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Abstract

This Stochastic Processes course is based on the book Probabilities and Random Processes by
Geoffrey Grimmett and David Stirzaker. Chapters 7.7-7.8, and 12.

1 Definitions and examples

Example 1 Martingale: a betting strategy. Let X,, be the gain of a gambler doubling the bet after
each loss. The game stops after the first win.

e X,=0

e X, =1 with probability 1/2 and X; = —1 with probability 1/2,

e X, =1 with probability 3/4 and X, = —3 with probability 1/4,

e X3 =1 with probability 7/8 and X3 = —7 with probability 1/8,...,

e X, =1 with probability 1 — 27" and X,, = —2" + 1 with probability 27™.
Conditional expectation

E(Xoi1]X,) = (2X, — 13 + (1)5 = Xo.

If N is the number of games, then P(N =n)=2"",n=1,2,... with E(N) = 2 and

E(Xy_1)=E(1-2""1)=1-)"2"""127" = —oc.

n=1

Definition 2 A sequence of sigma-fields (F,) such that Fo C F1 C ... C Fp C ... C F is called a
filtration. A sequence of r.v. (Yy,) is called adapted to (F,,) if Y, is F,,-measurable for all n. In this case
the sequence (Y, Fy) is called a martingale if, for all n > 0,

e E(|Y,]) < oo (E(Y,]) < oo, E(Y,) < ),
o EYnia|Fn) =Y (2 Y5, <Y).

Definition 3 Let (Y,,) be adapted to a filtration (F,). Then (Y, F,) is called a submartingale if
e E(Y,) < oo,
o E(Y,11|Fn) > Y.

Definition 4 Let (Y;,) be adapted to a filtration (Fy,). Then (Y, Fy) is called a supermartingale if
o E(Y, ) < o0,
e E(Y,11]|F.) <Y,.

Consider the sequence of means m,, = E(Y,,). We have m,,+1 > m,, for submartingales, m,1+1 < m,, for
supermartingales, and m,, 1 = m,, for martingales. A martingale is both a sub- and supermartingale. If
(Y,,) is a submartingale, then (—Y,,) is a supermartingale.



Example 5 Consider a simple random walk S, = X1 +...+ X, with P(X; = 1) =p, P(X; = —-1) = ¢,
and Sy = k. The centered S,, — n(p — ¢) is a martingale:

E(Snt1 = (n+1)(p— @)l X1,..., Xn) = S + E(Xny1) — (n+1)p =S —nlp — q).
Another martingale is Y;, = (¢/p)>»:

E(Ynt1|X1, -, Xn) = p(a/p)> T +q(a/p)> ! = (a/p)>" = Ya
with E(Y;,) = E(Yy) = (¢/p)*. It is called De Moivre’s martingale.

Example 6 Stopped de Moivre’s martingale. Consider the same simple random walk and suppose that
it stops if it hits 0 or N which is larger than the initial state k. Denote D,, = Ypa,, where T is the
stopping time of the random walk and Y,, is the de Moivre martingale. It is easy to see that D,, is also
a martingale. Put P(St = 0) = P(Yr = 1) = pi and P(St = N) = P(Yr = (¢/p)") = 1 — py. From
E(Yr) = E(Yp) (to be proved later) we derive

(p/)NF -1

(a/p)°p + (a/p)N 1 —pi) = (¢/p)f = pr= /N —1

as long as p # q.

Example 7 Let S, = X; + ...+ X,,, where X, are iid r.v. with zero means and finite variances o2.

Then S2 — no? is a martingale
E(S2,, — (n+1)0?Xy,..., X,) = 52 4+ 25, E(Xpy1) + E(X72, ) — (n+1)o® = S2 — no?.

Example 8 Branching processes. Let Z,, be a branching process with Zy = 1 and the mean offspring
number p. Since E(Z,,11|Z,) = pZ,, the ratio W,, = =" Z,, is a martingale.

In the supercritical case, u > 1, the extinction probability € [0,1) of Z,, is identified as a solution
of the equation n = h(n), where h(s) = E(s¥) is the generating function of the offspring number. The
process V,, = n?» is also a martingale

E(Vni1|Z1,. .., Zn) = B tFX2n| 20 0000 Z,) = h(n)Zn = V.

Example 9 Doob’s martingale. Let Z be a r.v. on (Q,F,P) such that E(|Z|) < co. For a filtration
(Fn) define Y,, = E(Z|F,). The (Y,,F,) is a martingale: first, by Jensen’s inequality,

E(|Ynl) = EIE(Z]Fn)| < E(E(Z]|F5)) = E(]2]),

and secondly
E(Yn+1|}—n) = E(E(Z|}—n+l)|fn)) = E(Z|}—n) =Yn.

As we show next the Doob martingale is uniformly integrable. Again due to Jensen’s inequality,
V.| = [E(Z|Fn)| < E(Z]|Fn) =: Zn,

so that |Y, |14y, |>a} < Znl{z,>a}. By the definition of conditional expectation IE((|Z\ —Zn)l{ZHZQ}) =0
and we have
Yolliv,izay < 1211z, 50)

which entails uniform integrability, since P(Z,, > a) — 0 by the Markov inequality.

2 Convergence in L?

Lemma 10 If (Y,,) is a martingale with E(Y,2) < oo, then Y, 41— Y, and Y, are uncorrelated. It follows
that (Y,2) is a submartingale. More generally, if J(x) is convez, then J(Y,,) is a submartingale.



Proof. The first assertion follows from
E(Y (Yt — Ya) lFa) = Ya(E(V1|F) = Ya) = 0.
The second claim is derived as follows
E(Y711Fn) = E(Yat1 = Yn)? + 280 (Yar1 — Yo) + V77| Fa)
= E((Yas1 = Yo)?|Fn) + Y 2 Y2
Notice that

E(Y 1) =E(Y;) + E((Yags — Ya)?)

n

so that E(Y,2) is non-decreasing and there always exists a finite or infinite limit

M = lim E(Y?). (1)

n—oQ

The third assertion is due to the Jensen inequality.

Lemma 11 Doob-Kolmogorov’s inequality. If (Y,,) is a martingale with E(Y,?) < oo, then for any e > 0

E(Y?
P(max |Y;| > €) < #
1<i<n €
Proof. Let By, = {|Y1| < €,...,|Yk—1| < €,]Y%| > €}. Then using a submartingale property for the second

inequality we get
n

E(Y?) > Y E(Y21p) > S E(¥21p) > &S P(B) = €F(max [Yi] > o).
i=1

‘ ‘ 1<i<n
=1 =1

Theorem 12 If (Y,,) is a martingale with finite M defined by (1), then there exists a random variable
Y such that Y,, = Y a.s. and in mean square.

Proof. Step 1. For

Ap(e) = U{|Ym+z’ Y| > €}
i>1

we will show that
P(A,,(¢)) = 0, m — oo for any € > 0. (2)

Put S, = Y4n — Y. It is also a martingale, since
E(Sn+1|S1,--+,5n) = E(E(Sp+1|Fman)|S1, -+, Sn) = E(Sy|S1,---,5n) = Sn.
Apply the Doob-Kolmogorov inequality to this martingale to find that
P([Yints — Yin| = € for some i € [1,7]) < € 2E((Yimsn — Yin)2) = € 2(E(Y2,,) — E(V2).

Letting n — oo we obtain P(A,,(¢)) < e 2(M — E(Y,2)) and hence (2).
Step 2. Show that the sequence (Y,,) is a.s. Cauchy convergent:

]P’( Ny Afn(e)> =1
e>0m>1

which implies the existence of Y such that Y,, — Y a.s. Indeed, since A,,(e1) C A, (€2) for €1 > €2, we

have
IP’( Un Am(e)) :%P( N Am(e)> < lim lim P(A,,(e)) = 0.

e—0m—o0
e>0m>1
Step 3. Prove the convergence in mean square using the Fatou lemma

E((Y, — Y)?) = E(liminf(Y;, — Y;,,)?) < liminf E((Y;, — Y;,,)?)

m—0o0 m—0o0
= liminf E(Y,2) —E(Y;?) = M —E(Y?) =0, n — cc.
m—o0



Example 13 Branching processes. Let Z, be a branching process with Z; = 1 and the offspring
numbers having mean u and variance o2. The ratio W,, = p~"Z, is a martingale with

E(W2) =1+ (o/p)?(1+p "+ ...+ p "),

In the supercritical case, u > 1, we have E(W?2) — 1+ %, and there is a r.v. W such that W,, - W

a.s. and in L2. The Laplace transform of the limit ¢(f) = E(e ") satisfies a functional equation

¢(nb) = h(¢(0))-

3 Doob’s decomposition

Definition 14 The sequence (Sy, Fn) is called predictable if So =0, and S, is F,—_1-measurable for all
n > 1. It is also called increasing if P(S,, < Sp4+1) =1 for alln > 0.

Theorem 15 Doob’s decomposition. A submartingale (Yy,, F,) with finite means can be expressed in the
formY, = M, + S,,, where (M,,F,) is a martingale and (S, F,) is an increasing predictable process
(called the compensator of the submartingale). This decomposition is unique.

Proof. We define M and S explicitly: My =Yy, So =0, and for n > 0
M1 — My =Yy — EYni1|Fn), Snt1 — Sn = E(Yoq1|Fn) — Y.
To see uniqueness suppose another such decomposition Y,, = M/, + S/,. Then
M, =M, + S, — S, =M1 —M,~+ Spi1— S

Taking conditional expectations given F,, we get S; | — S, = Sp41 — Sy. This in view of S5 = Sy =0

implies S}, = S,,.
Definition 16 Let (Y,) be adapted to (F,) and (S,) be predictable. The sequence

n

Zn=Yo+ Y Si(Yi-Yi)
i=1

is called the transform of (Y,) by (Sy).

Example 17 Such transforms are usually interpreted as gambling systems with (Y;,) being a super-
martingale (the capital after n gambles each involving a unit stake). Optional skipping is one such
strategy. Here the gambler either wagers a unit stake or skip the round: S, equals either 1 or 0.

Theorem 18 Let (Z,,) be the transform of (Y,,) by (Sn). Then

(i) If (Ys,) is a martingale, then (Z,) is a martingale so long as E|Z,| < co for all n.

(i) If (V) is a submartingale and in addition S, > 0 for all n, then (Z,) is a submartingale so long
as E(Z,) < oo for all n.

Proof. Both assertions follow immediately from

E(Zn11|Fn) = Zp = E(Sn41(Ynt1 — Yo)|Fn) = Snt1 (E(Yng1[Fn) — Ya).
Example 19 Optional stopping. The gambler wagers a unit stake on each play until the random time T'.
In this case S,, = 1{,<7} and Z,, = Yrp,. If S, is predictable, then {T'=n} = {S, = 1,5,11 = 0} € Fy,
so that T is a stopping time.

Example 20 Optional starting. The gambler does not play until the (T + 1)-th round, where T is a
stopping time. In this case S, = 1{r<,_1} is a predictable sequence.



4 Hoeffding’s inequality

Definition 21 Let (Y, F,) be a martingale. The sequence of martingale differences is defined by D,, =
Y, — Y._1, so that D,, is F,-measurable

E|D,| < oo, E(Dy41|Fn) =0, Y,=Yo+D1+...4+ D,.
Theorem 22 Hoeffding’s inequality. Let (Y, F,) be a martingale, and suppose P(|D,| < K,,) =1 for
a sequence of real numbers K. Then for any x > 0
2

X
JP’(|Yn—Yo|zoc)szexp(—Q(le+ +KQ)).
PRy o)

Proof. Let 6 > 0.
Step 1. The function €%? is convex, therefore

—_

69d <

1
< 5(1 —d)e ? + 5(1 +d)e? for all |d| < 1.

Hence if D is a r.v. with mean 0 such that P(|D| < 1) = 1, then E(e?P) < 8_8;68 < /2,
Step 2. Using the martingale differences we obtain

]E(GO(Y,,Lng)U:nil) _ 69(Y7L717Y0)E(69D7L -/—'.nfl) < eH(Y,L,17YO)€02K3/2.

Take expectations and iterate to find
E(ea(yn—yo)) < ]E(ee(yn,l—yo))eengm < exp (ﬁ zn:Kz)
- - 2 i=1 Z
Step 3. Due to the Markov inequality we have for any x > 0
0% &
P(Y, — Yy > 7) < e "E(e’™ 7)) < exp ( — 0z + ZKE)-
i=1

Set § =2/ > " | K? to minimize the exponent. Then

2

x
1 n

Since (—Y,,) is also a martingale, we get

2

X
P(Y, - Yy < —2) =P(-Y, + Yy > 2) < (_ )

Example 23 Large deviations. Let X, be iid Bernoulli (p) r.v. If S;, = X1 +...4+X,,, then ¥;, = S,, —np
is a martingale. Due to the Hoeffding’s inequality for any x > 0

2

P(|Sp — np| > 2v/n) < 2exp ( - 2(maX(Z 1 —p))Z)'

In particular, if p = 1/2,
P(|S, — n/2| > zv/n) < 2672

Putting here x = 3 we get P(|S,, — n/2| > 3y/n) < 3-1078.



5 Convergence in L!
On the figure below five uppcrossing time intervals are shown: (71,75, (T3, 4], - .., (To, T1o]. If for all

rational intervals (a,b) the number of uppcrossings U(a,b) is finite, then the corresponding trajectory
has a (possibly infinite) limit.

“JW /H/R/”\ ﬁ\/“\

3 T4 Ts e 9 TlO T11

Lemma 24 Snell’s uppcrossing inequality. Let a < b and U,(a,b) is the number of uppcrossings of a
submartingale (Yo, ...,Y,). Then E(U,(a,bd)) < M

b—a

Proof. Since Z,, = (Y,, — a)* forms a submartingale, it is enough to prove E(U,(0,c)) < E(f"), where

U, (0, ¢) is the number of uppcrossings of the submartingale (Zo, ..., Z,). Let I; be the indicator of the
event that ¢ € (Ta—1, Tog] for some k. Note that I; is F;_j-measurable, since

{Ii =1} = | {Toe 1 <i = 1P\{Tox < i — 1}
k

is an event that depends on (Yp,...,Y;—1) only. Therefore,

E((Zi — Zi-1)1;) = E(E((Zi — Zi- 1)1 IE 1)) = E(L(E(Zi|Fie1) = Zi-1))
< E(E(Zi|Fi-1) — Zi—1) = E(Zi) — E(Zi-1).

It remains to observe that

¢ Un(0,¢) < f:(zi — Zi_ ) = ¢ E(Un(0,¢)) < E(Zy) — E(Zo) < E(Zy).
=1

Theorem 25 Suppose (Yy,, F) is a submartingale such that E(Y,") < M for some constant M and all
n. (i) There exists a r.v. Y such that Y, — Y almost surely. In addition: (ii) the limit Y has a finite
mean if B|Yy| < oo, and (i) if (Yy,) is uniformly integrable, then Y, — Y in L.

Proof. (i) Using Snell’s inequality we obtain that U(a,b) = lim U, (a, b) satisfies
M + |af
E(U(a,b)) < ———.
(Ua,b)) <

Therefore, P(U(a,b) < co) = 1. Since there are only countably many rationals, it follows that with
probability 1, U(a,b) < oo for all rational (a,b), and Y,, — Y almost surely.
(i) We have to check that E|Y| < oo given E[Yy| < oo. Indeed, since |Y,| = 2V, — Y, and
E(Y,|Fo) > Yo, we get
E(|Y,||Fo) < 2E(Y,F|Fo) —

By Fatou’s lemma

E(|Y||Fo) = E(liminf |Y,,||Fo) < liminf E(|Y,||Fo) < 2liminf E(Y,|Fo) — Yo,
n—00 n—00 n—00

and it remains to observe that E(liminf, ,  E(Y,F|Fo)) < M, again due to Fatou’s lemma.
(iii) Finally, recall that given Y,, L Y, the uniform integrability of (Y,,) is equivalent to E|Y,,| < oo
1
for all n, E[Y| < 0o, and ¥, 5 Y.

Corollary 26 Any martingale, submartingale or supermartingale (Y, F,) satisfying sup,, E|Y,| < M
converges almost surely to a r.v. with a finite limit.



Corollary 27 A non-negative supermartingale converges almost surely. A non-positive submartingale
converges almost surely.

Example 28 De Moivre martingale Y,, = (¢/p)°~ is non-negative and hence converges a.s. to some
limit Y. Let p # ¢. Since S,, — oo for p > g and S,, = —o0o for p < ¢ we have Y = 0. Note that Y, does
not converge in mean, since E(Y,,) = E(Yp) # 0.

Example 29 Doob’s martingale Y,, = E(Z|F,,) is uniformly integrable, see Example 9. It converges a.s.
and in mean to E(Z|F), where Fo, is the smallest o-algebra containing all F,,. There an important
converse result: if a martingale (Y,,, F,) converges in mean, then there exists a r.v. Z with finite mean
such that Y,, = E(Z|F,).

6 Bounded stopping times. Optional sampling theorem

Definition 30 A r.v T taking values in {0,1,2,...} U{oo} is called a stopping time with respect to the
filtration (F,,), if {T =n} € F, for alln > 0. It is called a bounded stopping time if P(T < N) =1 for
some finite constant N.

We denote by Fr the o-algebra of all events A such that AN{T =n} € F, for all n.

The stopped de Moivre martingale from Example 6 is also a martingale. A general statement of this
type follows next.

Theorem 31 Let (Y,,, F,) be a submartingale and let T be a stopping time. Then (Yran,Fn) is a
submartingale. If moreover, E|Y,,| < oo, then (Y, — Yran, Fn) is also a submartingale.

Proof. The r.v. Z,, = Yrp, is F,,-measurable:

n—1

Ly = Z }/zl{Tzz} + Ynl{TZn}a
=0

and

B(Z) < 3 E(Y) < oo.
=0

It remains to see that Z,, 1 — Z,, = (Y41 — Yo )1{r>p) implies
E(Zn+l - Zn|-F7L) = E(Kl+1 - Yn|fn)1{T>n} 2 0.

with
Corollary 32 If (Y,,F,) is a martingale, then it is both a submartingale and a supermartingale, and
therefore, for a given stopping time T, both (Ypan, Fn) and (Y, — Yran, Frn) are martingales.

Theorem 33 Optional sampling. Let (Y, F,) be a submartingale.

(i) If T is a bounded stopping time, then E(Y;) < oo and E(Yr|Fo) > Yy.

(ii) If 0 = Ty < Ty < Ty < ... is a sequence of bounded stopping times, then (Yr,,Fr;) is a
submartingale.

Proof. (i) Let P(T < N) = 1 where N is a positive constant. Since (Yra,) is a submartingale and
Yran = Yr, we have E(Y1) < oo and E(Yr|Fy) > Y.

(ii) Consider two bounded stopping times S < T < N. To show that E(Yr|Fs) > Ys observe that
for A € Fg we have

E(Yrla) = Z E(Yrlangs=k}) = Z ]E(IAO{S:k}E(YT|-7:k))»
k<N k<N
and since in view of Theorem 31, E(Yr|Fx) = E(Yran|Fr) = Yrax for all £ < N, we conclude

E(Yrla) > E( Z 1Am{S:k}YT/\k) = E( Z 1Aﬁ{S:k}Yk) =E(Ysla).
k<N k<N



Example 34 The process Y,, is a martingale iff it is both a submartingale and a supermartingale.
Therefore, according to Theorem 33 (i) we have E(Yr|Fy) = Yy and E(Yr) = E(Yp) for any bounded
stopping time 7. This martingale property is not enough for Example 6 because the ruin time is not
bounded. However, see Theorem 35.

7 Unbounded stopping times

Theorem 35 Optional stopping. Let (Yy,, Fp) be a martingale and T be a stopping time. Then E(Y7) =
E(Yy) if (a) P(T < 00) =1, (b) E|[Yr| < o0, and (c) E(Y,1i75pny) — 0 as n — oo.

Proof. From Y7 = Yran + (Y7 — Y)1{1>y) using that E(Yra,) = E(Yp) we obtain
E(Yr) =E(Yy) + EVrlirsny) — E(Yalirsny)-
It remains to apply (c) and observe that due to the dominated convergence E(Y71{7sny) — 0.

Theorem 36 Let (Y, Fy) be a martingale and T be a stopping time. Then E(Yr) = E(Yy) if
(a) E(T) < oo and (b) there exists a constant ¢ such that for any n

IE(|Yn—~-1 - YnH]:n)l{T>n} < 01{T>n}-
Proof. Since T An — T, we have Y, — Y7 a.s. It follows that
E(Yo) = E(Yran) — E(Y7)

as long as (Yray) is uniformly integrable. To prove the uniform integrability it is enough to verify that
E(W) < oo, where
Yranl < Yol + W, Wi=|Y1 —=Yo|+...+ Y7 — Y74

Indeed, since E(|Y; — Y;_1[lyr>4|Fic1) < clirsiy, we have E(|Y; — Yio1|l{rss) < P(T > i) and
therefore

E(W) =Y E(Y; - Yim1|l{rsi)) < E(T) < .

i=1

Example 37 Wald’s equality. Let (X,,) be iid r.v. with finite mean p and S,, = X; + ...+ X,,, then
Y, = S, — nu is a martingale with respect to F,, = 0{X1,..., X, }. Now

E(|Ynt1 — YnH}—n) =E[Xni1 — pl =E[Xy — pf <oo.

We deduce from Theorem 36 that E(Yr) = E(Yp) for any stopping time 7' with finite mean, implying
that E(St) = pE(T).

Lemma 38 Wald’s identity. Let (X,,) be iid r.v. with M(t) = E(e!X) and S,, = X1 + ...+ X,,. If T is
a stopping time with finite mean such that |Sy|lirsny < clypsyy, then

(57 M(6) ") = 1 whenever M(t) 2 1.

Proof. Define Yy = 1, Y,, = "M ()™", and let F,, = 0{X1,...,X,}. It is clear that (V) is a
martingale and thus the claim follows from Theorem 36. To verify condition (b) note that

E(|Yoi1 — Yul|F) = VaEle X M) ™! — 1| < VE(eXM(t) ™! + 1) = 2Y,,.

Furthermore, given M (t) > 1
Y, =S M(t)™™ < el for n < T.

Example 39 Simple random walk S, with P(X; =1) = p and P(X; = —1) = q. Let T be the first exit
time of (—a,b). By Lemma 38 with M (t) = pet + ge™ ¢,

e*‘”E(M(t)*Tl{ST=_a}) + eth(M(t)*Tl{STﬁ,}) = 1 whenever M (¢t) > 1.



Setting M (t) = s~! we obtain a quadratic equation for e’ having two solutions
1+ +/1—4pgs? 1—+/1— 4pqs?
M(s) = V- TPEE  (s) =~ VTP g 1.
2ps 2ps
They give us two linear equations resulting in

AMAS(AT = A3)
)\tlz-i-b _ )\g-‘rb )

A — Ag

E(s™1(5y——a}) = E(s" Lisr=b}) = Satb —yats:
1 2

Summing up these two relations we get the probability generating function

_ A=A A3 - 1)

T
E(S ) )\({,J,»b _ )\(21+b

8 Maximal inequality
Theorem 40 Maximal inequality.
(i) If (Y,,) is a submartingale, then for any e >0
E(Y,")

n

P(max Y; >¢) <
0<i<n €

(i1) If (Yy) is a supermartingale and E|Yy| < oo, then for any € > 0
E(Y; E(Y
P(max YzZG)S M
0<i<n €
(i1i) Moreover, if (Yy) is a submartingale, then for any e >0
2E(Y.F) — E(Y,
P( max |V;| > ¢) < M_
0<i<n €

In particular, if (Yy) is a martingale, then

E[Yy |
< .

P( max |Y;| > €)
0<i<n

Proof. (i) If (Y,,) is a submartingale, then (Y,) is a non-negative submartingale with finite means and
T:=min{n:Y, > e} =min{n: Y, >}

By Theorem 31, E(Y,

) < E(Y,F). Therefore,

E(Y,") > E(Y/,) = BV Lir<ny) + E(Y, Lirsny) = E(Y 1ir<ny) = €P(T < n),

implying the first stated inequality as {T' < n} = {maxo<;<n Y; > €}.
Furthermore, since E(Y;AHI{T>H}) = E(Y, 1{7>p}), we have

E(Y, 1r<ny) > E(Y7,

Tanlir<ny) = E(Y[ 1{r<ny) > €P(T < n).

Using this we get a stronger inequality

E(Y, 14)

P(A) < , where A = { max Y; > €}. (3)

€ 0<i<n
(ii) If (Y,,) is a supermartingale, then by Theorem 31 the second assertion follows from
E(Yo) = E(Yran) = E(Yrl{r<ny) + E(Yolirsny) = €P(T < n) — E(Y,)).
(iii) Let € > 0. If (V) is a submartingale, then (—Y},) is a supermartingale so that according to (ii),
E(Y,") — E(Y
[p)( min YZ < _€> < M

Combine this with (i) to get the asserted inequality.



Corollary 41 Doob-Kolmogorov’s inequality. If (Yy,) is a martingale with finite second moments, then
(Y,2) is a submartingale for any e > 0

E(Y?2)

n

| >€) = 2> <
P(max [Yi] = €) = P(max ¥ > &) < —5

Corollary 42 Kolmogorov’s inequality. Let (X,,) are iid r.v. with zero means and finite variances (c2),
then for any e > 0

2 2
P(max |X;+...+ X;| > ) < LT F %
1<i<n €

Theorem 43 Convergence in L". Let r > 1. Suppose (Y, Fn) is a martingale such that E(|Y,|") < M
for some constant M and all n. ThenY,, — Y, in L", where Yy, is the a.s. limit of Y,, as n — oc.

Proof. Combining Corollary 26 and Lyapunov’s inequality we get the a.s. convergence Y,, — Y,,. To
L’V‘
prove Y,, = Y., we observe first that

E(( max |Y;))") <E((|Yo| + ...+ |Ya])") < o0.

0<i<n

Now using (3) we obtain (writing A(x) = {maxo<;<n |Yi| > z})

]E((Orglagxn |Y’Z|)T) — /(; Txrfl]p(olgiagxn |Y;‘ > l‘)dx

r

S/ mT_QE(|Yn|1A<z>)d$ZE(|Yn|/ ra’ 1 g (g dx) = 1E[|Yn\(max Yi)
0 0 0<i<n

By Hoélder’s inequality,

Wl ] < [Bvaln)] Bl )]

0<i<n

and we conclude

E((gmax 1)) < () BVl < () M

0<i<n 1

Thus by monotone convergence IE( sup,, |Yy, |T) < oo and (Y;7) is uniformly integrable, implying Y, = Yoo

9 Backward martingales

Definition 44 Let (G,,) be a decreasing sequence of o-algebras and (Yy,) be a sequence of adapted r.v.
The sequence (Y,,Gyn) is called a backward or reversed martingale if, for alln >0,

o E(|Yn[) < oo,
i ]E(Yn|gn+l) = Yn+1-

Theorem 45 Let (Y,,,G,) be a backward martingale. Then 'Y, converges to a limit Yoo almost surely
and in mean.

Proof. The sequence Y,, = E(Yy|G,,) is uniformly integrable, see the proof in Example 9. Therefore, it
suffices to prove a.s. convergence. Applying Lemma 24 to the martingale (Y,,,G,), ..., (Yo, Go) we obtain
E(Un(a,b)) < E((iof_aam for the number U, (a,b) of [a,b] uppcrossings by (Yy,...,Ys). Now let n — oo
and repeat the proof of Theorem 25 to get the required a.s. convergence.

Theorem 46 Strong LLN. Let X1, Xo, ... be iid random variables defined on the same probability space.

Then
X1++Xn a.s.
—_— — U

n

1
for some constant p iff E|X1| < co. In this case p = EX; and % L 1.
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Proof. Set S, = X1 + ...+ S, and let G, = o(Sp, Snt1,.-.), then
E(Sn|Gn+1) = E(Sn[Snt1) = nE(X1[Snt1).
On the other hand,
Sn+1 = E(Snt1[Sn+1) = (n + DE(X1[Sn41).

We conclude that S, /n is a backward martingale, and according to the Backward Martingale Convergence
Theorem there exists Y such that S, /n — Y a.s. and in mean. By Kolmogorov’s zero-one law, Y is
almost surely constant, and hence Y = E(X;) a.s.

a.s.

The converse. If S,,/n %3 p, then X,,/n %% 0 by the theory of convergent real series. Indeed, from
(a1 + ...+ an)/n — p it follows that

[e2% a1+ ...+ ap—1 ar+...+an a1+ ...+ ap—1
— = + — —0
n nin—1) n n—1

Now, in view of X,,/n %% 0, the second Borell-Cantelli lemma gives
> P(|X,| > n) < oo,

since otherwise P(n~!|X,| > 1i.0.) = 1.
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