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Abstract

This Stochastic Processes course is based on the book Probabilities and Random Processes by
Geoffrey Grimmett and David Stirzaker. Chapters 7.7-7.8, and 12.

1 Definitions and examples

Example 1 Martingale: a betting strategy. Let Xn be the gain of a gambler doubling the bet after
each loss. The game stops after the first win.

• X0 = 0

• X1 = 1 with probability 1/2 and X1 = −1 with probability 1/2,

• X2 = 1 with probability 3/4 and X2 = −3 with probability 1/4,

• X3 = 1 with probability 7/8 and X3 = −7 with probability 1/8, . . . ,

• Xn = 1 with probability 1− 2−n and Xn = −2n + 1 with probability 2−n.

Conditional expectation

E(Xn+1|Xn) = (2Xn − 1)
1

2
+ (1)

1

2
= Xn.

If N is the number of games, then P(N = n) = 2−n, n = 1, 2, . . . with E(N) = 2 and

E(XN−1) = E(1− 2N−1) = 1−
∞∑
n=1

2n−12−n = −∞.

Definition 2 A sequence of sigma-fields (Fn) such that F0 ⊂ F1 ⊂ . . . ⊂ Fn ⊂ . . . ⊂ F is called a
filtration. A sequence of r.v. (Yn) is called adapted to (Fn) if Yn is Fn-measurable for all n. In this case
the sequence (Yn,Fn) is called a martingale if, for all n ≥ 0,

• E(|Yn|) <∞ ( E(Y +
n ) <∞, E(Y −n ) <∞),

• E(Yn+1|Fn) = Yn ( ≥ Yn, ≤ Yn).

Definition 3 Let (Yn) be adapted to a filtration (Fn). Then (Yn,Fn) is called a submartingale if

• E(Y +
n ) <∞,

• E(Yn+1|Fn) ≥ Yn.

Definition 4 Let (Yn) be adapted to a filtration (Fn). Then (Yn,Fn) is called a supermartingale if

• E(Y −n ) <∞,

• E(Yn+1|Fn) ≤ Yn.

Consider the sequence of means mn = E(Yn). We have mn+1 ≥ mn for submartingales, mn+1 ≤ mn for
supermartingales, and mn+1 = mn for martingales. A martingale is both a sub- and supermartingale. If
(Yn) is a submartingale, then (−Yn) is a supermartingale.
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Example 5 Consider a simple random walk Sn = X1 + . . .+Xn with P(Xi = 1) = p, P(Xi = −1) = q,
and S0 = k. The centered Sn − n(p− q) is a martingale:

E(Sn+1 − (n+ 1)(p− q)|X1, . . . , Xn) = Sn + E(Xn+1)− (n+ 1)p = Sn − n(p− q).

Another martingale is Yn = (q/p)Sn :

E(Yn+1|X1, . . . , Xn) = p(q/p)Sn+1 + q(q/p)Sn−1 = (q/p)Sn = Yn

with E(Yn) = E(Y0) = (q/p)k. It is called De Moivre’s martingale.

Example 6 Stopped de Moivre’s martingale. Consider the same simple random walk and suppose that
it stops if it hits 0 or N which is larger than the initial state k. Denote Dn = YT∧n, where T is the
stopping time of the random walk and Yn is the de Moivre martingale. It is easy to see that Dn is also
a martingale. Put P(ST = 0) = P(YT = 1) = pk and P(ST = N) = P(YT = (q/p)N ) = 1 − pk. From
E(YT ) = E(Y0) (to be proved later) we derive

(q/p)0pk + (q/p)N (1− pk) = (q/p)k ⇒ pk =
(p/q)N−k − 1

(p/q)N − 1

as long as p 6= q.

Example 7 Let Sn = X1 + . . . + Xn, where Xi are iid r.v. with zero means and finite variances σ2.
Then S2

n − nσ2 is a martingale

E(S2
n+1 − (n+ 1)σ2|X1, . . . , Xn) = S2

n + 2SnE(Xn+1) + E(X2
n+1)− (n+ 1)σ2 = S2

n − nσ2.

Example 8 Branching processes. Let Zn be a branching process with Z0 = 1 and the mean offspring
number µ. Since E(Zn+1|Zn) = µZn, the ratio Wn = µ−nZn is a martingale.

In the supercritical case, µ > 1, the extinction probability η ∈ [0, 1) of Zn is identified as a solution
of the equation η = h(η), where h(s) = E(sX) is the generating function of the offspring number. The
process Vn = ηZn is also a martingale

E(Vn+1|Z1, . . . , Zn) = E(ηX1+...+XZn |Z1, . . . , Zn) = h(η)Zn = Vn.

Example 9 Doob’s martingale. Let Z be a r.v. on (Ω,F ,P) such that E(|Z|) < ∞. For a filtration
(Fn) define Yn = E(Z|Fn). The (Yn,Fn) is a martingale: first, by Jensen’s inequality,

E(|Yn|) = E|E(Z|Fn)| ≤ E(E(|Z| |Fn)) = E(|Z|),

and secondly
E(Yn+1|Fn) = E(E(Z|Fn+1)|Fn)) = E(Z|Fn) = Yn.

As we show next the Doob martingale is uniformly integrable. Again due to Jensen’s inequality,

|Yn| = |E(Z|Fn)| ≤ E(|Z| |Fn) =: Zn,

so that |Yn|1{|Yn|≥a} ≤ Zn1{Zn≥a}. By the definition of conditional expectation E
(
(|Z|−Zn)1{Zn≥a}

)
= 0

and we have
|Yn|1{|Yn|≥a} ≤ |Z|1{Zn≥a}

which entails uniform integrability, since P(Zn ≥ a)→ 0 by the Markov inequality.

2 Convergence in L2

Lemma 10 If (Yn) is a martingale with E(Y 2
n ) <∞, then Yn+1−Yn and Yn are uncorrelated. It follows

that (Y 2
n ) is a submartingale. More generally, if J(x) is convex, then J(Yn) is a submartingale.
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Proof. The first assertion follows from

E(Yn(Yn+1 − Yn)|Fn) = Yn(E(Yn+1|Fn)− Yn) = 0.

The second claim is derived as follows

E(Y 2
n+1|Fn) = E((Yn+1 − Yn)2 + 2Sn(Yn+1 − Yn) + Y 2

n |Fn)

= E((Yn+1 − Yn)2|Fn) + Y 2
n ≥ Y 2

n .

Notice that

E(Y 2
n+1) = E(Y 2

n ) + E((Yn+1 − Yn)2)

so that E(Y 2
n ) is non-decreasing and there always exists a finite or infinite limit

M = lim
n→∞

E(Y 2
n ). (1)

The third assertion is due to the Jensen inequality.

Lemma 11 Doob-Kolmogorov’s inequality. If (Yn) is a martingale with E(Y 2
n ) <∞, then for any ε > 0

P( max
1≤i≤n

|Yi| ≥ ε) ≤
E(Y 2

n )

ε2
.

Proof. Let Bk = {|Y1| < ε, . . . , |Yk−1| < ε, |Yk| ≥ ε}. Then using a submartingale property for the second
inequality we get

E(Y 2
n ) ≥

n∑
i=1

E(Y 2
n 1Bi) ≥

n∑
i=1

E(Y 2
i 1Bi) ≥ ε2

n∑
i=1

P(Bi) = ε2P( max
1≤i≤n

|Yi| ≥ ε).

Theorem 12 If (Yn) is a martingale with finite M defined by (1), then there exists a random variable
Y such that Yn → Y a.s. and in mean square.

Proof. Step 1. For

Am(ε) =
⋃
i≥1

{|Ym+i − Ym| ≥ ε}

we will show that
P(Am(ε))→ 0, m→∞ for any ε > 0. (2)

Put Sn = Ym+n − Ym. It is also a martingale, since

E(Sn+1|S1, . . . , Sn) = E(E(Sn+1|Fm+n)|S1, . . . , Sn) = E(Sn|S1, . . . , Sn) = Sn.

Apply the Doob-Kolmogorov inequality to this martingale to find that

P(|Ym+i − Ym| ≥ ε for some i ∈ [1, n]) ≤ ε−2E((Ym+n − Ym)2) = ε−2(E(Y 2
m+n)− E(Y 2

m)).

Letting n→∞ we obtain P(Am(ε)) ≤ ε−2(M − E(Y 2
m)) and hence (2).

Step 2. Show that the sequence (Yn) is a.s. Cauchy convergent:

P
( ⋂
ε>0

⋃
m≥1

Acm(ε)
)

= 1

which implies the existence of Y such that Yn → Y a.s. Indeed, since Am(ε1) ⊂ Am(ε2) for ε1 > ε2, we
have

P
( ⋃
ε>0

⋂
m≥1

Am(ε)
)

= lim
ε→0

P
( ⋂
m≥1

Am(ε)
)
≤ lim
ε→0

lim
m→∞

P(Am(ε)) = 0.

Step 3. Prove the convergence in mean square using the Fatou lemma

E((Yn − Y )2) = E(liminf
m→∞

(Yn − Ym)2) ≤ liminf
m→∞

E((Yn − Ym)2)

= liminf
m→∞

E(Y 2
m)− E(Y 2

n ) = M − E(Y 2
n )→ 0, n→∞.
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Example 13 Branching processes. Let Zn be a branching process with Z0 = 1 and the offspring
numbers having mean µ and variance σ2. The ratio Wn = µ−nZn is a martingale with

E(W 2
n) = 1 + (σ/µ)2(1 + µ−1 + . . .+ µ−n+1).

In the supercritical case, µ > 1, we have E(W 2
n)→ 1 + σ2

µ(µ−1) , and there is a r.v. W such that Wn →W

a.s. and in L2. The Laplace transform of the limit φ(θ) = E(e−θW ) satisfies a functional equation
φ(µθ) = h(φ(θ)).

3 Doob’s decomposition

Definition 14 The sequence (Sn,Fn) is called predictable if S0 = 0, and Sn is Fn−1-measurable for all
n ≥ 1. It is also called increasing if P(Sn ≤ Sn+1) = 1 for all n ≥ 0.

Theorem 15 Doob’s decomposition. A submartingale (Yn,Fn) with finite means can be expressed in the
form Yn = Mn + Sn, where (Mn,Fn) is a martingale and (Sn,Fn) is an increasing predictable process
(called the compensator of the submartingale). This decomposition is unique.

Proof. We define M and S explicitly: M0 = Y0, S0 = 0, and for n ≥ 0

Mn+1 −Mn = Yn+1 − E(Yn+1|Fn), Sn+1 − Sn = E(Yn+1|Fn)− Yn.

To see uniqueness suppose another such decomposition Yn = M ′n + S′n. Then

M ′n+1 −M ′n + S′n+1 − S′n = Mn+1 −Mn + Sn+1 − Sn.

Taking conditional expectations given Fn we get S′n+1 − S′n = Sn+1 − Sn. This in view of S′0 = S0 = 0
implies S′n = Sn.

Definition 16 Let (Yn) be adapted to (Fn) and (Sn) be predictable. The sequence

Zn = Y0 +

n∑
i=1

Si(Yi − Yi−1)

is called the transform of (Yn) by (Sn).

Example 17 Such transforms are usually interpreted as gambling systems with (Yn) being a super-
martingale (the capital after n gambles each involving a unit stake). Optional skipping is one such
strategy. Here the gambler either wagers a unit stake or skip the round: Sn equals either 1 or 0.

Theorem 18 Let (Zn) be the transform of (Yn) by (Sn). Then
(i) If (Yn) is a martingale, then (Zn) is a martingale so long as E|Zn| <∞ for all n.
(ii) If (Yn) is a submartingale and in addition Sn ≥ 0 for all n, then (Zn) is a submartingale so long

as E(Z+
n ) <∞ for all n.

Proof. Both assertions follow immediately from

E(Zn+1|Fn)− Zn = E(Sn+1(Yn+1 − Yn)|Fn) = Sn+1(E(Yn+1|Fn)− Yn).

Example 19 Optional stopping. The gambler wagers a unit stake on each play until the random time T .
In this case Sn = 1{n≤T} and Zn = YT∧n. If Sn is predictable, then {T = n} = {Sn = 1, Sn+1 = 0} ∈ Fn,
so that T is a stopping time.

Example 20 Optional starting. The gambler does not play until the (T + 1)-th round, where T is a
stopping time. In this case Sn = 1{T≤n−1} is a predictable sequence.
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4 Hoeffding’s inequality

Definition 21 Let (Yn,Fn) be a martingale. The sequence of martingale differences is defined by Dn =
Yn − Yn−1, so that Dn is Fn-measurable

E|Dn| <∞, E(Dn+1|Fn) = 0, Yn = Y0 +D1 + . . .+Dn.

Theorem 22 Hoeffding’s inequality. Let (Yn,Fn) be a martingale, and suppose P(|Dn| ≤ Kn) = 1 for
a sequence of real numbers Kn. Then for any x > 0

P(|Yn − Y0| ≥ x) ≤ 2 exp
(
− x2

2(K2
1 + . . .+K2

n)

)
.

Proof. Let θ > 0.
Step 1. The function eθx is convex, therefore

eθd ≤ 1

2
(1− d)e−θ +

1

2
(1 + d)eθ for all |d| ≤ 1.

Hence if D is a r.v. with mean 0 such that P(|D| ≤ 1) = 1, then E(eθD) ≤ e−θ+eθ

2 < eθ
2/2.

Step 2. Using the martingale differences we obtain

E(eθ(Yn−Y0)|Fn−1) = eθ(Yn−1−Y0)E(eθDn |Fn−1) ≤ eθ(Yn−1−Y0)eθ
2K2

n/2.

Take expectations and iterate to find

E(eθ(Yn−Y0)) ≤ E(eθ(Yn−1−Y0))eθ
2K2

n/2 ≤ exp
(θ2

2

n∑
i=1

K2
i

)
.

Step 3. Due to the Markov inequality we have for any x > 0

P(Yn − Y0 ≥ x) ≤ e−θxE(eθ(Yn−Y0)) ≤ exp
(
− θx+

θ2

2

n∑
i=1

K2
i

)
.

Set θ = x/
∑n
i=1K

2
i to minimize the exponent. Then

P(Yn − Y0 ≥ x) ≤ exp
(
− x2

2(K2
1 + . . .+K2

n)

)
.

Since (−Yn) is also a martingale, we get

P(Yn − Y0 ≤ −x) = P(−Yn + Y0 ≥ x) ≤ exp
(
− x2

2(K2
1 + . . .+K2

n)

)
.

Example 23 Large deviations. Let Xn be iid Bernoulli (p) r.v. If Sn = X1+. . .+Xn, then Yn = Sn−np
is a martingale. Due to the Hoeffding’s inequality for any x > 0

P(|Sn − np| ≥ x
√
n) ≤ 2 exp

(
− x2

2(max(p, 1− p))2
)
.

In particular, if p = 1/2,

P(|Sn − n/2| ≥ x
√
n) ≤ 2e−2x

2

.

Putting here x = 3 we get P(|Sn − n/2| ≥ 3
√
n) ≤ 3 · 10−8.
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5 Convergence in L1

On the figure below five uppcrossing time intervals are shown: (T1, T2], (T3, T4], . . . , (T9, T10]. If for all
rational intervals (a, b) the number of uppcrossings U(a, b) is finite, then the corresponding trajectory
has a (possibly infinite) limit.

T1 T2 T3 T4 T5 T6 T7 T8

a

11

b

T9 T10T

Lemma 24 Snell’s uppcrossing inequality. Let a < b and Un(a, b) is the number of uppcrossings of a

submartingale (Y0, . . . , Yn). Then E(Un(a, b)) ≤ E((Yn−a)+)
b−a .

Proof. Since Zn = (Yn − a)+ forms a submartingale, it is enough to prove E(Un(0, c)) ≤ E(Zn)
c , where

Un(0, c) is the number of uppcrossings of the submartingale (Z0, . . . , Zn). Let Ii be the indicator of the
event that i ∈ (T2k−1, T2k] for some k. Note that Ii is Fi−1-measurable, since

{Ii = 1} =
⋃
k

{T2k−1 ≤ i− 1}\{T2k ≤ i− 1}

is an event that depends on (Y0, . . . , Yi−1) only. Therefore,

E((Zi − Zi−1)Ii) = E(E((Zi − Zi−1)Ii|Fi−1)) = E(Ii(E(Zi|Fi−1)− Zi−1))

≤ E(E(Zi|Fi−1)− Zi−1) = E(Zi)− E(Zi−1).

It remains to observe that

c · Un(0, c) ≤
n∑
i=1

(Zi − Zi−1)Ii ⇒ c · E(Un(0, c)) ≤ E(Zn)− E(Z0) ≤ E(Zn).

Theorem 25 Suppose (Yn,Fn) is a submartingale such that E(Y +
n ) ≤M for some constant M and all

n. (i) There exists a r.v. Y such that Yn → Y almost surely. In addition: (ii) the limit Y has a finite
mean if E|Y0| <∞, and (iii) if (Yn) is uniformly integrable, then Yn → Y in L1.

Proof. (i) Using Snell’s inequality we obtain that U(a, b) = limUn(a, b) satisfies

E(U(a, b)) ≤ M + |a|
b− a

.

Therefore, P(U(a, b) < ∞) = 1. Since there are only countably many rationals, it follows that with
probability 1, U(a, b) <∞ for all rational (a, b), and Yn → Y almost surely.

(ii) We have to check that E|Y | < ∞ given E|Y0| < ∞. Indeed, since |Yn| = 2Y +
n − Yn and

E(Yn|F0) ≥ Y0, we get
E(|Yn|

∣∣F0) ≤ 2E(Y +
n

∣∣F0)− Y0.

By Fatou’s lemma

E(|Y |
∣∣F0) = E(liminf

n→∞
|Yn|

∣∣F0) ≤ liminf
n→∞

E(|Yn|
∣∣F0) ≤ 2 liminf

n→∞
E(Y +

n

∣∣F0)− Y0,

and it remains to observe that E(liminfn→∞ E(Y +
n

∣∣F0)) ≤M , again due to Fatou’s lemma.

(iii) Finally, recall that given Yn
P→ Y , the uniform integrability of (Yn) is equivalent to E|Yn| < ∞

for all n, E|Y | <∞, and Yn
L1

→ Y .

Corollary 26 Any martingale, submartingale or supermartingale (Yn,Fn) satisfying supn E|Yn| ≤ M
converges almost surely to a r.v. with a finite limit.
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Corollary 27 A non-negative supermartingale converges almost surely. A non-positive submartingale
converges almost surely.

Example 28 De Moivre martingale Yn = (q/p)Sn is non-negative and hence converges a.s. to some
limit Y . Let p 6= q. Since Sn →∞ for p > q and Sn → −∞ for p < q we have Y = 0. Note that Yn does
not converge in mean, since E(Yn) = E(Y0) 6= 0.

Example 29 Doob’s martingale Yn = E(Z|Fn) is uniformly integrable, see Example 9. It converges a.s.
and in mean to E(Z|F∞), where F∞ is the smallest σ-algebra containing all Fn. There an important
converse result: if a martingale (Yn,Fn) converges in mean, then there exists a r.v. Z with finite mean
such that Yn = E(Z|Fn).

6 Bounded stopping times. Optional sampling theorem

Definition 30 A r.v T taking values in {0, 1, 2, . . .} ∪ {∞} is called a stopping time with respect to the
filtration (Fn), if {T = n} ∈ Fn for all n ≥ 0. It is called a bounded stopping time if P(T ≤ N) = 1 for
some finite constant N .

We denote by FT the σ-algebra of all events A such that A ∩ {T = n} ∈ Fn for all n.

The stopped de Moivre martingale from Example 6 is also a martingale. A general statement of this
type follows next.

Theorem 31 Let (Yn,Fn) be a submartingale and let T be a stopping time. Then (YT∧n,Fn) is a
submartingale. If moreover, E|Yn| <∞, then (Yn − YT∧n,Fn) is also a submartingale.

Proof. The r.v. Zn = YT∧n is Fn-measurable:

Zn =

n−1∑
i=0

Yi1{T=i} + Yn1{T≥n},

and

E(Z+
n ) ≤

n∑
i=0

E(Y +
i ) <∞.

It remains to see that Zn+1 − Zn = (Yn+1 − Yn)1{T>n} implies

E(Zn+1 − Zn|Fn) = E(Yn+1 − Yn|Fn)1{T>n} ≥ 0.

with
0 ≤ E(Yn+1 − Yn|Fn)1{T>n} ≤ E(Yn+1 − Yn|Fn).

Corollary 32 If (Yn,Fn) is a martingale, then it is both a submartingale and a supermartingale, and
therefore, for a given stopping time T , both (YT∧n,Fn) and (Yn − YT∧n,Fn) are martingales.

Theorem 33 Optional sampling. Let (Yn,Fn) be a submartingale.
(i) If T is a bounded stopping time, then E(Y +

T ) <∞ and E(YT |F0) ≥ Y0.
(ii) If 0 = T0 ≤ T1 ≤ T2 ≤ . . . is a sequence of bounded stopping times, then (YTj ,FTj ) is a

submartingale.

Proof. (i) Let P(T ≤ N) = 1 where N is a positive constant. Since (YT∧n) is a submartingale and
YT∧N = YT , we have E(Y +

T ) <∞ and E(YT |F0) ≥ Y0.
(ii) Consider two bounded stopping times S ≤ T ≤ N . To show that E(YT |FS) ≥ YS observe that

for A ∈ FS we have

E(YT 1A) =
∑
k≤N

E(YT 1A∩{S=k}) =
∑
k≤N

E
(

1A∩{S=k}E(YT |Fk)
)
,

and since in view of Theorem 31, E(YT |Fk) = E(YT∧N |Fk) ≥ YT∧k for all k ≤ N , we conclude

E(YT 1A) ≥ E
( ∑
k≤N

1A∩{S=k}YT∧k

)
= E

( ∑
k≤N

1A∩{S=k}Yk

)
= E(YS1A).
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Example 34 The process Yn is a martingale iff it is both a submartingale and a supermartingale.
Therefore, according to Theorem 33 (i) we have E(YT |F0) = Y0 and E(YT ) = E(Y0) for any bounded
stopping time T . This martingale property is not enough for Example 6 because the ruin time is not
bounded. However, see Theorem 35.

7 Unbounded stopping times

Theorem 35 Optional stopping. Let (Yn,Fn) be a martingale and T be a stopping time. Then E(YT ) =
E(Y0) if (a) P(T <∞) = 1, (b) E|YT | <∞, and (c) E(Yn1{T>n})→ 0 as n→∞.

Proof. From YT = YT∧n + (YT − Yn)1{T>n} using that E(YT∧n) = E(Y0) we obtain

E(YT ) = E(Y0) + E(YT 1{T>n})− E(Yn1{T>n}).

It remains to apply (c) and observe that due to the dominated convergence E(YT 1{T>n})→ 0.

Theorem 36 Let (Yn,Fn) be a martingale and T be a stopping time. Then E(YT ) = E(Y0) if
(a) E(T ) <∞ and (b) there exists a constant c such that for any n

E(|Yn+1 − Yn|
∣∣Fn)1{T>n} ≤ c1{T>n}.

Proof. Since T ∧ n→ T , we have YT∧n → YT a.s. It follows that

E(Y0) = E(YT∧n)→ E(YT )

as long as (YT∧n) is uniformly integrable. To prove the uniform integrability it is enough to verify that
E(W ) <∞, where

|YT∧n| ≤ |Y0|+W, W := |Y1 − Y0|+ . . .+ |YT − YT−1|.

Indeed, since E(|Yi − Yi−1|1{T≥i}
∣∣Fi−1) ≤ c1{T≥i}, we have E(|Yi − Yi−1|1{T≥i}) ≤ cP(T ≥ i) and

therefore

E(W ) =

∞∑
i=1

E(|Yi − Yi−1|1{T≥i}) ≤ cE(T ) <∞.

Example 37 Wald’s equality. Let (Xn) be iid r.v. with finite mean µ and Sn = X1 + . . . + Xn, then
Yn = Sn − nµ is a martingale with respect to Fn = σ{X1, . . . , Xn}. Now

E(|Yn+1 − Yn|
∣∣Fn) = E|Xn+1 − µ| = E|X1 − µ| <∞.

We deduce from Theorem 36 that E(YT ) = E(Y0) for any stopping time T with finite mean, implying
that E(ST ) = µE(T ).

Lemma 38 Wald’s identity. Let (Xn) be iid r.v. with M(t) = E(etX) and Sn = X1 + . . .+Xn. If T is
a stopping time with finite mean such that |Sn|1{T>n} ≤ c1{T>n}, then

E(etSTM(t)−T ) = 1 whenever M(t) ≥ 1.

Proof. Define Y0 = 1, Yn = etSnM(t)−n, and let Fn = σ{X1, . . . , Xn}. It is clear that (Yn) is a
martingale and thus the claim follows from Theorem 36. To verify condition (b) note that

E(|Yn+1 − Yn|
∣∣Fn) = YnE|etXM(t)−1 − 1| ≤ YnE(etXM(t)−1 + 1) = 2Yn.

Furthermore, given M(t) ≥ 1
Yn = etSnM(t)−n ≤ ec|t| for n < T.

Example 39 Simple random walk Sn with P(Xi = 1) = p and P(Xi = −1) = q. Let T be the first exit
time of (−a, b). By Lemma 38 with M(t) = pet + qe−t,

e−atE(M(t)−T 1{ST=−a}) + ebtE(M(t)−T 1{ST=b}) = 1 whenever M(t) ≥ 1.
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Setting M(t) = s−1 we obtain a quadratic equation for et having two solutions

λ1(s) =
1 +

√
1− 4pqs2

2ps
, λ2(s) =

1−
√

1− 4pqs2

2ps
, s ∈ [0, 1].

They give us two linear equations resulting in

E(sT 1{ST=−a}) =
λa1λ

a
2(λb1 − λb2)

λa+b1 − λa+b2

, E(sT 1{ST=b}) =
λa1 − λa2

λa+b1 − λa+b2

.

Summing up these two relations we get the probability generating function

E(sT ) =
λa1(1− λa+b2 ) + λa2(λa+b1 − 1)

λa+b1 − λa+b2

.

8 Maximal inequality

Theorem 40 Maximal inequality.
(i) If (Yn) is a submartingale, then for any ε > 0

P( max
0≤i≤n

Yi ≥ ε) ≤
E(Y +

n )

ε
.

(ii) If (Yn) is a supermartingale and E|Y0| <∞, then for any ε > 0

P( max
0≤i≤n

Yi ≥ ε) ≤
E(Y0) + E(Y −n )

ε
.

(iii) Moreover, if (Yn) is a submartingale, then for any ε > 0

P( max
0≤i≤n

|Yi| ≥ ε) ≤
2E(Y +

n )− E(Y0)

ε
.

In particular, if (Yn) is a martingale, then

P( max
0≤i≤n

|Yi| ≥ ε) ≤
E|Yn|
ε

.

Proof. (i) If (Yn) is a submartingale, then (Y +
n ) is a non-negative submartingale with finite means and

T := min{n : Yn ≥ ε} = min{n : Y +
n ≥ ε}.

By Theorem 31, E(Y +
T∧n) ≤ E(Y +

n ). Therefore,

E(Y +
n ) ≥ E(Y +

T∧n) = E(Y +
T 1{T≤n}) + E(Y +

n 1{T>n}) ≥ E(Y +
T 1{T≤n}) ≥ εP(T ≤ n),

implying the first stated inequality as {T ≤ n} = {max0≤i≤n Yi ≥ ε}.
Furthermore, since E(Y +

T∧n1{T>n}) = E(Y +
n 1{T>n}), we have

E(Y +
n 1{T≤n}) ≥ E(Y +

T∧n1{T≤n}) = E(Y +
T 1{T≤n}) ≥ εP(T ≤ n).

Using this we get a stronger inequality

P(A) ≤ E(Y +
n 1A)

ε
, where A = { max

0≤i≤n
Yi ≥ ε}. (3)

(ii) If (Yn) is a supermartingale, then by Theorem 31 the second assertion follows from

E(Y0) ≥ E(YT∧n) = E(YT I{T≤n}) + E(YnI{T>n}) ≥ εP(T ≤ n)− E(Y −n ).

(iii) Let ε > 0. If (Yn) is a submartingale, then (−Yn) is a supermartingale so that according to (ii),

P( min
0≤i≤n

Yi ≤ −ε) ≤
E(Y +

n )− E(Y0)

ε
.

Combine this with (i) to get the asserted inequality.
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Corollary 41 Doob-Kolmogorov’s inequality. If (Yn) is a martingale with finite second moments, then
(Y 2
n ) is a submartingale for any ε > 0

P( max
1≤i≤n

|Yi| ≥ ε) = P( max
1≤i≤n

Y 2
i ≥ ε2) ≤ E(Y 2

n )

ε2
.

Corollary 42 Kolmogorov’s inequality. Let (Xn) are iid r.v. with zero means and finite variances (σ2
n),

then for any ε > 0

P( max
1≤i≤n

|X1 + . . .+Xi| ≥ ε) ≤
σ2
1 + . . .+ σ2

n

ε2
.

Theorem 43 Convergence in Lr. Let r > 1. Suppose (Yn,Fn) is a martingale such that E(|Yn|r) ≤M
for some constant M and all n. Then Yn → Y∞ in Lr, where Y∞ is the a.s. limit of Yn as n→∞.

Proof. Combining Corollary 26 and Lyapunov’s inequality we get the a.s. convergence Yn → Y∞. To

prove Yn
Lr→ Y∞, we observe first that

E
(
( max
0≤i≤n

|Yi|)r
)
≤ E

(
(|Y0|+ . . .+ |Yn|)r

)
<∞.

Now using (3) we obtain (writing A(x) = {max0≤i≤n |Yi| ≥ x})

E
(
( max
0≤i≤n

|Yi|)r
)

=

∫ ∞
0

rxr−1P
(

max
0≤i≤n

|Yi| > x
)
dx

≤
∫ ∞
0

rxr−2E
(
|Yn|1A(x)

)
dx = E

(
|Yn|

∫ ∞
0

rxr−21A(x)dx
)

=
r

r − 1
E
[
|Yn|( max

0≤i≤n
|Yi|)r−1

]
.

By Hölder’s inequality,

E
[
|Yn|( max

0≤i≤n
|Yi|)r−1

]
≤
[
E(|Yn|r)

]1/r[
E
(
( max
0≤i≤n

|Yi|)r
)](r−1)/r

and we conclude

E
(
( max
0≤i≤n

|Yi|)r
)
≤
( r

r − 1

)r
E(|Yn|r) ≤

( r

r − 1

)r
M.

Thus by monotone convergence E
(

supn |Yn|r
)
<∞ and (Y rn ) is uniformly integrable, implying Yn

Lr→ Y∞.

9 Backward martingales

Definition 44 Let (Gn) be a decreasing sequence of σ-algebras and (Yn) be a sequence of adapted r.v.
The sequence (Yn,Gn) is called a backward or reversed martingale if, for all n ≥ 0,

• E(|Yn|) <∞,

• E(Yn|Gn+1) = Yn+1.

Theorem 45 Let (Yn,Gn) be a backward martingale. Then Yn converges to a limit Y∞ almost surely
and in mean.

Proof. The sequence Yn = E(Y0|Gn) is uniformly integrable, see the proof in Example 9. Therefore, it
suffices to prove a.s. convergence. Applying Lemma 24 to the martingale (Yn,Gn), . . . , (Y0,G0) we obtain

E(Un(a, b)) ≤ E((Y0−a)+)
b−a for the number Un(a, b) of [a, b] uppcrossings by (Yn, . . . , Y0). Now let n→∞

and repeat the proof of Theorem 25 to get the required a.s. convergence.

Theorem 46 Strong LLN. Let X1, X2, . . . be iid random variables defined on the same probability space.
Then

X1 + . . .+Xn

n

a.s.→ µ

for some constant µ iff E|X1| <∞. In this case µ = EX1 and X1+...+Xn
n

L1

→ µ.
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Proof. Set Sn = X1 + . . .+ Sn and let Gn = σ(Sn, Sn+1, . . .), then

E(Sn|Gn+1) = E(Sn|Sn+1) = nE(X1|Sn+1).

On the other hand,

Sn+1 = E(Sn+1|Sn+1) = (n+ 1)E(X1|Sn+1).

We conclude that Sn/n is a backward martingale, and according to the Backward Martingale Convergence
Theorem there exists Y such that Sn/n → Y a.s. and in mean. By Kolmogorov’s zero-one law, Y is
almost surely constant, and hence Y = E(X1) a.s.

The converse. If Sn/n
a.s.→ µ, then Xn/n

a.s.→ 0 by the theory of convergent real series. Indeed, from
(a1 + . . .+ an)/n→ µ it follows that

an
n

=
a1 + . . .+ an−1

n(n− 1)
+
a1 + . . .+ an

n
− a1 + . . .+ an−1

n− 1
→ 0

Now, in view of Xn/n
a.s.→ 0, the second Borell-Cantelli lemma gives∑

n

P(|Xn| ≥ n) <∞,

since otherwise P(n−1|Xn| ≥ 1 i.o.) = 1.
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