, $\mathbb{E}\left|Y_{n}\right|<\infty$, then $\left(Y_{n}-Y_{T \wedge n}, \mathcal{F}_{n}\right)$ is also a submartingale.

Proof. The r.v. $Z_{n}=Y_{T \wedge n}$ is \mathcal{F}_{n}-measurable:

$$
Z_{n}=\sum_{i=0}^{n-1} Y_{i} 1_{\{T=i\}}+Y_{n} 1_{\{T \geq n\}}
$$

and

$$
\mathbb{E}\left(Z_{n}^{+}\right) \leq \sum_{i=0}^{n} \mathbb{E}\left(Y_{i}^{+}\right)<\infty
$$

It remains to see that $Z_{n+1}-Z_{n}=\left(Y_{n+1}-Y_{n}\right) 1_{\{T>n\}}$ implies

$$
\mathbb{E}\left(Z_{n+1}-Z_{n} \mid \mathcal{F}_{n}\right)=\mathbb{E}\left(Y_{n+1}-Y_{n} \mid \mathcal{F}_{n}\right) 1_{\{T>n\}} \geq 0 .
$$

with

$$
0 \leq \mathbb{E}\left(Y_{n+1}-Y_{n} \mid \mathcal{F}_{n}\right) 1_{\{T>n\}} \leq \mathbb{E}\left(Y_{n+1}-Y_{n} \mid \mathcal{F}_{n}\right)
$$

Corollary 32 If $\left(Y_{n}, \mathcal{F}_{n}\right)$ is a martingale, then it is both a submartingale and a supermartingale, and therefore, for a given stopping time T, both $\left(Y_{T \wedge n}, \mathcal{F}_{n}\right)$ and $\left(Y_{n}-Y_{T \wedge n}, \mathcal{F}_{n}\right)$ are martingales.

Theorem 33 Optional sampling. Let $\left(Y_{n}, \mathcal{F}_{n}\right)$ be a submartingale.
(i) If T is a bounded stopping time, then $\mathbb{E}\left(Y_{T}^{+}\right)<\infty$ and $\mathbb{E}\left(Y_{T} \mid \mathcal{F}_{0}\right) \geq Y_{0}$.
(ii) If $0=T_{0} \leq T_{1} \leq T_{2} \leq \ldots$ is a sequence of bounded stopping times, then $\left(Y_{T_{j}}, \mathcal{F}_{T_{j}}\right)$ is a submartingale.

Proof. (i) Let $\mathbb{P}(T \leq N)=1$ where N is a positive constant. Since ($Y_{T \wedge n}$) is a submartingale and $Y_{T \wedge N}=Y_{T}$, we have $\mathbb{E}\left(Y_{T}^{+}\right)<\infty$ and $\mathbb{E}\left(Y_{T} \mid \mathcal{F}_{0}\right) \geq Y_{0}$.
(ii) Consider two bounded stopping times $S \leq T \leq N$. To show that $\mathbb{E}\left(Y_{T} \mid \mathcal{F}_{S}\right) \geq Y_{S}$ observe that for $A \in \mathcal{F}_{S}$ we have

$$
\mathbb{E}\left(Y_{T} 1_{A}\right)=\sum_{k \leq N} \mathbb{E}\left(Y_{T} 1_{A \cap\{S=k\}}\right)=\sum_{k \leq N} \mathbb{E}\left(1_{A \cap\{S=k\}} \mathbb{E}\left(Y_{T} \mid \mathcal{F}_{k}\right)\right),
$$

and since in view of Theorem 31, $\mathbb{E}\left(Y_{T} \mid \mathcal{F}_{k}\right)=\mathbb{E}\left(Y_{T \wedge N} \mid \mathcal{F}_{k}\right) \geq Y_{T \wedge k}$ for all $k \leq N$, we conclude

$$
\mathbb{E}\left(Y_{T} 1_{A}\right) \geq \mathbb{E}\left(\sum_{k \leq N} 1_{A \cap\{S=k\}} Y_{T \wedge k}\right)=\mathbb{E}\left(\sum_{k \leq N} 1_{A \cap\{S=k\}} Y_{k}\right)=\mathbb{E}\left(Y_{S} 1_{A}\right)
$$

Example 34 The process Y_{n} is a martingale iff it is both a submartingale and a supermartingale. Therefore, according to Theorem 33 (i) we have $\mathbb{E}\left(Y_{T} \mid \mathcal{F}_{0}\right)=Y_{0}$ and $\mathbb{E}\left(Y_{T}\right)=\mathbb{E}\left(Y_{0}\right)$ for any bounded stopping time T. This martingale property is not enough for Example 6 because the ruin time is not bounded. However, see Theorem 35.

7 Unbounded stopping times

Theorem 35 Optional stopping. Let $\left(Y_{n}, \mathcal{F}_{n}\right)$ be a martingale and T be a stopping time. Then $\mathbb{E}\left(Y_{T}\right)=$ $\mathbb{E}\left(Y_{0}\right)$ if (a) $\mathbb{P}(T<\infty)=1$, (b) $\mathbb{E}\left|Y_{T}\right|<\infty$, and (c) $\mathbb{E}\left(Y_{n} 1_{\{T>n\}}\right) \rightarrow 0$ as $n \rightarrow \infty$.

Proof. From $Y_{T}=Y_{T \wedge n}+\left(Y_{T}-Y_{n}\right) 1_{\{T>n\}}$ using that $\mathbb{E}\left(Y_{T \wedge n}\right)=\mathbb{E}\left(Y_{0}\right)$ we obtain

$$
\mathbb{E}\left(Y_{T}\right)=\mathbb{E}\left(Y_{0}\right)+\mathbb{E}\left(Y_{T} 1_{\{T>n\}}\right)-\mathbb{E}\left(Y_{n} 1_{\{T>n\}}\right) .
$$

It remains to apply (c) and observe that due to the dominated convergence $\mathbb{E}\left(Y_{T} 1_{\{T>n\}}\right) \rightarrow 0$.
Theorem $36 \operatorname{Let}\left(Y_{n}, \mathcal{F}_{n}\right)$ be a martingale and T be a stopping time. Then $\mathbb{E}\left(Y_{T}\right)=\mathbb{E}\left(Y_{0}\right)$ if (a) $\mathbb{E}(T)<\infty$ and (b) there exists a constant c such that for any n

$$
\mathbb{E}\left(\mid Y_{n+1}-Y_{n} \| \mathcal{F}_{n}\right) 1_{\{T>n\}} \leq c 1_{\{T>n\}} .
$$

Proof. Since $T \wedge n \rightarrow T$, we have $Y_{T \wedge n} \rightarrow Y_{T}$ a.s. It follows that

$$
\mathbb{E}\left(Y_{0}\right)=\mathbb{E}\left(Y_{T \wedge n}\right) \rightarrow \mathbb{E}\left(Y_{T}\right)
$$

as long as $\left(Y_{T \wedge n}\right)$ is uniformly integrable. To prove the uniform integrability it is enough to verify that $\mathbb{E}(W)<\infty$, where

$$
\left|Y_{T \wedge n}\right| \leq\left|Y_{0}\right|+W, \quad W:=\left|Y_{1}-Y_{0}\right|+\ldots+\left|Y_{T}-Y_{T-1}\right| .
$$

Indeed, since $\mathbb{E}\left(\left|Y_{i}-Y_{i-1}\right| 1_{\{T \geq i\}} \mid \mathcal{F}_{i-1}\right) \leq c 1_{\{T \geq i\}}$, we have $\mathbb{E}\left(\left|Y_{i}-Y_{i-1}\right| 1_{\{T \geq i\}}\right) \leq c \mathbb{P}(T \geq i)$ and therefore

$$
\mathbb{E}(W)=\sum_{i=1}^{\infty} \mathbb{E}\left(\left|Y_{i}-Y_{i-1}\right| 1_{\{T \geq i\}}\right) \leq c \mathbb{E}(T)<\infty
$$

Example 37 Wald's equality. Let $\left(X_{n}\right)$ be iid r.v. with finite mean μ and $S_{n}=X_{1}+\ldots+X_{n}$, then $Y_{n}=S_{n}-n \mu$ is a martingale with respect to $\mathcal{F}_{n}=\sigma\left\{X_{1}, \ldots, X_{n}\right\}$. Now

$$
\mathbb{E}\left(\left|Y_{n+1}-Y_{n}\right| \mid \mathcal{F}_{n}\right)=\mathbb{E}\left|X_{n+1}-\mu\right|=\mathbb{E}\left|X_{1}-\mu\right|<\infty
$$

We deduce from Theorem 36 that $\mathbb{E}\left(Y_{T}\right)=\mathbb{E}\left(Y_{0}\right)$ for any stopping time T with finite mean, implying that $\mathbb{E}\left(S_{T}\right)=\mu \mathbb{E}(T)$.

Lemma 38 Wald's identity. Let $\left(X_{n}\right)$ be iid r.v. with $M(t)=\mathbb{E}\left(e^{t X}\right)$ and $S_{n}=X_{1}+\ldots+X_{n}$. If T is a stopping time with finite mean such that $\left|S_{n}\right| 1_{\{T>n\}} \leq c 1_{\{T>n\}}$, then

$$
\mathbb{E}\left(e^{t S_{T}} M(t)^{-T}\right)=1 \text { whenever } M(t) \geq 1
$$

Proof. Define $Y_{0}=1, Y_{n}=e^{t S_{n}} M(t)^{-n}$, and let $\mathcal{F}_{n}=\sigma\left\{X_{1}, \ldots, X_{n}\right\}$. It is clear that $\left(Y_{n}\right)$ is a martingale and thus the claim follows from Theorem 36. To verify condition (b) note that

$$
\mathbb{E}\left(\left|Y_{n+1}-Y_{n}\right| \mid \mathcal{F}_{n}\right)=Y_{n} \mathbb{E}\left|e^{t X} M(t)^{-1}-1\right| \leq Y_{n} \mathbb{E}\left(e^{t X} M(t)^{-1}+1\right)=2 Y_{n}
$$

Furthermore, given $M(t) \geq 1$

$$
Y_{n}=e^{t S_{n}} M(t)^{-n} \leq e^{c|t|} \text { for } n<T
$$

Example 39 Simple random walk S_{n} with $\mathbb{P}\left(X_{i}=1\right)=p$ and $\mathbb{P}\left(X_{i}=-1\right)=q$. Let T be the first exit time of $(-a, b)$. By Lemma 38 with $M(t)=p e^{t}+q e^{-t}$,

$$
e^{-a t} \mathbb{E}\left(M(t)^{-T} 1_{\left\{S_{T}=-a\right\}}\right)+e^{b t} \mathbb{E}\left(M(t)^{-T} 1_{\left\{S_{T}=b\right\}}\right)=1 \text { whenever } M(t) \geq 1
$$

Setting $M(t)=s^{-1}$ we obtain a quadratic equation for e^{t} having two solutions

$$
\lambda_{1}(s)=\frac{1+\sqrt{1-4 p q s^{2}}}{2 p s}, \quad \lambda_{2}(s)=\frac{1-\sqrt{1-4 p q s^{2}}}{2 p s}, \quad s \in[0,1] .
$$

They give us two linear equations resulting in

$$
\mathbb{E}\left(s^{T} 1_{\left\{S_{T}=-a\right\}}\right)=\frac{\lambda_{1}^{a} \lambda_{2}^{a}\left(\lambda_{1}^{b}-\lambda_{2}^{b}\right)}{\lambda_{1}^{a+b}-\lambda_{2}^{a+b}}, \quad \mathbb{E}\left(s^{T} 1_{\left\{S_{T}=b\right\}}\right)=\frac{\lambda_{1}^{a}-\lambda_{2}^{a}}{\lambda_{1}^{a+b}-\lambda_{2}^{a+b}}
$$

Summing up these two relations we get the probability generating function

$$
\mathbb{E}\left(s^{T}\right)=\frac{\lambda_{1}^{a}\left(1-\lambda_{2}^{a+b}\right)+\lambda_{2}^{a}\left(\lambda_{1}^{a+b}-1\right)}{\lambda_{1}^{a+b}-\lambda_{2}^{a+b}}
$$

8 Maximal inequality

Theorem 40 Maximal inequality.
(i) If $\left(Y_{n}\right)$ is a submartingale, then for any $\epsilon>0$

$$
\mathbb{P}\left(\max _{0 \leq i \leq n} Y_{i} \geq \epsilon\right) \leq \frac{\mathbb{E}\left(Y_{n}^{+}\right)}{\epsilon}
$$

(ii) If $\left(Y_{n}\right)$ is a supermartingale and $\mathbb{E}\left|Y_{0}\right|<\infty$, then for any $\epsilon>0$

$$
\mathbb{P}\left(\max _{0 \leq i \leq n} Y_{i} \geq \epsilon\right) \leq \frac{\mathbb{E}\left(Y_{0}\right)+\mathbb{E}\left(Y_{n}^{-}\right)}{\epsilon}
$$

(iii) Moreover, if $\left(Y_{n}\right)$ is a submartingale, then for any $\epsilon>0$

$$
\mathbb{P}\left(\max _{0 \leq i \leq n}\left|Y_{i}\right| \geq \epsilon\right) \leq \frac{2 \mathbb{E}\left(Y_{n}^{+}\right)-\mathbb{E}\left(Y_{0}\right)}{\epsilon}
$$

In particular, if $\left(Y_{n}\right)$ is a martingale, then

$$
\mathbb{P}\left(\max _{0 \leq i \leq n}\left|Y_{i}\right| \geq \epsilon\right) \leq \frac{\mathbb{E}\left|Y_{n}\right|}{\epsilon}
$$

Proof. (i) If $\left(Y_{n}\right)$ is a submartingale, then $\left(Y_{n}^{+}\right)$is a non-negative submartingale with finite means and

$$
T:=\min \left\{n: Y_{n} \geq \epsilon\right\}=\min \left\{n: Y_{n}^{+} \geq \epsilon\right\}
$$

By Theorem 31, $\mathbb{E}\left(Y_{T \wedge n}^{+}\right) \leq \mathbb{E}\left(Y_{n}^{+}\right)$. Therefore,

$$
\mathbb{E}\left(Y_{n}^{+}\right) \geq \mathbb{E}\left(Y_{T \wedge n}^{+}\right)=\mathbb{E}\left(Y_{T}^{+} 1_{\{T \leq n\}}\right)+\mathbb{E}\left(Y_{n}^{+} 1_{\{T>n\}}\right) \geq \mathbb{E}\left(Y_{T}^{+} 1_{\{T \leq n\}}\right) \geq \epsilon \mathbb{P}(T \leq n),
$$

implying the first stated inequality as $\{T \leq n\}=\left\{\max _{0 \leq i \leq n} Y_{i} \geq \epsilon\right\}$.
Furthermore, since $\mathbb{E}\left(Y_{T \wedge n}^{+} 1_{\{T>n\}}\right)=\mathbb{E}\left(Y_{n}^{+} 1_{\{T>n\}}\right)$, we have

$$
\mathbb{E}\left(Y_{n}^{+} 1_{\{T \leq n\}}\right) \geq E\left(Y_{T \wedge n}^{+} 1_{\{T \leq n\}}\right)=\mathbb{E}\left(Y_{T}^{+} 1_{\{T \leq n\}}\right) \geq \epsilon \mathbb{P}(T \leq n)
$$

Using this we get a stronger inequality

$$
\begin{equation*}
\mathbb{P}(A) \leq \frac{\mathbb{E}\left(Y_{n}^{+} 1_{A}\right)}{\epsilon}, \text { where } A=\left\{\max _{0 \leq i \leq n} Y_{i} \geq \epsilon\right\} \tag{3}
\end{equation*}
$$

(ii) If $\left(Y_{n}\right)$ is a supermartingale, then by Theorem 31 the second assertion follows from

$$
\mathbb{E}\left(Y_{0}\right) \geq \mathbb{E}\left(Y_{T \wedge n}\right)=\mathbb{E}\left(Y_{T} I_{\{T \leq n\}}\right)+\mathbb{E}\left(Y_{n} I_{\{T>n\}}\right) \geq \in \mathbb{P}(T \leq n)-\mathbb{E}\left(Y_{n}^{-}\right) .
$$

(iii) Let $\epsilon>0$. If $\left(Y_{n}\right)$ is a submartingale, then $\left(-Y_{n}\right)$ is a supermartingale so that according to (ii),

$$
\mathbb{P}\left(\min _{0 \leq i \leq n} Y_{i} \leq-\epsilon\right) \leq \frac{\mathbb{E}\left(Y_{n}^{+}\right)-\mathbb{E}\left(Y_{0}\right)}{\epsilon}
$$

Combine this with (i) to get the asserted inequality.

Corollary 41 Doob-Kolmogorov's inequality. If $\left(Y_{n}\right)$ is a martingale with finite second moments, then $\left(Y_{n}^{2}\right)$ is a submartingale for any $\epsilon>0$

$$
\mathbb{P}\left(\max _{1 \leq i \leq n}\left|Y_{i}\right| \geq \epsilon\right)=\mathbb{P}\left(\max _{1 \leq i \leq n} Y_{i}^{2} \geq \epsilon^{2}\right) \leq \frac{\mathbb{E}\left(Y_{n}^{2}\right)}{\epsilon^{2}}
$$

Corollary 42 Kolmogorov's inequality. Let $\left(X_{n}\right)$ are iid r.v. with zero means and finite variances $\left(\sigma_{n}^{2}\right)$, then for any $\epsilon>0$

$$
\mathbb{P}\left(\max _{1 \leq i \leq n}\left|X_{1}+\ldots+X_{i}\right| \geq \epsilon\right) \leq \frac{\sigma_{1}^{2}+\ldots+\sigma_{n}^{2}}{\epsilon^{2}}
$$

Theorem 43 Convergence in L^{r}. Let $r>1$. Suppose $\left(Y_{n}, \mathcal{F}_{n}\right)$ is a martingale such that $\mathbb{E}\left(\left|Y_{n}\right|^{r}\right) \leq M$ for some constant M and all n. Then $Y_{n} \rightarrow Y_{\infty}$ in L^{r}, where Y_{∞} is the a.s. limit of Y_{n} as $n \rightarrow \infty$.

Proof. Combining Corollary 26 and Lyapunov's inequality we get the a.s. convergence $Y_{n} \rightarrow Y_{\infty}$. To prove $Y_{n} \xrightarrow{L^{r}} Y_{\infty}$, we observe first that

$$
\mathbb{E}\left(\left(\max _{0 \leq i \leq n}\left|Y_{i}\right|\right)^{r}\right) \leq \mathbb{E}\left(\left(\left|Y_{0}\right|+\ldots+\left|Y_{n}\right|\right)^{r}\right)<\infty
$$

Now using (3) we obtain (writing $A(x)=\left\{\max _{0 \leq i \leq n}\left|Y_{i}\right| \geq x\right\}$)

$$
\begin{aligned}
\mathbb{E}\left(\left(\max _{0 \leq i \leq n}\left|Y_{i}\right|\right)^{r}\right) & =\int_{0}^{\infty} r x^{r-1} \mathbb{P}\left(\max _{0 \leq i \leq n}\left|Y_{i}\right|>x\right) d x \\
& \leq \int_{0}^{\infty} r x^{r-2} \mathbb{E}\left(\left|Y_{n}\right| 1_{A(x)}\right) d x=\mathbb{E}\left(\left|Y_{n}\right| \int_{0}^{\infty} r x^{r-2} 1_{A(x)} d x\right)=\frac{r}{r-1} \mathbb{E}\left[\left|Y_{n}\right|\left(\max _{0 \leq i \leq n}\left|Y_{i}\right|\right)^{r-1}\right]
\end{aligned}
$$

By Hölder's inequality,

$$
\mathbb{E}\left[\left|Y_{n}\right|\left(\max _{0 \leq i \leq n}\left|Y_{i}\right|\right)^{r-1}\right] \leq\left[\mathbb{E}\left(\left|Y_{n}\right|^{r}\right)\right]^{1 / r}\left[\mathbb{E}\left(\left(\max _{0 \leq i \leq n}\left|Y_{i}\right|\right)^{r}\right)\right]^{(r-1) / r}
$$

and we conclude

$$
\mathbb{E}\left(\left(\max _{0 \leq i \leq n}\left|Y_{i}\right|\right)^{r}\right) \leq\left(\frac{r}{r-1}\right)^{r} \mathbb{E}\left(\left|Y_{n}\right|^{r}\right) \leq\left(\frac{r}{r-1}\right)^{r} M
$$

Thus by monotone convergence $\mathbb{E}\left(\sup _{n}\left|Y_{n}\right|^{r}\right)<\infty$ and $\left(Y_{n}^{r}\right)$ is uniformly integrable, implying $Y_{n} \xrightarrow{L^{r}} Y_{\infty}$.

9 Backward martingales

Definition 44 Let $\left(\mathcal{G}_{n}\right)$ be a decreasing sequence of σ-algebras and $\left(Y_{n}\right)$ be a sequence of adapted r.v. The sequence $\left(Y_{n}, \mathcal{G}_{n}\right)$ is called a backward or reversed martingale if, for all $n \geq 0$,

- $\mathbb{E}\left(\left|Y_{n}\right|\right)<\infty$,
- $\mathbb{E}\left(Y_{n} \mid \mathcal{G}_{n+1}\right)=Y_{n+1}$.

Theorem 45 Let $\left(Y_{n}, \mathcal{G}_{n}\right)$ be a backward martingale. Then Y_{n} converges to a limit Y_{∞} almost surely and in mean.

Proof. The sequence $Y_{n}=\mathbb{E}\left(Y_{0} \mid \mathcal{G}_{n}\right)$ is uniformly integrable, see the proof in Example 9. Therefore, it suffices to prove a.s. convergence. Applying Lemma 24 to the martingale $\left(Y_{n}, \mathcal{G}_{n}\right), \ldots,\left(Y_{0}, \mathcal{G}_{0}\right)$ we obtain $\mathbb{E}\left(U_{n}(a, b)\right) \leq \frac{\mathbb{E}\left(\left(Y_{0}-a\right)^{+}\right)}{b-a}$ for the number $U_{n}(a, b)$ of $[a, b]$ uppcrossings by $\left(Y_{n}, \ldots, Y_{0}\right)$. Now let $n \rightarrow \infty$ and repeat the proof of Theorem 25 to get the required a.s. convergence.

Theorem 46 Strong LLN. Let X_{1}, X_{2}, \ldots be iid random variables defined on the same probability space. Then

$$
\frac{X_{1}+\ldots+X_{n}}{n} \xrightarrow{\text { a.s. }} \mu
$$

for some constant μ iff $\mathbb{E}\left|X_{1}\right|<\infty$. In this case $\mu=\mathbb{E} X_{1}$ and $\frac{X_{1}+\ldots+X_{n}}{n} \xrightarrow{L^{1}} \mu$.

Proof. Set $S_{n}=X_{1}+\ldots+S_{n}$ and let $\mathcal{G}_{n}=\sigma\left(S_{n}, S_{n+1}, \ldots\right)$, then

$$
\mathbb{E}\left(S_{n} \mid \mathcal{G}_{n+1}\right)=\mathbb{E}\left(S_{n} \mid S_{n+1}\right)=n \mathbb{E}\left(X_{1} \mid S_{n+1}\right)
$$

On the other hand,

$$
S_{n+1}=\mathbb{E}\left(S_{n+1} \mid S_{n+1}\right)=(n+1) \mathbb{E}\left(X_{1} \mid S_{n+1}\right)
$$

We conclude that S_{n} / n is a backward martingale, and according to the Backward Martingale Convergence Theorem there exists Y such that $S_{n} / n \rightarrow Y$ a.s. and in mean. By Kolmogorov's zero-one law, Y is almost surely constant, and hence $Y=\mathbb{E}\left(X_{1}\right)$ a.s.

The converse. If $S_{n} / n \xrightarrow{\text { a.s. }} \mu$, then $X_{n} / n \xrightarrow{\text { a.s. }} 0$ by the theory of convergent real series. Indeed, from $\left(a_{1}+\ldots+a_{n}\right) / n \rightarrow \mu$ it follows that

$$
\frac{a_{n}}{n}=\frac{a_{1}+\ldots+a_{n-1}}{n(n-1)}+\frac{a_{1}+\ldots+a_{n}}{n}-\frac{a_{1}+\ldots+a_{n-1}}{n-1} \rightarrow 0
$$

Now, in view of $X_{n} / n \xrightarrow{\text { a.s. }} 0$, the second Borell-Cantelli lemma gives

$$
\sum_{n} \mathbb{P}\left(\left|X_{n}\right| \geq n\right)<\infty
$$

since otherwise $\mathbb{P}\left(n^{-1}\left|X_{n}\right| \geq 1\right.$ i.o. $)=1$.

