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1 Random events and random variables

1.1 Probability space

A random experiment is modeled in terms of a probability space (Ω,F ,P)

• the sample space Ω is the set of all possible outcomes of the experiment,

• the σ-field (or sigma-algebra) F is a collection of measurable subsets A ⊂ Ω (which are called
random events) satisfying

1. ∅ ∈ F ,

2. if Ai ∈ F , 0 = 1, 2, . . ., then ∪∞i=1Ai ∈ F , countable unions,

3. if A ∈ F , then Ac ∈ F , complementary event,

• the probability measure P is a function on F satisfying three probability axioms
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1. if A ∈ F , then P(A) ≥ 0,

2. P(Ω) = 1,

3. if Ai ∈ F , 0 = 1, 2, . . . are all disjoint, then P(∪∞i=1Ai) =
∑∞
i=1 P(Ai).

De Morgan’s laws (⋂
i

Ai

)c
=
⋃
i

Aci ,
(⋃

i

Ai

)c
=
⋂
i

Aci .

Properties derived from the axioms

P(∅) = 0,

P(Ac) = 1− P(A),

P(A ∪B) = P(A) + P(B)− P(A ∩B).

Inclusion-exclusion rule

P(A1 ∪ . . . ∪An) =
∑
i

P(Ai)−
∑
i<j

P(Ai ∩Aj) +
∑
i<j<k

P(Ai ∩Aj ∩Ak)− . . .

+ (−1)n+1P(A1 ∩ . . . ∩An).

Continuity of the probability measure

• if A1 ⊂ A2 ⊂ . . . and A = ∪∞i=1Ai = limi→∞Ai, then P(A) = limi→∞ P(Ai),

• if B1 ⊃ B2 ⊃ . . . and B = ∩∞i=1Bi = limi→∞Bi, then P(B) = limi→∞ P(Bi).

1.2 Conditional probability and independence

If P(B) > 0, then the conditional probability of A given B is

P(A|B) =
P(A ∩B)

P(B)
.

The law of total probability and the Bayes formula. Let B1, . . . , Bn be a partition of Ω, then

P(A) =

n∑
i=1

P(A|Bi)P(Bi),

P(Bj |A) =
P(A|Bj)P(Bj)∑n
i=1 P(A|Bi)P(Bi)

.

Definition 1.1 Events A1, . . . , An are independent, if for any subset of events (Ai1 , . . . , Aik)

P(Ai1 ∩ . . . ∩Aik) = P(Ai1) . . .P(Aik).

Example 1.2 Pairwise independence does not imply independence of three events. Toss two coins and
consider three events

• A ={heads on the first coin},

• B ={tails on the first coin},

• C ={one head and one tail}.

Clearly, P(A|C) = P(A) and P(B|C) = P(B) but P(A ∩B|C) = 0.
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1.3 Random variables

A real random variable is a measurable function X : Ω → R so that different outcomes ω ∈ Ω can give
different values X(ω). Measurability of X(ω):

{ω : X(ω) ≤ x} ∈ F for any real number x.

Probability distribution PX(B) = P(X ∈ B) defines a new probability space (R,B,PX), where B = σ(all
open intervals) is the Borel sigma-algebra.

Definition 1.3 Distribution function (cumulative distribution function)

F (x) = FX(x) = PX{(−∞, x]} = P(X ≤ x).

In terms of the distribution function we get

P(a < X ≤ b) = F (b)− F (a),

P(X < x) = F (x−),

P(X = x) = F (x)− F (x−).

Any monotone right-continuous function with

lim
x→−∞

F (x) = 0 and lim
x→∞

F (x) = 1

can be a distribution function.

Definition 1.4 The random variable X is called discrete, if for some countable set of possible values

P(X ∈ {x1, x2, . . .}) = 1.

Its distribution is described by the probability mass function f(x) = P(X = x).
The random variable X is called (absolutely) continuous, if its distribution has a probability density

function f(x):

F (x) =

∫ x

−∞
f(y)dy, for all x,

so that f(x) = F ′(x) almost everywhere.

Example 1.5 The indicator of a random event 1A = 1{ω∈A} with p = P(A) has a Bernoulli distribution

P(1A = 1) = p, P(1A = 0) = 1− p.

For several events Sn =
∑n
i=1 1Ai counts the number of events that occurred. If independent events

A1, A2, . . . have the same probability p = P(Ai), then Sn has a binomial distribution Bin(n, p)

P(Sn = k) =

(
n

k

)
pk(1− p)n−k, k = 0, 1, . . . , n.

Example 1.6 (Cantor distribution) Consider (Ω,F ,P) with Ω = [0, 1], F = B[0,1], and

P([0, 1]) = 1

P([0, 1/3]) = P([2/3, 1]) = 2−1

P([0, 1/9]) = P([2/9, 1/3]) = P([2/3, 7/9]) = P([8/9, 1]) = 2−2

and so on. Put X(ω) = ω, its distribution, called the Cantor distribution, is neither discrete nor contin-
uous. Its distribution function, called the Cantor function, is continuous but not absolutely continuous.
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1.4 Random vectors

Definition 1.7 The joint distribution of a random vector X = (X1, . . . , Xn) is the function

FX(x1, . . . , xn) = P({X1 ≤ x1} ∩ . . . ∩ {Xn ≤ xn}).

Marginal distributions

FX1
(x) = FX(x,∞, . . . ,∞),

FX2
(x) = FX(∞, x,∞, . . . ,∞),

. . .

FXn(x) = FX(∞, . . . ,∞, x).

The existence of the joint probability density function f(x1, . . . , xn) means that the distribution function

FX(x1, . . . , xn) =

∫ x1

−∞
. . .

∫ xn

−∞
f(y1, . . . , yn)dy1 . . . dyn, for all (x1, . . . , xn),

is absolutely continuous, so that f(x1, . . . , xn) = ∂nF (x1,...,xn)
∂x1...∂xn

almost everywhere.

Definition 1.8 Random variables (X1, . . . , Xn) are called independent if for any (x1, . . . , xn)

P(X1 ≤ x1, . . . , Xn ≤ xn) = P(X1 ≤ x1) . . .P(Xn ≤ xn).

In the jointly continuous case this equivalent to

f(x1, . . . , xn) = fX1(x1) . . . fXn(xn).

Example 1.9 In general, the joint distribution can not be recovered form the marginal distributions. If

FX,Y (x, y) = xy1{(x,y)∈[0,1]2},

then vectors (X,Y ) and (X,X) have the same marginal distributions.

Example 1.10 Consider

F (x, y) =

 1− e−x − xe−y if 0 ≤ x ≤ y,
1− e−y − ye−y if 0 ≤ y ≤ x,
0 otherwise.

Show that F (x, y) is the joint distribution function of some pair (X,Y ). Find the marginal distribution
functions and densities.

Solution. Three properties should be satisfied for F (x, y) to be the joint distribution function of some
pair (X,Y ):

1. F (x, y) is non-decreasing on both variables,

2. F (x, y)→ 0 as x→ −∞ and y → −∞,

3. F (x, y)→ 1 as x→∞ and y →∞.

Observe that

f(x, y) =
∂2F (x, y)

∂x∂y
= e−y1{0≤x≤y}

is always non-negative. Thus the first property follows from the integral representation:

F (x, y) =

∫ x

−∞

∫ y

−∞
f(u, v)dudv,

which, for 0 ≤ x ≤ y, is verifies as∫ x

−∞

∫ y

−∞
f(u, v)dudv =

∫ x

0

(∫ y

u

e−vdv
)
du = 1− e−x − xe−y,
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Figure 1: Filtration for four consecutive coin tossings.

and for 0 ≤ y ≤ x as∫ x

−∞

∫ y

−∞
f(u, v)dudv =

∫ y

0

(∫ y

u

e−vdv
)
du = 1− e−y − ye−y.

The second and third properties are straightforward. We have shown also that f(x, y) is the joint density.
For x ≥ 0 and y ≥ 0 we obtain the marginal distributions as limits

FX(x) = lim
y→∞

F (x, y) = 1− e−x, fX(x) = e−x,

FY (y) = lim
x→∞

F (x, y) = 1− e−y − ye−y, fY (y) = ye−y.

X ∼ Exp(1) and Y ∼ Gamma(2, 1).

1.5 Filtration

Definition 1.11 A sequence of sigma-fields {Fn}∞n=1 such that

F1 ⊂ F2 ⊂ . . . ⊂ Fn ⊂ . . . , Fn ⊂ F for all n

is called a filtration.

To illustrate this definition use an infinite sequence of Bernoulli trials. Let Sn be the number of heads
in n independent tosses of a fair coin. Figure 1 shows imbedded partitions F1 ⊂ F2 ⊂ F3 ⊂ F4 ⊂ F5 of
the sample space generated by S1, S2, S3, S4, S5.

The events representing our knowledge of the first three tosses is given by F3. From the perspective
of F3 we can not say exactly the value of S4. Clearly, there is dependence between S3 and S4. The joint
distribution of S3 and S4:

S4 = 0 S4 = 1 S4 = 2 S4 = 3 S4 = 4 Total
S3 = 0 1/16 1/16 0 0 0 1/8
S3 = 1 0 3/16 3/16 0 0 3/8
S3 = 2 0 0 3/16 3/16 0 3/8
S3 = 3 0 0 0 1/16 1/16 1/8
Total 1/16 1/4 3/8 1/4 1/16 1

The conditional expectation
E(S4|S3) = S3 + 0.5

is a discrete random variable with values 0.5, 1.5, 2.5, 3.5 and probabilities 1/8, 3/8, 3/8, 1/8.
For finite n the picture is straightforward. For n = ∞ it is a non-trivial task to define an overall

(Ω,F ,P) with Ω = (0, 1]. One can use the Lebesgue measure P(dx) = dx and the sigma-field F of
Lebesgue measurable subsets of (0, 1]. Not all subsets of (0, 1] are Lebesgue measurable.
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2 Expectation and conditional expectation

2.1 Expectation

The expected value of X is

E(X) =

∫
Ω

X(ω)P(dω).

A discrete r.v. X with a finite number of possible values is a simple r.v. in that

X =

n∑
i=1

xi1Ai

for some partition A1, . . . , An of Ω. In this case the meaning of the expectation is obvious

E(X) =

n∑
i=1

xiP(Ai).

For any non-negative r.v. X there are simple r.v. such that Xn(ω) ↗ X(ω) for all ω ∈ Ω, and the
expectation is defined as a possibly infinite limit E(X) = limn→∞ E(Xn).

Any r.v. X can be written as a difference of two non-negative r.v. X+ = X ∨ 0 and X− = −X ∧ 0.
If at least one of E(X+) and E(X−) is finite, then E(X) = E(X+) − E(X−), otherwise E(X) does not
exist.

Example 2.1 A discrete r.v. with the probability mass function f(k) = 1
2k(k−1) for k = −1,±2,±3, . . .

has no expectation.

For a discrete r.v. X with mass function f and any function g

E(g(X)) =
∑
x

g(x)f(x).

For a continuous r.v. X with density f and any measurable function g

E(g(X)) =

∫ ∞
−∞

g(x)f(x)dx.

In general

E(X) =

∫
Ω

X(ω)P(dω) =

∫ ∞
−∞

xPX(dx) =

∫ ∞
−∞

xdF (x).

Example 2.2 Turn to the example of (Ω,F ,P) with Ω = [0, 1], F = B[0,1], and a random variable
X(ω) = ω having the Cantor distribution. A sequence of simple r.v. monotonely converging to X is
Xn(ω) = k3−n for ω ∈ [(k − 1)3−n, k3−n), k = 1, . . . , 3n and Xn(1) = 1.

X1(ω) = 0, E(X1) = 0,

X2(ω) = (1/3)1{ω∈[1/3,2/3)} + (2/3)1{ω∈[2/3,1]}, E(X2) = (2/3) ∗ (1/2) = 1/3,

E(X3) = (2/9) ∗ (1/4) + (2/3) ∗ (1/4) + (8/9) ∗ (1/4) = 4/9,

and so on, gives E(Xn)↗ 1/2 = E(X).

Lemma 2.3 Cauchy-Schwartz inequality. For r.v. X and Y we have(
E(XY )

)2 ≤ E(X2)E(Y 2)

with equality if only if aX + bY = 1 a.s. for some non-trivial pair of constants (a, b).

Definition 2.4 Variance, standard deviation, covariance and correlation

Var(X) = E
(
X − EX

)2
= E(X2)− (EX)2, σX =

√
Var(X),

Cov(X,Y ) = E
(
X − EX

)(
Y − EY

)
= E(XY )− (EX)(EY ),

ρ(X,Y ) =
Cov(X,Y )

σXσY
.
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The covariance matrix of a random vector (X1, . . . , Xn) with means µ = (µ1, . . . , µn)

V = E
(
X− µ

)t(
X− µ

)
= ‖Cov(Xi, Xj)‖

is symmetric and nonnegative-definite. For any vector a = (a1, . . . , an) the r.v. a1X1 + . . .+ anXn has
mean aµt and variance

Var(a1X1 + . . .+ anXn) = E
(
aXt − aµt

)(
Xat − µat

)
= aVat.

If (X1, . . . , Xn) are independent, then they are uncorrelated: Cov(Xi, Xj) = 0.

2.2 Conditional expectation and prediction

Definition 2.5 For a pair of discrete random variables (X,Y ) the conditional expectation E(Y |X) is
defined as ψ(X), where

ψ(x) =
∑
y

yP(Y = y|X = x).

Definition 2.6 Consider a pair of random variables (X,Y ) with joint density f(x, y), marginal densities

f1(x) =

∫ ∞
−∞

f(x, y)dy, f2(x) =

∫ ∞
−∞

f(x, y)dx,

and conditional densities

f1(x|y) =
f(x, y)

f2(y)
, f2(y|x) =

f(x, y)

f1(x)
.

The conditional expectation E(Y |X) is defined as ψ(X), where

ψ(x) =

∫ ∞
−∞

yf2(y|x)dy.

Properties of conditional expectations:
(i) linearity: E(aY + bZ|X) = aE(Y |X) + bE(Z|X) for any constants (a, b),
(ii) pull-through property: E(Y g(X)|X) = g(X)E(Y |X) for any measurable function g(x),
(iii) E(Y 1G) = E(ψ(X)1G) for G = {ω : X(ω) ∈ B}, where B ∈ R,
(iv) tower property: E(E(Y |X,Z)|X) = E(Y |X),
(v) total expectation: E(E(Y |X)) = E(Y ),
(vi) total variance: Var(Y ) = Var(E(Y |X)) + E(Var(Y |X)).

Proof of (ii) in the discrete case:

E(Y g(X)|X) =
∑
x,y

yg(x)P(Y = y,X = x) =
∑
x,y

g(x)P(X = x)yP(Y = y|X = x)

=
∑
x

g(x)ψ(x)P(X = x) = g(X)E(Y |X).

Definition 2.7 General definition. Let Y be a r.v. on (Ω,F ,P) and let G be a sub-σ-algebra of F . If
there exists a G-measurable r.v. Z such that

E((Y − Z)1G) = 0 for all G ∈ G,

then Z is called the conditional expectation of Y given G and is written Z = E(Y |G).

Properties of conditional expectations:
(vii) if E(Y |G) exists, then it is a.s. unique,
(viii) if E|Y | <∞, then E(Y |G) exists due to the Radon-Nikodym theorem,
(ix) if G = σ(X), then E(Y |X) := E(Y |G) and E(Y |X) = ψ(X) for some measurable function ψ.

Proof of (viii). Consider the probability space (Ω,G,P) and define a finite signed measure P1(G) =
E(Y 1G) =

∫
G
Y (ω)P(dω) which is absolutely continuous with respect to P. Thus P1(G) =

∫
G
Z(ω)P(dω)

with Z = ∂P1/∂P being the Radon-Nikodym derivative.
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Definition 2.8 Let X and Y be random variables on (Ω,F ,P) such that E(Y 2) <∞. The best predictor
of Y given the knowledge of X is the function Ŷ = h(X) that minimizes E((Y − Ŷ )2).

Let L2(Ω,F ,P) be the set of random variables Z on (Ω,F ,P) such that E(Z2) <∞. Define a scalar
product on the linear space L2(Ω,F ,P) by 〈U, V 〉 = E(UV ) leading to the norm

‖Z‖ = 〈Z,Z〉1/2 = (E(Z2))1/2.

Let H be the subspace of L2(Ω,F ,P) of all functions of X having finite second moment

H = {h(X) : E(h(X)2) <∞}.

Geometrically, the best predictor of Y given X is the projection Ŷ of Y on H so that

E((Y − Ŷ )Z) = 0, for all Z ∈ H. (1)

Theorem 2.9 Let X and Y be random variables on (Ω,F ,P) such that E(Y 2) <∞. The best predictor
of Y given X is the conditional expectation Ŷ = E(Y |X).

Proof. Put Ŷ = E(Y |X). We have due to the Jensen inequality Ŷ 2 ≤ E(Y 2|X) and therefore

E(Ŷ 2) ≤ E(E(Y 2|X)) = E(Y 2) <∞,

implying Ŷ ∈ H. To verify (1) we observe that

E((Y − Ŷ )Z) = E(E((Y − Ŷ )Z|Z)) = E(E(Y |X)Z − Ŷ Z) = 0.

To prove uniqueness assume that there is another predictor Ȳ with E((Y − Ȳ )2) = E((Y − Ŷ )2) = d2.

Then E((Y − Ŷ+Ȳ
2 )2) ≥ d2 and according to the parallelogram rule

2
(
‖Y − Ŷ ‖2 + ‖Y − Ȳ ‖2

)
= 4‖Y − Ŷ + Ȳ

2
‖2 + ‖Ȳ − Ŷ ‖2

we have
‖Ȳ − Ŷ ‖2 ≤ 2

(
‖Y − Ŷ ‖2 + ‖Y − Ȳ ‖2

)
− 4d2 = 0.

2.3 Multinomial distribution

De Moivre trials: each trial has r possible outcomes with probabilities (p1, . . . , pr). Consider n such
independent trials and let (X1, . . . , Xr) be the counts of different outcomes. Multinomial distribution
Mn(n, p1, . . . , pr)

P(X1 = k1, . . . , Xr = kr) =
n!

k1! . . . kr!
pk11 . . . pkrr .

Marginal distributions Xi ∼ Bin(n, pi), also

(X1 +X2, X3 . . . , Xr) ∼ Mn(n, p1 + p2, p3, . . . , pr).

Conditionally on X1

(X2, . . . , Xr) ∼ Mn(n−X1,
p2

1− p1
, . . . ,

pr
1− p1

),

so that (Xi|Xj) ∼ Bin(n−Xj ,
pi

1−pj ) and E(Xi|Xj) = (n−Xj)
pi

1−pj . It follows

E(XiXj) = E(E(XiXj |Xj))

= E(XjE(Xi|Xj)) = E(nXj −X2
j )

pi
1− pj

= (n2pj − npj(1− pj) + n2p2
j )

pi
1− pj

= n(n− 1)pipj

and Cov(Xi, Xj) = −npipj so that

ρ(Xi, Xj) = −
√

pipj
(1− pi)(1− pj)

.
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2.4 Multivariate normal distribution

Bivariate normal distribution with parameters (µ1, µ2, σ1, σ2, ρ)

f(x, y) =
1

2πσ1σ2

√
1− ρ2

exp

{
−

(x−µ1

σ1
)2 − 2ρ(x−µ1

σ1
)(y−µ2

σ2
) + (y−µ2

σ2
)2

2(1− ρ2)

}
.

Marginal distributions

f1(x) =
1√

2πσ1

e
− (x−µ1)2

2σ21 , f2(y) =
1√

2πσ2

e
− (y−µ2)2

2σ22 ,

and conditional distributions

f1(x|y) =
f(x, y)

f2(y)
=

1

σ1

√
2π(1− ρ2)

exp

{
−

(x− µ1 − ρσ1

σ2
(y − µ2))2

2σ2
1(1− ρ2)

}
,

f2(y|x) =
f(x, y)

f1(x)
=

1

σ2

√
2π(1− ρ2)

exp

{
−

(y − µ2 − ρσ2

σ1
(x− µ1))2

2σ2
2(1− ρ2)

}
.

Exercise: check the total variance formula for this example.

A multivariate normal distribution with mean vector µ = (µ1, . . . , µn) and covariance matrix V has
density

f(x) =
1√

(2π)ndetV
e−(x−µ)V−1(x−µ)t .

For any vector (a1, . . . , an) the r.v. a1X1 + . . .+ anXn is normally distributed. Application in statistics:
in the IID case: µ = (µ, . . . , µ) and V = diag{σ2, . . . , σ2} the sample mean and sample variance

X̄ =
X1 + . . .+Xn

n
, s2 =

(X1 − X̄)2 + . . .+ (Xn − X̄)2

n− 1

are independent and
√
n(X̄−µ)
s has a t-distribution with n− 1 degrees of freedom.

If Y and Z are independent r.v. with standard normal distribution, their ratio X = Y/Z has a
Cauchy distribution with density

f(x) =
1

π(1 + x2)
, −∞ < x <∞.

In the Cauchy distribution case the mean is undefined and X̄
d
= X. Cauchy and normal distributions

are examples of stable distributions. The Cauchy distribution provides with a counterexample for the
law of large numbers.

2.5 Sampling from a distribution

Computers generate pseudo-random numbers U1, U2, . . . which we consider as IID r.v. with U[0,1] distri-
bution.

Inverse transform sampling: if F is a cdf and U ∼ U[0,1], then X = F−1(U) has cdf F . It fol-
lows from

{F−1(U) ≤ x} = {U ≤ F (x)}.

Example 2.10 Examples of the inverse transform sampling.
(i) Bernoulli distribution X = 1{U≤p},
(ii) Binomial sampling: Sn = X1 + . . .+Xn, Xk = 1{Uk≤p},
(iii) Exponential distribution X = − log(U)/λ,
(iv) Gamma sampling: Sn = X1 + . . .+Xn, Xk = − log(Uk)/λ.
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Lemma 2.11 Rejection sampling. Suppose that we know how to sample from density g(x) but we want
to sample from density f(x) such that f(x) ≤ ag(x) for some a > 0. Algorithm

step 1: sample x from g(x) and u from U[0,1],

step 2: if u ≤ f(x)
ag(x) , accept x as a realization of sampling from f(x),

step 3: if not, reject the value of x and repeat the sampling step.

Proof. Let Z and U be independent, Z has density g(x) and U ∼ U[0,1]. Then

P
(
Z ≤ x

∣∣∣U ≤ f(Z)

ag(Z)

)
=

∫ x
−∞ P

(
U ≤ f(y)

ag(y)

)
g(y)dy∫∞

−∞ P
(
U ≤ f(y)

ag(y)

)
g(y)dy

=

∫ x

−∞
f(y)dy.

2.6 Probability generating, moment generating, and characteristic functions

Definition 2.12 If X takes values k = 0, 1, 2, . . . with probabilities pk and
∑∞
k=0 pk = 1, then the

distribution of X is fully described by its probability generating function

G(s) = E(sX) =

∞∑
k=0

pks
k.

Properties of pgf:

(i) p0 = G(0), pk = 1
k!
dkG(s)
dsk
|s=0,

(ii) E(X) = G′(1), E(X(X − 1)) = G′′(1).
(iiii) if X and Y are independent, then GX+Y (s) = GX(s)GY (s),

Example 2.13 Examples of probability generating functions
(i) Bernoulli distribution G(s) = q + ps,
(ii) Binomial distribution G(s) = (q + ps)n,
(iii) Geometric distribution G(s) = 1−p

1−ps ,

(iv) Poisson distribution G(s) = eλ(s−1).

Definition 2.14 Moment generating function of X is M(θ) = E(eθX). In the continuous case M(θ) =∫
eθxf(x)dx. Moments E(X) = M ′(0), E(Xk) = M (k)(0).

Example 2.15 Examples of moment generating functions
(i) Normal distribution M(θ) = eθµ+ 1

2 θ
2σ2

,
(ii) Exponential distribution M(θ) = λ

λ−θ for θ < λ,

(ii) Gamma(α, λ) distribution has density f(x) = λα

Γ(α)x
α−1e−λx and M(θ) =

(
λ
λ−θ

)α
for θ < λ, it

follows that the sum of k exponentials with parameter λ has a Gamma(k, λ) distribution,
(iii) Cauchy distribution M(0) = 1, M(t) =∞ for t 6= 0.

Definition 2.16 The characteristic function of X is complex valued φ(θ) = E(eiθX). The joint charac-

teristic function for X = (X1, . . . , Xn) is φ(θ) = E(eiθX
t

).

Example 2.17 Examples of characteristic functions
(i) Normal distribution φ(θ) = eiθµ−

1
2 θ

2σ2

,

(ii) Gamma distribution φ(θ) =
(

λ
λ−iθ

)α
,

(iii) Cauchy distribution φ(θ) = e−|θ|,

(iv) Multinomial distribution φ(θ) =
(∑r

j=1 pje
iθj
)n

.

(v) Multivariate normal distribution φ(θ) = eiθµ
t− 1

2θVθt

.

Example 2.18 Given a vector X = (X1, . . . , Xn) with a multivariate normal distribution any linear
combination aXt = a1X1 + . . .+ anXn is normally distributed since

E(eθaX
t

) = φ(θa) = eiθµ−
1
2 θ

2σ2

, µ = aµt, σ2 = aVat.
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3 Convergence of random variables

3.1 Borel-Cantelli lemmas

Given a sequence of random events A1, A2, . . . define new events

sup
n
An =

⋃
n

An, inf
n
An =

⋂
n

An,

lim sup
n→∞

An =

∞⋂
n=1

∞⋃
m=n

Am, liminf
n→∞

An =

∞⋃
n=1

∞⋂
m=n

Am.

Observe that

lim sup
n→∞

An =

∞⋂
n=1

∞⋃
m=n

Am = {∀n ∃m ≥ n such that Am occurs} = {events An occur infinitely often},

liminf
n→∞

Acn =

∞⋃
n=1

∞⋂
m=n

Acm = {∃n such that Acm occur ∀m ≥ n} = {events An occur finitely often}.

Theorem 3.1 Borel-Cantelli lemmas. Let {An i.o.} := {infinitely many of events A1, A2, . . . occur}.
1. If

∑∞
n=1 P (An) <∞, then P (An i.o.) = 0,

2. If
∑∞
n=1 P (An) =∞ and events A1, A2, . . . are independent, then P (An i.o.) = 1.

Proof. (1) Put A = {An i.o.}. We have A ⊂ ∪m≥nAm, and so P(A) ≤
∑
m≥n P(Am)→ 0 as n→∞.

(2) By independence

P(
⋂
m≥n

Acm) = lim
N→∞

P(

N⋂
m=n

Acm) =
∏
m≥n

(1− P(Am)) ≤ exp
(
−
∑
m≥n

P(Am)
)

= 0.

It follows P(Ac) = limn P(∩m≥nAcm) = 0 which gives P(A) = 1.

If events A1, A2, . . . are independent, then either P (An i.o.) = 0 or P (An i.o.) = 1. This is an example
of a general zero-one law.

Definition 3.2 Let X1, X2, . . . be a sequence of random variables defined on the same probability space
and Hn = σ(Xn+1, Xn+2, . . .). Then Hn ⊃ Hn+1 ⊃ . . ., and we define the tail σ-algebra as T = ∩nHn.

Event H is in the tail σ-algebra if and only if changing the values of X1, . . . , XN does not affect the
occurrence of H for any finite N .

Theorem 3.3 Kolmogorov’s zero-one law. Let X1, X2, . . . be independent random variables defined on
the same probability space. For all events H ∈ T from the tail σ-algebra we have either P (H) = 0 or
P (H) = 1.

Proof. A standard result of measure theory asserts that for any H ∈ H1 there exists a sequence of events
Cn = σ(X1, . . . , Xn) such that P(H∆Cn)→ 0 as n→∞. If H ∈ T , then by independence

P(H ∩ Cn) = P(H)P(Cn)→ P(H)2

implying P(H) = P(H)2.

Example 3.4 Examples of events belonging to the tail σ-algebra T :

{Xn > 0 i.o.}, {lim sup
n→∞

Xn =∞}, {
∑
n

Xn converges}.

These events are not affected by X1, . . . , XN for any fixed N .

Example 3.5 An example of an event A /∈ T not belonging to the tail σ-algebra: suppose Xn may take
only two values 1 and −1, and consider

A = {Sn = 0 i.o.}, where Sn = X1 + . . .+Xn.

Whether A occurs or not depends on the value of X1. Indeed, if X2 = X4 = . . . = 1 and X3 = X5 =
. . . = −1, then A occurs if X1 = −1 and does not occur if X1 = 1.
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3.2 Inequalities

Jensen’s inequality. Given a convex function J(x) and a random variable X we have

J(E(X)) ≤ E(J(X)).

Proof. Put µ = E(X). Due to convexity there is λ such that J(x) ≥ J(µ) + λ(x− µ) for all x. Thus

E(J(X)) ≥ E(J(µ) + λ(X − µ)) = J(µ).

Markov’s inequality. For any random variable X and a > 0

P(|X| ≥ a) ≤ E|X|
a

.

Proof:
E|X| ≥ E(|X|1{|X|≥a}) ≥ aE(1{|X|≥a}) = aP(|X| ≥ a).

Chebyshev’s inequality. Given a random variable X with mean µ and variance σ2 for any ε > 0 we
have

P(|X − µ| ≥ ε) ≤ σ2

ε2
.

Proof:

P(|X − µ| ≥ ε) = P((X − µ)2 ≥ ε2) ≤ E((X − µ)2)

ε2
.

Cauchy-Schwartz’s inequality. The following inequality becomes an equality if only if aX + bY = 1
a.s. for a pair of constants (a, b) 6= (0, 0):(

E(XY )
)2 ≤ E(X2)E(Y 2).

Exercise 3.6 For a random variable X define its cumulant generating function by Λ(t) = logM(t),
where M(t) = E(etX) is the moment generating function assumed to be finite on an interval t ∈ [0, z).
Show that Λ(0) = 0, Λ′(0) = µ, and

Λ′′(t) =
E(etX)E(X2etX)− (E(XetX))2

M2(t)
.

Deduce that Λ(t) is convex on [0, z).

Hölder’s inequality. If p, q > 1 and p−1 + q−1 = 1, then

E|XY | ≤
(
E|Xp|

)1/p(E|Y q|)1/q.
Lyapunov’s inequality. If 0 < s < r, then(

E|Xs|
)1/s ≤ (E|Xr|

)1/r
.

Proof. Using Hölder’s inequality with p = r/s and q = (1− s/r)−1 we obtain

E
(
|Xs| · 1

)
≤
(
E|Xs|p

)1/p
=
(
E|Xr|

)s/r
.

Minkowski’s inequality. If p ≥ 1, then the following triangle inequality holds(
E|X + Y |p

)1/p ≤ (E|Xp|
)1/p

+
(
E|Y p|

)1/p
.

Kolmogorov’s inequality. Let {Xn} be iid with zero means and variances σ2
n. Then for any ε > 0

P( max
1≤i≤n

|X1 + . . .+Xi| ≥ ε) ≤
σ2

1 + . . .+ σ2
n

ε2
.
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3.3 Modes of convergence

Theorem 3.7 If X1, X2, . . . are random variables defined on the same probability space, then so are

inf
n
Xn, sup

n
Xn, liminf

n
Xn, lim sup

n
Xn.

Proof. For any real x

{ω : inf
n
Xn ≤ x} =

⋃
n

{ω : Xn ≤ x} ∈ F , {ω : sup
n
Xn ≤ x} =

⋂
n

{ω : Xn ≤ x} ∈ F .

It remains to observe that

liminf
n

Xn = sup
n

inf
m≥n

Xm, lim sup
n

Xn = inf
n

sup
m≥n

Xm.

Definition 3.8 Let X,X1, X2, . . . be random variables on some probability space (Ω,F ,P). Define four
modes of convergence of random variables

(i) almost sure convergence Xn
a.s.→ X, if P(ω : limXn = X) = 1,

(ii) convergence in r-th mean Xn
Lr→ X for a given r ≥ 1, if E|Xr

n| <∞ for all n and

E(|Xn −X|r)→ 0,

(iii) convergence in probability Xn
P→ X, if P(|Xn −X| > ε)→ 0 for all positive ε,

(iv) convergence in distribution Xn
d→ X (does not require a common probability space), if

P(Xn ≤ x)→ P(X ≤ x) for all x such that P(X = x) = 0.

Theorem 3.9 Let q ≥ r ≥ 1. The following implications hold

Xn
Lq→ X ⇒(i)

Xn
a.s.→ X ⇒(ii)

Xn
Lr→ X ⇒(iii)

Xn
P→ X ⇒(iv) Xn

d→ X.

Proof. The implication (i) is due to the Lyapunov inequality, while (iii) follows from the Markov inequal-
ity. For (ii) observe that the a.s. convergence is equivalent to P(∪n≥m{|Xn −X| > ε})→ 0, m→∞ for
any ε > 0. To prove (iv) use

P(Xn ≤ x) = P(Xn ≤ x,X ≤ x+ ε) + P(Xn ≤ x,X > x+ ε) ≤ P(X ≤ x+ ε) + P(|X −Xn| > ε),

P(X ≤ x− ε) = P(Xn ≤ x,X ≤ x− ε) + P(Xn > x,X ≤ x− ε) ≤ P(Xn ≤ x) + P(|X −Xn| > ε).

Theorem 3.10 Reverse implications:

(i) Xn
d→ c⇒ Xn

P→ c for a constant limit,

(ii) Xn
P→ X ⇒ Xn

Lr→ X, if P(|Xn| ≤ a) = 1 for all n and some positive constant a,

(iii) Xn
P→ X ⇒ Xn

a.s.→ X if P(|Xn −X| > ε)→ 0 so fast that∑
n

P(|Xn −X| > ε) <∞ for any ε > 0. (2)

(iv) Xn
P→ X ⇒ Xn′

a.s.→ X along a subsequence.

Proof. To prove (i) use

P(|Xn − c| > ε) = P(Xn < c− ε) + P(Xn > c+ ε).

To prove (ii) use P(|X| ≤ a) = 1 and

|Xn −X|r ≤ εr1{|Xn−X|≤ε} + (2a)r1{|Xn−X|>ε}.

The implication (iii) follows from the first Borel-Cantelli lemma. Indeed, put Bm = {|Xn − X| >
m−1 i.o.}. Due to the Borel-Cantelli lemma, condition (2) implies P(Bm) = 0 for any natural m.
Remains to observe that {ω : limXn 6= X} = supmBm. The implication (iv) follows from (iii).
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Example 3.11 Let Ω = [0, 2] and put An = [an, an+1], where an is the fractional part of 1 + 1/2 + . . .+
1/n.

• The random variables 1An converge to zero in mean (and therefore in probability) but not a.s.

• The random variables n1An converge to zero in probability but not in mean and not a.s.

• P(An i.o.) = 0.5 and
∑
n P(An) =∞.

Example 3.12 Let Ω = [0, 1] and put Bn = [0, 1/n].

• The random variables n1Bn converge to zero a.s but not in mean.

• Put X2n = 1B2
and X2n+1 = 1 −X2n. The random variables Xn converge to 1B2

in distribution
but not in probability. The random variables Xn converge in distribution to 1− 1B2

as well.

• Both X2n = 1B2 and X2n+1 = 1 − X2n converge to 1B2 in distribution but their sum does not
converge to 21B2 .

Exercise 3.13 Suppose Xn
Lr→ X, where r ≥ 1. Show that E(|Xn|r)→ E(|X|r). (Hint: use Minkowski’s

inequality two times as you need two estimate lim supE(|Xn|r) from above and liminf E(|Xn|r) from
below.)

Exercise 3.14 Suppose Xn
L1

→ X. Show that E(Xn) → E(X). (Hint: use Jensen’s inequality.) Is the
converse true?

Exercise 3.15 Suppose Xn
L2

→ X. Show that Var(Xn) → Var(X). (Hint :use the previous two exer-
cises.)

3.4 Continuity of expectation

Theorem 3.16 Bounded convergence. Suppose |Xn| ≤ M almost surely and Xn
P→ X. Then E(X) =

limE(Xn).

Proof. Let ε > 0 and use

|E(Xn)− E(X)| ≤ E|Xn −X| = E
(
|Xn −X| · 1{|Xn−X|≤ε}

)
+ E

(
|Xn −X| · 1{|Xn−X|>ε}

)
≤ ε+MP(|Xn −X| > ε).

Lemma 3.17 Fatou’s lemma. If almost surely Xn ≥ 0, then liminf E(Xn) ≥ E(liminf Xn). In particu-
lar, applying this to Xn = 1{An} and Xn = 1− 1{An} we get

P(liminf An) ≤ liminf P(An) ≤ lim supP(An) ≤ P(lim supAn).

Proof. Put Yn = infm≥nXn. We have Yn ≤ Xn and Yn ↗ Y = liminf Xn. It suffices to show that
liminf E(Yn) ≥ E(Y ). Since, |Yn ∧M | ≤M , the bounded convergence theorem implies

liminf
n→∞

E(Yn) ≥ liminf
n→∞

E(Yn ∧M) = E(Y ∧M).

The convergence E(Y ∧M)→ E(Y ) as M →∞ can be shown using the definition of expectation.

Theorem 3.18 Monotone convergence. If 0 ≤ Xn(ω) ≤ Xn+1(ω) for all n and ω, then, clearly, for all
ω, there exists a limit (possibly infinite) for the sequence Xn(ω). In this case E(limXn) = limE(Xn).

Proof. From E(Xn) ≤ E(limXn) we have lim supE(Xn) ≤ E(limXn). Now use Fatou’s lemma.

Lemma 3.19 Let X be a non-negative random variable with finite mean. Show that

E(X) =

∫ ∞
0

P(X > x)dx.
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Proof. Put F (x) = P (X ≤ x). Integrating by parts we get

E(X) =

∫ ∞
0

xdF (x) =

∫ ∞
0

xd(F (x)− 1) = x(F (x)− 1)|∞0 −
∫ ∞

0

(F (x)− 1)dx.

Thus it suffices to prove that n(1− F (n))→ 0 as n→∞. This follows from the monotone convergence
theorem since

n(1− F (n)) ≤ E(X1X>n)→ 0.

Exercise 3.20 Let X be a non-negative random variable. Show that

E(Xr) = r

∫ ∞
0

xr−1P(X > x)dx

for any r ≥ 1 for which the expectation is finite.

Theorem 3.21 Dominated convergence. If Xn
a.s.→ X and almost surely |Xn| ≤ Y and E(Y ) <∞, then

E|X| <∞ and E(Xn)→ E(X).

Proof. Apply Fatou’s lemma twice.

Definition 3.22 A sequence Xn of random variables is said to be uniformly integrable if

sup
n

E(|Xn|; |Xn| > a)→ 0, a→∞.

Exercise 3.23 Put Z = supn |Xn|. If E(Z) <∞, then the sequence Xn is uniformly integrable.
Hint: E(|Xn|1A) ≤ E(Z1A) for any event A.

Lemma 3.24 A sequence Xn of random variables is uniformly integrable if and only if both of the
following hold:

(i) supn E|Xn| <∞,
(ii) for all ε > 0, there is δ > 0 such that, for any event A such that P(A) < δ,

sup
n

E(|Xn|1A) < ε.

Proof. Step 1. Assume that (Xn) is uniformly integrable. For any positive a,

sup
n

E|Xn| = sup
n

(
E(|Xn|; |Xn| ≤ a) + E(|Xn|; |Xn| > a)

)
≤ a+ sup

n
E(|Xn|; |Xn| > a).

Thus supn E|Xn| <∞.
Step 2. Assume that (Xn) is uniformly integrable. Pick a positive a such that

sup
n

E(|Xn|1{Bn}) < ε/2, Bn = {|Xn| > a},

and put δ = ε
2a . If event A is such that P(A) < δ, then for all n,

E(|Xn|1A) = E(|Xn|1{A∩Bn}) + E(|Xn|1{A∩Bcn}) ≤ E(|Xn|1{Bn}) + aP(A) < ε.

Step 3. Assume that (i) and (ii) hold. Let ε > 0 and pick δ according to (ii). To prove that (Xn) is
uniformly integrable it suffices to verify, see (ii), that

sup
n

P(|Xn| > a) < δ

for sufficiently large a such that a > δ−1 supn E|Xn|. But this is an easy consequence of the Markov
inequality

sup
n

P(|Xn| > a) ≤ a−1 sup
n

E|Xn| < δ.
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Theorem 3.25 Let Xn
P→ X. The following three statements are equivalent to one another.

(a) The sequence Xn is uniformly integrable.

(b) E|Xn| <∞ for all n, E|X| <∞, and Xn
L1

→ X.
(c) E|Xn| <∞ for all n, E|X| <∞, and E|Xn| → E|X|.

Theorem 3.26 Let r ≥ 1. If Xn
P→ X and the sequence |Xr

n| is uniformly integrable, then Xn
Lr→ X.

Proof. Step 1. Show that E|Xr| <∞. There is a subsequence (Xn′) which converges to X almost surely.
By Fatou’s lemma and Lemma 3.24,

E|Xr| = E
(

liminf
n′→∞

|Xr
n′ |
)
≤ liminf

n′→∞
E|Xr

n′ | ≤ sup
n

E|Xr
n| <∞.

Step 2. Fix an arbitrary ε > 0 and put Bn = {|Xn −X| > ε}. We have P(Bn)→ 0 as n→ 0, and

E|Xn −X|r ≤ εr + E
(
|Xn −X|r1Bn

)
.

By the Minkowski inequality[
E
(
|Xn −X|r1Bn

)]1/r
≤
[
E
(
|Xn|r1Bn

)]1/r
+
[
E
(
|X|r1Bn

)]1/r
.

It remains to see that the last two expectations both go to 0 as n → ∞: the first by Lemma 3.24 and
the second by step 1.

4 Limit theorems for the sums if IID random variables

4.1 Weak law of large numbers

Definition 4.1 Convergence in distribution Xn
d→ X means

P(Xn ≤ x)→ P(X ≤ x) for all x such that P(X = x) = 0.

This is equvalent to the weak convergence Fn
d→ F of distribution functions when Fn(x)→ F (x) at each

point x where F is continuous.

Theorem 4.2 Weak convergence and convergence of characteristic functions:
(i) two r.v. have the same characteristic function iff they have the same distribution function,

(ii) if Xn
d→ X, then φn(t)→ φ(t) for all t,

(iii) conversely, if φ(t) = limφn(t) exists and continuous at t = 0, then φ is cf of some F , and

Fn
d→ F .

Theorem 4.3 If X1, X2, . . . are iid with finite mean µ and Sn = X1 + . . .+Xn, then

Sn/n
d→ µ, n→∞.

Proof. Let Fn and φn be the df and cf of n−1Sn. To prove Fn(x)
d→ 1{x≥µ} we have to see that

φn(t)→ eitµ which is obtained using a Taylor expansion

φn(t) =
(
φ1(tn−1)

)n
=
(

1 + iµtn−1 + o(n−1)
)n
→ eitµ.

Example 4.4 Statistical application: the sample mean is a consistent estimate of the population mean.

Counterexample: if X1, X2, . . . are iid with the Cauchy distribution, then Sn/n
d
= X1 since φn(t) = φ1(t).
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4.2 Central limit theorem

The LLN says that |Sn − nµ| is much smaller than n. The CLT says that this difference is of order
√
n.

Theorem 4.5 If X1, X2, . . . are iid with finite mean µ and positive finite variance σ2, then for any x

P
(Sn − nµ

σ
√
n
≤ x

)
→ 1√

2π

∫ x

−∞
e−y

2/2dy, n→∞.

Proof. Let ψn be the cf of Sn−nµ
σ
√
n

. Using a Taylor expansion we obtain

ψn(t) =
(

1− t2

2n
+ o(n−1)

)n
→ e−t

2/2.

Example 4.6 Important example: simple random walks. 280 years ago de Moivre (1733) obtained the
first CLT in the symmetric case with p = 1/2.

Statistical application: the standardized sample mean has the sampling distribution which is approx-
imately N(0, 1). Approximate 95% confidence interval formula for the mean X̄ ± 1.96 s√

n
.

Theorem 4.7 Let (Xn
1 , . . . , X

n
r ) have the multinomial distribution Mn(n, p1, . . . , pr). Then the normal-

ized vector
(
Xn1 −np1√

n
, . . . ,

Xnr −npr√
n

)
converges in distribution to the multivariate normal distribution with

zero means and the covariance matrix

V =


p1(1− p1) −p1p2 −p1p3 . . . −p1pr
−p2p1 p2(1− p2) −p2p3 . . . −p2pr
−p3p1 −p3p2 p3(1− p3) . . . −p3pr
. . . . . . . . . . . . . . .
−prp1 −prp2 −prp3 . . . pr(1− pr)

 .

Proof. To apply the continuity property of the multivariate characteristic functions consider

E exp
(
iθ1

Xn
1 − np1√

n
+ . . .+ iθr

Xn
r − npr√

n

)
=
( r∑
j=1

pje
iθ̃j/
√
n
)n
,

where θ̃j = θj − (θ1p1 + . . .+ θrpr). Similarly to the classical case we have

( r∑
j=1

pje
iθ̃j/
√
n
)n

=
(

1− 1

2n

r∑
j=1

pj θ̃
2
j + o(n−1)

)n
→ e−

1
2

∑r
j=1 pj θ̃

2
j = e−

1
2 (

∑r
j=1 pjθ

2
j−(

∑r
j=1 pjθj)

2).

It remains to see that the right hand side equals e−
1
2θVθt

which follows from the representation

V =

 p1 0
. . .

0 pr

−
 p1

...
pr

(p1, . . . , pr

)
.

4.3 Strong LLN

Theorem 4.8 Let X1, X2, . . . be iid random variables defined on the same probability space with mean
µ and finite second moment. Then

X1 + . . .+Xn

n

L2

→ µ.

Proof. Since σ2 := E(X2
1 )− µ2 <∞, we have

E

((
X1 + . . .+Xn

n
− µ

)2
)

= Var
(
X1 + . . .+Xn

n

)
=
nσ2

n2
→ 0.
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Theorem 4.9 Strong LLN. Let X1, X2, . . . be iid random variables defined on the same probability space.
Then

X1 + . . .+Xn

n

a.s.→ µ

for some constant µ iff E|X1| <∞. In this case µ = EX1 and X1+...+Xn
n

L1

→ µ.

There are cases when convergence in probability holds but not a.s. In those cases of course E|X1| =∞.

Theorem 4.10 The law of the iterated logarithm. Let X1, X2, . . . be iid random variables with mean 0
and variance 1. Then

P
(

lim sup
n→∞

X1 + . . .+Xn√
2n log log n

= 1

)
= 1

and

P
(

liminf
n→∞

X1 + . . .+Xn√
2n log logn

= −1

)
= 1.

Proof sketch. The second assertion of Theorem 4.10 follows from the first one after applying it to −Xi.
The proof of the first part is difficult. One has to show that the events

An(c) = {X1 + . . .+Xn ≥ c
√

2n log log n}

occur for infinitely many values of n if c < 1 and for only finitely many values of n if c > 1.

4.4 Large deviations

Let X1, X2, . . . be iid random variables with mean µ, variance σ2, and partial sums Sn = X1 + . . .+Xn.
Let Λ(t) be the cumulant generating function for a typical Xi, see Exercise 3.6. For the convex function
Λ(t) we define the Fenchel-Legendre transform by

Λ∗(a) = sup
t∈R
{at− Λ(t)}, a ∈ R.

Observe that Λ∗(a) > 0 for a > µ. This follows from the representation

at− Λ(t) = log
eat

M(t)
= log

1 + at+ o(t)

1 + µt+ 1
2σ

2t2 + o(t2)

showing that at− Λ(t) is positive for sufficiently small t > 0.

Theorem 4.11 Let X1, X2, . . . be iid random variables with mean µ, and suppose that their moment
generating function M(t) = E(etX) is finite in some neighborhood of the origin t = 0. Let a > µ be such
that P(X > a) is positive. Then Λ∗(a) > 0 and

1

n
logP(Sn > na)→ −Λ∗(a), n→∞.

Without proof.

Exercise 4.12 What happens if a is such that P(X > a) = 0?

Corollary 4.13 Let X1, X2, . . . be iid random variables with mean µ, and suppose that their moment
generating function M(t) = E(etX) is finite in some neighborhood of the origin t = 0. Let a < µ be such
that P(X < a) > 0. Then Λ∗(a) > 0 and

1

n
logP(Sn < na)→ −Λ∗(a), n→∞.

Proof. Replace Xi by −X̄i and put ā = −a. Then {Sn < na} = {S̄n > nā} and ā > µ̄. Moreover,
Λ̄(t) = Λ(−t) and therefore, Λ̄∗(a) = Λ∗(−a). Thus according to the theorem

1

n
logP(Sn < na) =

1

n
logP(S̄n > nā)→ −Λ̄∗(ā) = −Λ∗(a), n→∞.
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Example 4.14 For the normally distributed Xi with a common density f(x) = 1√
2πσ

e−
(x−µ)2

2σ2 , the

normalized partial sums Sn/n are also normally distributed with mean µ and variance σ2/n so that

P(Sn > na) =
1√
2π

∫ ∞
(a−µ)

√
n

σ

e−
y2

2 dy.

For x > 0, we have

(x−1 − x−3)e−
x2

2 ≤
∫ ∞
x

e−
y2

2 dy ≤ x−1e−
x2

2 .

Thus for a > µ we obtain

P(Sn > na) ∼ σ√
2πn(a− µ)

e−
(a−µ)2

2σ2
·n.

It follows,
1

n
logP(Sn < na)→ − (a− µ)2

2σ2
, n→∞.

From M(t) = etµ+ 1
2 t

2σ2

, we find Λ(t) = tµ+ 1
2 t

2σ2 and

at− Λ(t) = t(a− µ)− 1

2
t2σ2 =

(a− µ)2

2σ2
− 1

2

(a− µ
σ
− tσ

)2
.

Clearly, this quadratic function reaches its maximum at t = a−µ
σ2 . The maximum is

Λ∗(a) =
(a− µ)2

2σ2
.

Example 4.15 For Xi with Ber(p) distribution, the partial sum Sn has a binomial distribution with
parameters (n, p)

P(Sn = k) =

(
n

k

)
pk(1− p)n−k.

Put

H(a) = a log
a

p
+ (1− a) log

1− a
1− p

, a ∈ (p, 1).

Since H(p) = 0 and H ′(a) = log a(1−p)
p(1−a) , we conclude that H(a) > 0. Using the Stirling formula

√
2πn nne−ne

1
12n+1 ≤ n! ≤

√
2πn nne−ne

1
12n ,

one can show that

P(Sn > na) ∼ a(1− p)
a− p

1√
2πa(1− a)n

e−nH(a).

On the other hand M(t) = pet + 1− p and

f(t) = at− Λ(t) = at− log(pet + 1− p)

has the following derivatives

f ′(t) = a− pet

pet + 1− p
= a− 1 +

1− p
pet + 1− p

, f ′′(t) = − (1− p)pet

(pet + 1− p)2
.

Thus the maximum of f(t) is achieved at t satisfying

pet + 1− p =
1− p
1− a

, t = log
a(1− p)
p(1− a)

,

and the maximum equals

Λ∗(a) = a log
a(1− p)
p(1− a)

− log
1− p
1− a

= H(a).
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5 Markov chains

5.1 Simple random walks

Let Sn = a + X1 + . . . + Xn where X1, X2, . . . are IID r.v. taking values 1 and −1 with probabilities p
and q = 1− p. This Markov chain is homogeneous both in space and time. We have Sn = 2Zn−n, with
Zn ∼ Bin(n, p). Symmetric random walk if p = 0.5. Drift upwards p > 0.5 or downwards p < 0.5 (like
in casino).

(i) The ruin probability pk = pk(N): your starting capital k against casino’s N − k. The difference
equation

pk = p · pk+1 + q · pk−1, pN = 0, p0 = 1

gives

pk(N) =

{
(q/p)N−(q/p)k

(q/p)N−1
, if p 6= 0.5,

N−k
N , if p = 0.5.

Start from zero and let τb be the first hitting time of b, then for b > 0

P(τ−b <∞) = lim
N→∞

pb(N) =

{
1, if p ≤ 0.5,

(q/p)b, if p > 0.5,

and

P(τb <∞) =

{
1, if p ≥ 0.5,

(p/q)b, if p < 0.5.

(ii) The mean number Dk = Dk(N) of steps before hitting either 0 or N . The difference equation

Dk = p · (1 +Dk+1) + q · (1 +Dk−1), D0 = DN = 0

gives

Dk(N) =

{
1
q−p

[
k −N · 1−(q/p)k

1−(q/p)N

]
, if p 6= 0.5,

k(N − k), if p = 0.5.

If p < 0.5, then the expected ruin time is computed as Dk(N)→ k
q−p as N →∞.

(iii) There are

Nn(a, b) =

(
n

k

)
, k =

n+ b− a
2

paths from a to b in n steps. Each path has probability pkqn−k. Thus

P(Sn = b|S0 = a) =

(
n

k

)
pkqn−k, k =

n+ b− a
2

.

In particular, P(S2n = a|S0 = a) =
(

2n
n

)
(pq)n. Reflection principle: the number of n-paths visiting r is

Nr
n(a, b) = Nn(2r − a, b), a ≥ r, b ≥ r,

Nr
n(a, b) = Nn(a, 2r − b), a < r, b < r.

(iv) Ballot theorem: if b > 0, then the number of n-paths 0→ b not revisiting zero is

Nn−1(1, b)−N0
n−1(1, b) = Nn−1(1, b)−Nn−1(−1, b)

=

(
n− 1
n+b

2 − 1

)
−
(
n− 1
n+b

2

)
= (b/n)Nn(0, b).

Thus (by default we will assume S0 = 0)

P(S1 > 0, . . . Sn−1 > 0|Sn = b) =
b

n
, b > 0,

P(S1 6= 0, . . . Sn−1 6= 0, Sn = b) =
|b|
n
P(Sn = b),

P(S1 6= 0, . . . Sn 6= 0) = n−1E|Sn|.
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It follows that
P(S1 6= 0, . . . S2n 6= 0) = P(S2n = 0) for p = 0.5. (3)

Indeed,

P(S1 6= 0, . . . S2n 6= 0) = 2

n∑
k=1

2k

2n
P(S2n = 2k) = 2

n∑
k=1

2k

2n

(
2n

n+ k

)
2−2n

= 2−2n+1
n∑
k=1

(
2n− 1

n+ k − 1

)
−
(

2n− 1

n+ k

)
= 2−2n+1

(
2n− 1

n

)
= P(S2n = 0).

(v) For the maximum Mn = max{S0, . . . , Sn} using Nr
n(0, b) = Nn(0, 2r − b) for r > b and r > 0 we

get

P(Mn ≥ r, Sn = b) = (q/p)r−bP(Sn = 2r − b),
implying for b > 0

P(S1 < b, . . . Sn−1 < b, Sn = b) =
b

n
P(Sn = b).

The obtained equality

P(S1 > 0, . . . Sn−1 > 0, Sn = b) = P(S1 < b, . . . Sn−1 < b, Sn = b)

can be explained in terms of the reversed walk also starting at zero: the initial walk comes to b without
revisiting zero means that the reversed walk reaches its maximum on the final step.

(vi) The first hitting time τb has distribution

P(τb = n) =
|b|
n
P(Sn = b), n > 0.

The mean number of visits of b 6= 0 before revisiting zero

E
∞∑
n=1

1{S1 6=0,...Sn−1 6=0,Sn=b} =

∞∑
n=1

P(τb = n) = P(τb <∞).

Theorem 5.1 Arcsine law for the last visit to the origin. Let p = 0.5, S0 = 0, and T2n be the time of
the last visit to zero up to time 2n. Then

P(T2n ≤ 2xn)→
∫ x

0

dy

π
√
y(1− y)

=
2

π
arcsin

√
x, n→∞.

Proof sketch. Using (3) we get

P(T2n = 2k) = P(S2k = 0)P(S2k+1 6= 0, . . . , S2n 6= 0|S2k = 0)

= P(S2k = 0)P(S2(n−k) = 0),

and it remains to apply Stirling’s formula.

Theorem 5.2 Arcsine law for sojourn times. Let p = 0.5, S0 = 0, and T+
2n be the number of time

intervals spent on the positive side up to time 2n. Then T+
2n

d
= T2n.

Proof sketch. First using

P(S1 > 0, . . . , S2n > 0) = P(S1 = 1, S2 ≥ 1, . . . , S2n ≥ 1) =
1

2
P(T+

2n = 2n)

and (3) observe that
P(T+

2n = 0) = P(T+
2n = 2n) = P(S2n = 0).

Then by induction over n one can show that

P(T+
2n = 2k) = P(S2k = 0)P(S2(n−k) = 0)

for k = 1, . . . , n− 1, applying the following useful relation

P(S2n = 0) =

n∑
k=1

P(S2(n−k) = 0)P(τ0 = 2k),

where τ0 is the time of first return to zero.
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5.2 Markov chains

Conditional on the present value, the future of the system is independent of the past. A Markov chain
{Xn}∞n=0 with countably many states and transition matrix P with elements pij

P(Xn = j|Xn−1 = i,Xn−2 = in−2, . . . , X0 = i0) = pij .

The n-step transition matrix with elements p
(n)
ij = P(Xn+m = j|Xm = i) equals Pn. Given the initial

distribution a as the vector with components ai = P(X0 = i), the distribution of Xn is given by the
vector aPn since

P(Xn = j) =

∞∑
i=−∞

P(Xn = j|X0 = i)P(X0 = i) =

∞∑
i=−∞

aip
(n)
ij .

Example 5.3 Examples of Markov chains:

• IID chain has transition probabilities pij = pj ,

• simple random walk has transition probabilities pij = p1{j=i+1} + q1{j=i−1},

• Bernoulli process has transition probabilities pij = p1{j=i+1} + q1{j=i} and state space S =
{0, 1, 2, . . .}.

Lemma 5.4 Hitting times. Let Ti = min{n ≥ 1 : Xn = i} and put f
(n)
ij = P(Tj = n|X0 = i). Define the

generating functions

Pij(s) =

∞∑
n=0

snp
(n)
ij , Fij(s) =

∞∑
n=1

snf
(n)
ij .

It is not difficult to see that

Pij(s) = 1{j=i} + Fij(s)Pjj(s)

Pii(s) =
1

1− Fii(s)
.

Definition 5.5 Classification of states

• state i is called recurrent (persistent), if P(Ti <∞|X0 = i) = 1,

• a non-recurrent state is called a transient state,

• a recurrent state i is called null-recurrent, if E(Ti|X0 = i) =∞,

• state i is called positive-recurrent, if E(Ti|X0 = i) <∞.

Theorem 5.6 State i is recurrent iff
∑∞
n=1 p

(n)
ii =∞. A recurrent state i is null-recurrent iff p

(n)
ii → 0.

In the latter case p
(n)
ij → 0 for all j.

Proof sketch. Since Fii(1) = P(Ti < ∞|X0 = i), we conclude that state i is recurrent iff the expected
number of visits of the state is infinite Pii(1) =∞. See also the ergodic Theorem 5.14.

Example 5.7 For a simple random walk

P(S2n = i|S0 = i) =

(
2n

n

)
(pq)n.

Using the Stirling formula n! ∼ nne−n
√

2πn we get

p
(2n)
ii ∼ (4pq)n√

πn
, n→∞.

Criterium of recurrence
∑
p

(n)
ii = ∞ holds only if p = 0.5 when p

(2n)
ii ∼ 1√

πn
. The one and two-

dimensional symmetric simple random walks are null-recurrent but the three-dimensional walk is tran-
sient!
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Definition 5.8 The period d(i) of state i is the greatest common divisor of n such that p
(n)
ii > 0. We

call i periodic if d(i) ≥ 2 and aperiodic if d(i) = 1.

If two states i and j communicate with each other, then

• i and j have the same period,

• i is transient iff j is transient,

• i is null-recurrent iff j is null-recurrent.

Definition 5.9 A chain is called irreducible if all states communicate with each other.

All states in an irreducible chain have the same period d. It is called the period of the chain. Example:
a simple random walk is periodic with period 2. Irreducible chains are classified as transient, recurrent,
positively recurrent, or null-recurrent.

Definition 5.10 State i is absorbing if pii = 1. More generally, C is called a closed set of states, if
pij = 0 for all i ∈ C and j /∈ C.

The state space S can be partitioned uniquely as

S = T ∪ C1 ∪ C2 ∪ . . . ,

where T is the set of transient states, and the Ci are irreducible closed sets of recurrent states. If S is
finite, then at least one state is recurrent and all recurrent states are positively recurrent.

5.3 Stationary distributions

A vector of probabilities π = (πj , j ∈ S) is a stationary distribution for the Markov chain Xn, if given
X0 has distribution π, Xn has the same distribution π for any n, or in other words π is a left eigenvector
of the transition matrix

πP = π.

Theorem 5.11 An irreducible chain (aperiodic or periodic) has a stationary distribution π iff the chain
is positively recurrent; in this case π is the unique stationary distribution and is given by πi = 1/µi,
where µi = E(Ti|X0 = i) and Ti is the time of first return to i.

Proof sketch. Let ρ(k) = (ρj(k), j ∈ S) where ρk(k) = 1 and

ρj(k) =

∞∑
n=1

P(Xn = j, Tk ≥ n|X0 = k)

is the mean number of visits of the chain to the state j between two consecutive visits to state k. Then

∑
j∈S

ρj(k) =
∑
j∈S

∞∑
n=1

P(Xn = j, Tk ≥ n|X0 = k)

=

∞∑
n=1

P(Tk ≥ n|X0 = k) = E(Tk|X0 = k) = µk.

If the chain is irreducible recurrent, then ρj(k) < ∞ for any k and j, and furthermore, ρ(k)P = ρ(k).
Thus there exists a positive root x of the equation xP = x, which is unique up to a multiplicative
constant; the chain is positively recurrent iff

∑
j∈S xj <∞.

Theorem 5.12 Let s be any state of an irreducible chain. The chain is transient iff there exists a
non-zero bounded solution (yj : j 6= s) satisfying |yj | ≤ 1 for all j to the equations

yi =
∑

j∈S\{s}

pijyj , i ∈ S\{s}. (4)
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Proof sketch. Main step. Let τj be the probability of no visit to s ever for a chain started at state j.
Then the vector (τj : j 6= s) satisfies (4).

Example 5.13 Random walk with retaining barrier. Transition probabilities

p00 = q, pi−1,i = p, pi,i−1 = q, i ≥ 1.

Let ρ = p/q.

• If q < p, take s = 0 to see that yj = 1− ρ−j satisfies (4). The chain is transient.

• Solve the equation πP = π to find that there exists a stationary distribution, with πj = ρj(1− ρ),
if and only if q > p.

• If q > p, the chain is positively recurrent, and if q = p = 1/2, the chain is null recurrent.

Theorem 5.14 Ergodic theorem. For an irreducible aperiodic chain we have that

p
(n)
ij →

1

µj
as n→∞ for all (i, j).

More generally, for an aperiodic state j and any state i we have that p
(n)
ij → fij

µj
, where fij is the

probability that the chain ever visits j starting at i.

5.4 Reversibility

Theorem 5.15 Put Yn = XN−n for 0 ≤ n ≤ N where Xn is a stationary Markov chain. Then Yn is a
Markov chain with

P(Yn+1 = j|Yn = i) =
πjpji
πi

.

The chain Yn is called the time-reversal of Xn. If π exists and
πjpji
πi

= pij , the chain Xn is called
reversible (in equilibrium). The detailed balance equations

πipij = πjpji for all (i, j). (5)

Theorem 5.16 Consider an irreducible chain and suppose there exists a distribution π such that (5)
holds. Then π is a stationary distribution of the chain. Furthermore, the chain is reversible.

Proof. Using (5) we obtain ∑
i

πipij =
∑
i

πjpji = πj .

Example 5.17 Ehrenfest model of diffusion: flow of m particles between two connected chambers. Pick
a particle at random and move it to another chamber. Let Xn be the number of particles in the first
chamber. State space S = {0, 1, . . . ,m} and transition probabilities

pi,i+1 =
m− i
m

, pi,i−1 =
i

m
.

The detailed balance equations

πi
m− i
m

= πi+1
i+ 1

m

imply

πi =
m− i+ 1

i
πi−1 =

(
m

i

)
π0.

Using
∑
i πi = 1 we find that the stationary distribution πi =

(
m
i

)
2−n is a symmetric binomial.
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5.5 Branching process

We introduce here a basic branching process (Zn) called the Galton-Watson process. It models the sizes
of a population of particles which reproduce independently of each other. Suppose the population stems
from a single particle: Z0 = 1. Denote by X the offspring number for the ancestor and assume that all
particles arising in this process reproduce independently with the numbers of offspring having the same
distribution as X. Let µ = E(X) and always assume that

P(X = 1) < 1.

Consider the number of particles Zn in generation n. Clearly, (Zn) is a Markov chain with the state
space {0, 1, 2, . . .} where 0 is an absorbing state. The sequence Qn = P(Zn = 0) never decreases. Its
limit

η = lim
n→∞

P(Zn = 0)

is called the extinction probability of the Galton-Watson process. Using the branching property

Zn+1 = X
(n)
1 + . . .+X

(n)
Zn
,

where the X
(n)
j are independent copies of X, we obtain E(Zn) = µn.

Definition 5.18 The Galton-Watson process is called subcritical if µ < 1. It is called critical if µ = 1,
and supercritical if µ > 1.

Theorem 5.19 Put h(s) = E(sX). If µ ≤ 1, then η = 1. If µ > 1, then the extinction probability η is
the unique solution of the equation h(x) = x in the interval x ∈ [0, 1).

Proof. Let Z
(j)
n , j = 1, . . . , X be the branching processes stemming from the offspring of the progenitor

particle. Then
Zn+1 = Z(1)

n + . . .+ Z(X)
n ,

and
Qn+1 = P(Z(1)

n = 0, . . . , Z(X)
n = 0) = E(QXn ) = h(Qn).

Letting n→∞ in the relation Qn+1 = h(Qn) we get Q = h(Q).
Now, if µ ≤ 1, then there is only one root of h(x) = x in the interval x ∈ [0, 1] which is x = 1. Thus

η = 1. If µ > 1, then there are two roots of h(x) = x in the interval x ∈ [0, 1]: one of them is x = 1 and
the other x = x0 is less than 1. To see that η = x0 is the smaller root, it is enough to observe that

Q1 = P(X = 0) = h(0) < x0,

so that, by induction,
Qn+1 = h(Qn) ≤ h(x0) < x0.

Theorem 5.20 If σ2 stands for the variance of the offspring number X, then

Var(Zn) =


σ2µn−1(1−µn)

1−µ if µ < 1,

nσ2 if µ = 1,
σ2µn−1(µn−1)

µ−1 if µ > 1.

Proof. The variance of the generation size xn = Var(Zn) satisfies iteration

xn+1 = µnσ2 + µ2xn, x1 = σ2,

because

Var(Zn+1) = E(Var(Zn+1|Zn)) + Var(E(Zn+1)|Zn))

= E(Znσ
2) + Var(µZn).

Solving this iteration we arrive to the asserted formula.
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5.6 Poisson process and continuous-time Markov chains

Definition 5.21 A pure birth process X(t) with intensities {λi}∞i=0

(i) holds at state i an exponential time with parameter λi,
(ii) after the holding time it jumps up from i to i+ 1.

Exponential holding times has no memory and therefore imply the Markov property in the continuous
time setting.

Example 5.22 A Poisson process N(t) with intensity λ is the number of events observed up to time t
given that the inter-arrival times are independent exponentials with parameter λ:

P(N(t) = k) =
(λt)k

k!
e−λt, k ≥ 0.

To find the last formula observe that

P(N(t) = k) = P(T1 + . . .+ Tk ≤ t)− P(T1 + . . .+ Tk+1 ≤ t),

where T1 + . . .+ Tk has a gamma distribution with parameters (k, λ) so that

P(T1 + . . .+ Tk ≤ t) =

∫ t

0

λk

(k − 1)!
xk−1e−λxdx =

(λt)k

(k − 1)!

∫ 1

0

yk−1e−λtydy

=
(λt)k

k!
e−λt +

(λt)k+1

k!

∫ 1

0

yke−λtydy =
(λt)k

k!
e−λt + P(T1 + . . .+ Tk+1 ≤ t).

Explosion: P(X(t) =∞) > 0 for a finite t. It is possible iff
∑

1/λi <∞.

Definition 5.23 A continuous-time process X(t) with a countable state space S satisfies the Markov
property if

P(X(tn) = j|X(t1) = i1, . . . , X(tn−1) = in−1) = P(X(tn) = j|X(tn−1) = in−1)

for any states j, i1, . . . , in−1 ∈ S and any times t1 < . . . < tn.

In the time homogeneous case compared to the discrete time case instead of transition matrices Pn with

elements p
(n)
ij we have transition matrices Pt with elements

pij(t) = P(X(u+ t) = j|X(u) = i).

Chapman-Kolmogorov: Pt+s = PtPs for all t ≥ 0 and s ≥ 0. Here P0 = I is the identity matrix.

Example 5.24 For the Poisson process we have pij(t) = (λt)j−i

(j−i)! e
−λt, and

∑
k

pik(t)pkj(s) =
∑
k

(λt)k−i

(k − i)!
e−λt

(λs)j−k

(j − k)!
e−λs =

(λt+ λs)j−i

(j − i)!
e−λ(t+s) = pij(t+ s).

5.7 The generator of a continuous-time Markov chain

A generator G = (gij) is a matrix with non-negative off-diagonal elements such that
∑
j gij = 0. A

Markov chain X(t) with generator G

• holds at state i an exponential time with parameter λi = −gii,

• after the holding time it jumps from i to j 6= i with probability hij =
gij
λi

.

The embedded discrete Markov chain is governed by transition matrix H = (hij) satisfying hii = 0. A
continuous-time MC is a discrete MC plus holding intensities (λi).

Example 5.25 The Poisson process and birth process have the same embedded MC with hi,i+1 = 1.
For the birth process gii = −λi, gi,i+1 = λi and all other gij = 0.
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Kolmogorov equations. Forward equation: for any i, j ∈ S

p′ij(t) =
∑
k

pik(t)gkj

or in the matrix form P′t = PtG. It is obtained from Pt+ε − Pt = Pt(Pε − P0) watching for the last
change. Backward equation P′t = GPt is obtained from Pt+ε − Pt = (Pε − P0)Pt watching for the
initial change. These equations often have a unique solution

Pt = etG :=

∞∑
n=0

tn

n!
Gn.

Theorem 5.26 Stationary distribution: πPt = π for all t iff πG = 0.

Proof:

πPt
∀t
= π ⇔

∞∑
n=0

tn

n!
πGn ∀t= π ⇔

∞∑
n=1

tn

n!
πGn ∀t= 0 ⇔ πGn ∀n= 0.

Example 5.27 Check that the birth process has no stationary distribution.

Theorem 5.28 Let X(t) be irreducible with generator G. If there exists a stationary distribution π,
then it is unique and for all (i, j)

pij(t)→ πj , t→∞.

If there is no stationary distribution, then pij(t)→ 0 as t→∞.

Example 5.29 Poisson process holding times λi = λ. Then G = λ(H− I) and Pt = eλt(H−I).

6 Stationary processes

6.1 Weakly and strongly stationary processes

Definition 6.1 The real-valued process {X(t), t ≥ 0} is called strongly stationary if the vectors (X(t1), . . . , X(tn))
and (X(t1 + h), . . . , X(tn + h)) have the same joint distribution for all t1, . . . , tn and h > 0.

Definition 6.2 The real-valued process {X(t), t ≥ 0} with E(X2(t)) < ∞ for all t is called weakly
stationary if for all t1, t2 and h > 0

E(X(t1)) = E(X(t2)), Cov(X(t1), X(t2)) = Cov(X(t1 + h), X(t2 + h)).

Its autocovariance and autocorrelation functions are

c(t) = Cov(X(s), X(s+ t)), ρ(t) =
c(t)

c(0)
.

Example 6.3 Consider an irreducible Markov chain {X(t), t ≥ 0} with countably many states and a
stationary distribution π as the initial distribution. This is a strongly stationary process since

P(X(h+ t1) = i1, X(h+ t1 + t2) = i2, . . . , X(h+ t1 + . . .+ tn) = in) = πi1pi1,i2(t2) . . . pin−1,in(tn).

Example 6.4 The process {Xn, n = 1, 2, . . .} formed by iid Cauchy r.v is strongly stationary but not a
weakly stationary process.
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6.2 Linear prediction

Task: knowing the past (Xr, Xr−1, . . . , Xr−s) predict a future value Xr+k by choosing (a0, . . . , as) that
minimize E(Xr+k − X̂r+k)2, where

X̂r+k =

s∑
j=0

ajXr−j . (6)

Theorem 6.5 For a stationary sequence with zero mean and autocovariance c(m) the best linear pre-
dictor (6) satisfies the equations

s∑
j=0

ajc(|j −m|) = c(k +m), 0 ≤ m ≤ s.

Proof. Geometrically, the best linear predictor X̂r+k makes an error, Xr+k − X̂r+k, which is orthogonal
to the past (Xr, Xr−1, . . . , Xr−s), meaning that the covariances are equal to zero:

E((Xr+k − X̂r+k)Xr−m) = 0, m = 0, . . . , s.

Plugging (6) into the last relation, we arrive at the claimed equations.
To justify the geometric intuition let H be a linear space generated by (Xr, Xr−1, . . . , Xr−s). We

have to show that if M ∈ H is such that for all Z ∈ H,

E(Xr+k −M)2 ≤ E(Xr+k − Z)2,

then
E((Xr+k −M)Xr−m) = 0, m = 0, . . . , s.

Suppose that E((Xr+k −M)Xr−m) = dc(0) is positive for some m. Then writing M ′ = M + d ·Xr−m
we arrive at a contradiction

E(Xr+k −M ′)2 = E(Xr+k −M − d ·Xr−m)2

= E(Xr+k −M)2 − 2dE(Xr+k −M)Xr−m + d2c(0)

= E(Xr+k −M)2 − d2c(0).

Example 6.6 AR(1) process Yn satisfies

Yn = αYn−1 + Zn, −∞ < n <∞,

where Zn are independent r.v. with zero means and unit variance. If |α| < 1, then Yn =
∑
m≥0 α

mZn−m
is weakly stationary with zero mean and autocovariance for m ≥ 0,

c(m) = E(YnYn+m) = E(Zn + Zn−1α+ Zn−2α
2 + . . .)(Zn+m + Zn+m−1α+ Zn+m−2α

2 + . . .)

= E(Z2
n)αm + E(Z2

n−1)ααm+1 + E(Z2
n−2)α2αm+2 + . . .

= αm + αm+2 + αm+4 + . . . =
αm

1− α2
.

The best linear predictor is Ŷr+k = αkYr. This follows from the equations

a0 + a1α+ a2α
2 + . . .+ asα

s = αk,

a0α+ a1 + a2α+ . . .+ asα
s−1 = αk+1.

The mean squared error of the best prediction is

E(Ŷr+k − Yr+k)2 = E(αkYr − Yr+k)2 = α2kc(0) + c(0)− 2αkc(k) =
1− α2k

1− α2
.

Example 6.7 Let Xn = (−1)nX0, where X0 is −1 or 1 equally likely. The best linear predictor is
X̂r+k = (−1)kXr. The mean squared error of prediction is zero.
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6.3 Linear combination of sinusoids

Example 6.8 For a sequence of fixed frequencies 0 ≤ λ1 < . . . < λk < ∞ define a continuous time
stochastic process by

X(t) =

k∑
j=1

(Aj cos(λjt) +Bj sin(λjt)),

where A1, B1, . . . , Ak, Bk are uncorrelated r.v. with zero means and Var(Aj) = Var(Bj) = σ2
j . Its mean

is zero and its autocovariancies are

Cov(X(t), X(s)) = E(X(t)X(s)) =

k∑
j=1

E(A2
j cos(λjt) cos(λjs) +B2

j sin(λjt) sin(λjs))

=

k∑
j=1

σ2
j cos(λj(s− t)),

Var(X(t)) =

k∑
j=1

σ2
j .

Thus X(t) is weakly stationary with autocovariance and autocorrelation functions

c(t) =

k∑
j=1

σ2
j cos(λjt), c(0) =

k∑
j=1

σ2
j ,

ρ(t) =
c(t)

c(0)
=

k∑
j=1

gj cos(λjt) =

∫ ∞
0

cos(λt)dG(λ),

where G is a distribution function defined as

gj =
σ2
j

σ2
1 + . . .+ σ2

k

, G(λ) =
∑

j:λj≤λ

gj .

We can write

X(t) =

∫ ∞
0

cos(tλ)dU(λ) +

∫ ∞
0

sin(tλ)dV (λ),

where
U(λ) =

∑
j:λj≤λ

Aj , V (λ) =
∑

j:λj≤λ

Bj .

Example 6.9 Let specialize further and put k = 1, λ1 = π
4 , assuming that A1 and B1 are iid with

P(A1 =
1√
2

) = P(A1 = − 1√
2

) =
1

2
.

Then X(t) = cos(π4 (t+ τ)) with

P(τ = 1) = P(τ = −1) = P(τ = 3) = P(τ = −3) =
1

4
.

This stochastic process has only four possible trajectories. This is not a strongly stationary process since

E(X4(t)) =
1

2

(
cos4

(π
4
t+

π

4

)
+ sin4

(π
4
t+

π

4

))
=

1

4

(
2− sin2

(π
2
t+

π

2

))
=

1 + sin2(π2 t)

2
.

Example 6.10 Put
X(t) = cos(t+ Y ) = cos(t) cos(Y )− sin(t) sin(Y ),
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where Y is uniformly distributed over [0, 2π]. In this case k = 1, λ = 1, σ2
1 = 1

2 . What is the distribution
of X(t)? For an arbitrary bounded measurable function φ(x) we have

E(φ(X(t))) = E(φ(cos(t+ Y ))) =
1

2π

∫ 2π

0

φ(cos(t+ y))dy =
1

2π

∫ t+2π

t

φ(cos(z))dz =
1

2π

∫ 2π

0

φ(cos(z))dz

=
1

2π

(∫ π

0

φ(cos(z))dz +

∫ 2π

π

φ(cos(z))dz
)

=
1

2π

(∫ π

0

φ(cos(π − y))dy +

∫ π

0

φ(cos(π + y))dy
)

=
1

π

∫ π

0

φ(− cos(y))dy.

The change of variables x = − cos(y) yields dx = sin(y)dy =
√

1− x2dy, hence

E(φ(X)) =
1

π

∫ 1

−1

φ(x)dx√
1− x2

.

Thus X(t) has the so-called arcsine density f(x) = 1
π
√

1−x2
over the interval [−1, 1]. Notice that Z = X+1

2

has a Beta( 1
2 ,

1
2 ) distribution, since

E(φ(Z)) =
1

π

∫ 1

−1

φ(x+1
2 )dx

√
1− x2

=
1

π

∫ 1

0

φ(z)dz√
z(1− z)

.

This is a strongly stationary process, since X(t + h) = cos(t + Y ′), where Y ′ is uniformly distributed
over [h, 2π + h], and

(X(t1 + h), . . . , X(tn + h)) = (cos(t1 + Y ′), . . . , cos(tn + Y ′))
d
= (cos(t1 + Y ), . . . , cos(tn + Y )).

Example 6.11 In the discrete time setting for n ∈ Z put

Xn =

k∑
j=1

(Aj cos(λjn) +Bj sin(λjn)),

where 0 ≤ λ1 < . . . < λk ≤ π is a set of fixed frequencies, and again, A1, B1, . . . , Ak, Bk are uncorrelated
r.v. with zero means and Var(Aj) = Var(Bj) = σ2

j . Similarly to the continuous time case we get

E(Xn) = 0, c(n) =

k∑
j=1

σ2
j cos(λjn), ρ(n) =

∫ π

0

cos(λn)dG(λ),

Xn =

∫ π

0

cos(nλ)dU(λ) +

∫ π

0

sin(nλ)dV (λ).

6.4 The spectral representation

Any weakly stationary process {X(t) : −∞ < t < ∞} with zero mean can be approximated by a linear
combination of sinusoids. Indeed, its autocovariance function c(t) is non-negative definite since for any
t1, . . . , tn and z1, . . . , zn

n∑
j=1

n∑
k=1

c(tk − tj)zjzk = Var
( n∑
k=1

zkX(tk)
)
≥ 0.

Thus due to the Bochner theorem, given that c(t) is continuous at zero, there is a probability distribution
function G on [0,∞) such that

ρ(t) =

∫ ∞
0

cos(tλ)dG(λ).

In the discrete time case there is a probability distribution function G on [0, π] such that

ρ(n) =

∫ π

0

cos(nλ)dG(λ).
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Definition 6.12 The function G is called the spectral distribution function of the corresponding sta-
tionary random process, and the set of real numbers λ such that

G(λ+ ε)−G(λ− ε) > 0 for all ε > 0

is called the spectrum of the random process. If G has density g it is called the spectral density function.

In the discrete time case, if
∞∑

n=−∞
|ρ(n)| <∞,

then the spectral density exists and is given by

g(λ) =
1

π
+

2

π

∞∑
n=1

ρ(n) cos(nλ), 0 ≤ λ ≤ π.

Example 6.13 Consider an irreducible continuous time Markov chain {X(t), t ≥ 0} with two states
{1, 2} and generator

G =

(
−α α
β −β

)
.

Its stationary distribution is π = ( β
α+β ,

α
α+β ) will be taken as the initial distribution. From(

p11(t) p12(t)
p21(t) p22(t)

)
= etG =

∞∑
n=0

tn

n!
Gn = I + G

∞∑
n=1

tn

n!
(−α− β)n−1 = I + (α+ β)−1(1− e−t(α+β))G

we see that

p11(t) = 1− p12(t) =
β

α+ β
+

α

α+ β
e−t(α+β),

p22(t) = 1− p21(t) =
α

α+ β
+

β

α+ β
e−t(α+β),

and we find for t ≥ 0

c(t) =
αβ

(α+ β)2
e−t(α+β), ρ(t) = e−t(α+β).

Thus this process has a spectral density corresponding to a one-sided Cauchy distribution:

g(λ) =
2(α+ β)

π((α+ β)2 + λ2)
, λ ≥ 0.

Example 6.14 Discrete white noise: a sequence X0, X1, . . . of independent r.v. with zero means and
unit variances. This stationary sequence has the uniform spectral density:

ρ(n) = 1{n=0} = π−1

∫ π

0

cos(nλ)dλ.

Theorem 6.15 If {X(t) : −∞ < t < ∞} is a weakly stationary process with zero mean, unit variance,
continuous autocorrelation function and spectral distribution function G, then there exists a pair of
orthogonal zero mean random process (U(λ), V (λ)) with uncorrelated increments such that

X(t) =

∫ ∞
0

cos(tλ)dU(λ) +

∫ ∞
0

sin(tλ)dV (λ)

and Var(U(λ)) = Var(V (λ)) = G(λ).

Theorem 6.16 If {Xn : −∞ < n < ∞} is a discrete-time weakly stationary process with zero mean,
unit variance, and spectral distribution function G, then there exists a pair of orthogonal zero mean
random process (U(λ), V (λ)) with uncorrelated increments such that

Xn =

∫ π

0

cos(nλ)dU(λ) +

∫ π

0

sin(nλ)dV (λ)

and Var(U(λ)) = Var(V (λ)) = G(λ).
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6.5 Stochastic integral

Let {S(t) : t ∈ R} be a complex-valued process on the probability space (Ω,F ,P) such that

• E(|S(t)|2) <∞ for all t,

• E(|S(t+ h)− S(t)|2)→ 0 as h↘ 0 for all t,

• orthogonal increments: E([S(v)− S(u)][S̄(t)− S̄(s)]) = 0 whenever u < v ≤ s < t.

Put

F (t) :=

{
E(|S(t)− S(0)|2), if t ≥ 0,
−E(|S(t)− S(0)|2), if t < 0.

Since the process has orthogonal increments we obtain

E(|S(t)− S(s)|2) = F (t)− F (s), s < t (7)

implying that F is monotonic and right-continuous.

Example 6.17 The Wiener process S(t) = W (t) with F (t) = t is an example of such a process with
orthogonal increments.

Let ψ : R→ C be a measurable complex-valued function for which∫ ∞
−∞
|ψ(t)|2dF (t) <∞.

Next comes a two-step definition of a stochastic integral of ψ with respect to S,

I(ψ) =

∫ ∞
−∞

ψ(t)dS(t),

possessing the following important property

E(I(ψ1)I(ψ2)) =

∫ ∞
−∞

ψ1(t)ψ2(t)dF (t). (8)

1. For an arbitrary step function

φ(t) =

n−1∑
j=1

cj1{aj≤t<aj+1}, −∞ < a1 < . . . < an <∞

put

I(φ) :=

n−1∑
j=1

cj(S(aj+1)− S(aj)).

Due to orthogonality of increments we obtain (8) and find that ”integration is distance preserving”

E(|I(φ1)− I(φ2)|2) = E((I(φ1 − φ2))2) =

∫ ∞
−∞
|φ1 − φ2|2dF (t).

2. There exists a sequence of step functions such that

‖φn − ψ‖ :=
(∫ ∞
−∞
|φn − ψ|2dF (t)

)1/2

→ 0.

Thus I(φn) is a mean-square Cauchy sequence and there exists a mean-square limit I(φn)→ I(ψ).
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A sketch of the proof of Theorem 6.16 for the complex-valued processes.
Step 1. Let HX be the set of all r.v of the form

∑n
j=1 ajXmj for a1, a2, . . . ∈ C, n ∈ N, m1,m2, . . . ∈ Z.

Similarly, let HF be the set of linear combinations of sinusoids fn(x) := einx. Define the linear mapping
µ : HF → HX by µ(fn) := Xn.

Step 2. The closure HX of HX is defined to be the space HX together with all limits of mean-square
Cauchy-convergent sequences in HX . Define the closure HF of HF as the space HF together with all
limits of Cauchy-convergent sequences un ∈ HF , with the latter meaning by definition that∫

(−π,π]

(un(λ)− um(λ))(un(λ)− um(λ))dF (λ)→ 0, n,m→∞.

For u = limun, where un ∈ HF , define µ(u) = limµ(un) thereby defining a mapping µ : HF → HX .
Step 3. Define the process S(λ) by

S(λ) = µ(hλ), −π < λ ≤ π, hλ(x) := 1{x∈(−π,λ]}

and show that it has orthogonal increments and satisfies (7). Prove that

µ(ψ) =

∫
(−π,π]

ψ(t)dS(t)

first for step-functions and then for ψ(x) = einx. It follows that

Xn =

∫
(−π,π]

eintdS(t).

The case of real-valued processes.
For the sequence Xn to be real, the following representation

Xn =

∫
(−π,π]

einλdS(λ) =

∫
(0,π]

einλdS(λ) +

∫
[0,π)

e−inλdS(−λ)

=

∫
[0,π]

cos(nλ)(dS(λ) + dS(−λ)) + i

∫
[0,π]

sin(nλ)(dS(λ)− dS(−λ))

=

∫
[0,π]

cos(nλ)dU(λ) +

∫
[0,π]

sin(nλ)dV (λ)

must hold for real processes U(λ) and V (λ) such that

dU(λ) = dS(λ) + dS(−λ),

dV (λ) = i(dS(λ)− dS(−λ)).

This implies that dS(λ) + dS(−λ) is purely real and dS(λ)− dS(−λ) is purely imaginary, which implies
a symmetry property: dS(λ) = dS(−λ).

Exercise 6.18 Check the properties of U(λ) and V (λ) stated in Theorem 6.16 with dG(λ) = 2dF (λ)
for λ > 0 and G(0)−G(0−) = F (0)− F (0−).

6.6 The ergodic theorem for the weakly stationary processes

Theorem 6.19 Let {Xn, n = 1, 2, . . .} be a weakly stationary process with mean µ and autocovariance
function c(m). There exists a r.v. Y with mean µ and variance

Var(Y ) = lim
n→∞

n−1
n∑
j=1

c(j) = c(0)(G(0)−G(0−)),

such that
X1 + . . .+Xn

n

L2

→ Y, n→∞.
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Sketch proof. Suppose that µ = 0 and c(0) = 1, then using a spectral representation

Xn =

∫ π

0

cos(nλ)dU(λ) +

∫ π

0

sin(nλ)dV (λ),

we get

X̄n :=
X1 + . . .+Xn

n
=

∫ π

0

gn(λ)dU(λ) +

∫ π

0

hn(λ)dV (λ),

where in terms of complex numbers

gn(λ) + ihn(λ) =
eiλ + . . .+ einλ

n
.

which equals 1 for λ = 0. For λ 6= 0 we have

gn(λ) + ihn(λ) =
eiλ − einλ

n(1− eiλ)
=

(eiλ − einλ)(1− e−iλ)

2n(1− cos(λ))

=
eiλ − 1 + ei(n−1)λ − e−inλ

4n sin2(λ/2)
,

so that

gn(λ) =
cos(λ)− 1 + cos((n− 1)λ)− cos(nλ)

4n sin2(λ/2)
=

sin((n− 1)λ/2)− sin(λ/2)

2n sin(λ/2)
,

hn(λ) =
sin(λ) + sin((n− 1)λ)− sin(nλ)

4n sin2(λ/2)
=

cos(λ/2)− cos((n− 1)λ/2)

2n sin(λ/2)
.

If λ ∈ [0, π], then |gn(λ)| ≤ 1, |hn(λ)| ≤ 1, and gn(λ)→ 1{λ=0}, hn(λ)→ 0 as n→∞. It can be shown
that ∫ π

0

gn(λ)dU(λ)
L2

→
∫ π

0

1{λ=0}dU(λ) = U(0)− U(0−),∫ π

0

hn(λ)dV (λ)
L2

→ 0.

Thus X̄n
L2

→ Y := U(0)− U(0−) and it remains to find the mean and variance of Y .

6.7 The ergodic theorem for the strongly stationary processes

Let {Xn, n = 1, 2, . . .} be a strongly stationary process defined on (Ω,F ,P). The vector (X1, X2, . . .)
takes values in RT , where T = {1, 2, . . .}. The natural σ-algebra for RT is the product BT of the
appropriate number of copies of the Borel σ-algebra B of subsets of R.

Definition 6.20 Consider a shift operator τ : RT → RT such that τ(x1, x2, . . .) = (x2, x3, . . .). A set
B ∈ BT is called invariant with respect to the shift operator τ , if B = τ−1B. An event A ∈ F is called
invariant, if

A = {ω : (X1, X2, . . .) ∈ B}

for some invariant set B ∈ BT . The collection of all invariant events forms a σ-algebra and denoted I.
The strictly stationary process is called ergodic, if either P(A) = 0 or P(A) = 1 for any A ∈ I.

Example 6.21 Consider a reducible Markov chain {Xn, n = 0, 1, . . .} with two states (0, 1) and tran-
sition probabilities p00 = p11 = 1, p01 = p10 = 0. The invariant events X0 = 0 and X0 = 1 can have
probabilities π0 and π1 = 1− π0 for any given π0 ∈ (0, 1). This is an example of a non-ergodic case.

Example 6.22 Any invariant event is a tail event, so that I ⊂ T . If {Xn, n = 1, 2, . . .} are iid with
a finite mean, then according to Kolmogorov’s zero-one law such a stationary process is ergodic. The
classical LLN, the sufficiency part of Theorem 4.9, follows from the next ergodic theorem.

35



Theorem 6.23 If {Xn, n = 1, 2, . . .} is a strongly stationary sequence with a finite mean, then

X̄n :=
X1 + . . .+Xn

n
→ E(X1|I) a.s. and in L1.

In the ergodic case
X̄n → E(X1) a.s. and in L1.

Proof in the ergodic case. To prove the a.s. convergence it suffices to show that

if E(X1) < 0, then lim sup
n→∞

X̄n ≤ 0 a.s. (9)

Indeed, applying (9) to X ′n = Xn − E(X1)− ε and X ′′n = E(X1)−Xn − ε, we obtain

E(X1)− ε ≤ liminf
n→∞

X̄n ≤ lim sup
n→∞

X̄n ≤ E(X1) + ε.

To prove (9) assume E(X1) < 0 and put

Mn := max{0, X1, X1 +X2, . . . , X1 + . . .+Xn}.

Clearly X̄n ≤ Mn/n, and it is enough to show that P(M∞ < ∞) = 1. Suppose the latter is not true.
Since {M∞ < ∞} is an invariant event, we get P(M∞ < ∞) = 0 or in other words Mn ↗ ∞ a.s. To
arrive to a contradiction observe that

Mn+1 = max{0, X1 +M ′n} = M ′n + max{−M ′n, X1},

where
M ′n := max{0, X2, X2 +X3, . . . , X2 + . . .+Xn+1}

has the same distribution as Mn. Since E(Mn+1) ≥ E(Mn) = E(M ′n), it follows that

E(max{−M ′n, X1}) ≥ 0.

This contradicts the assumption E(X1) < 0 as due to the monotone convergence Theorem 3.18

E(max{−M ′n, X1})→ E(X1).

Thus almost-sure convergence is proved.
To prove the convergence in mean we apply Theorem 3.25. It suffices to verify that the family

{X̄n}n≥1 is uniformly integrable, that is for all ε > 0, there is δ > 0 such that, for all n, E(|X̄n|1A) < ε
for any event A such that P(A) < δ. This follows from

E(|X̄n|1A) ≤ n−1
n∑
i=1

E(|Xi|1A),

and the next lemma.

Lemma 6.24 If X1, X2, . . . have a common distribution with a finite mean, then for all ε > 0, there is
δ > 0 such that E(|Xi|1A) < ε for all i and for any event A such that P(A) < δ.

Proof. Put R(y) = E(|Xi|1{|Xi|>y}). Since R(y) → 0 as y → ∞, for a given ε we can find t such that
R(t) < ε/2. Writing δ = ε/(2t), consider any event A such that P(A) < δ. Denote Bi = {|Xi| > t}.
Then

E(|Xi|1A) ≤ E(|Xi|1A∩Bci ) + E(|Xi|1Bi) ≤ tP(A) +R(t) < ε.

Example 6.25 Let Z1, . . . , Zk be iid with a finite mean µ. Then the following cyclic process

X1 = Z1, . . . , Xk = Zk,

Xk+1 = Z1, . . . , X2k = Zk,

X2k+1 = Z1, . . . , X3k = Zk, . . . ,

is a strongly stationary process. The corresponding limit in the ergodic theorem is not the constant µ
like in the strong LLN but rather a random variable

X1 + . . .+Xn

n
→ Z1 + . . .+ Zk

k
.
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Example 6.26 Let {Xn, n = 1, 2, . . .} be an irreducible positive-recurrent Markov chain with the state
space S = {0,±1,±2, . . .}. Let π = (πj)j∈S be the unique stationary distribution. If X0 has distribution
π, then Xn is strongly stationary.

For a fixed state k ∈ S let In = 1{Xn=k}. The stronlgy stationary process In has autocovariance
function

c(m) = Cov(In, In+m) = E(InIn+m)− π2
k = πk(p

(m)
kk − πk).

Since p
(m)
kk → πk as m → ∞ we have c(m) → 0 and the limit in Theorem 6.23 has zero variance. It

follows that n−1(I1 + . . .+In), the proportion of (X1, . . . , Xn) visiting state k, converges to πk as n→∞.

Example 6.27 Binary expansion. Let X be uniformly distributed on [0, 1] and has a binary expansion
X =

∑∞
j=1Xj2

−j . Put Yn =
∑∞
j=nXj2

n−j−1 so that Y1 = X and Yn+1 = (2nX) mod 1. From

E(Y1Yn+1) =

2n−1∑
j=0

∫ (j+1)2−n

j2−n
x(2nx− j)dx = 2−2n

2n−1∑
j=0

∫ 1

0

(y + j)ydy = 2−2n
2n−1∑
j=0

(1

3
+
j

2

)
=

1

4
+

2−n

12

we get c(n) = 2−n

12 implying that n−1
∑n
j=1 Yj → 1/2 almost surely.

6.8 Gaussian processes

Definition 6.28 A random process {X(t), t ≥ 0} is called Gaussian if for any (t1, . . . , tn) the vector
(X(t1), . . . , X(tn)) has a multivariate normal distribution.

A Gaussian random process is strongly stationary iff it is weakly stationary.

Theorem 6.29 A Gaussian process {X(t), t ≥ 0} is Markov iff for any 0 ≤ t1 < . . . < tn

E(X(tn)|X(t1), . . . , X(tn−1)) = E(X(tn)|X(tn−1)). (10)

Proof. Clearly, the Markov property implies (10). To prove the converse we have to show that in the
Gaussian case (10) gives

Var(X(tn)|X(t1), . . . , X(tn−1)) = Var(X(tn)|X(tn−1)).

Indeed, since X(tn) − E{X(tn)|X(t1), . . . , X(tn−1)} is orthogonal to (X(t1), . . . , X(tn−1), which in the
Gaussian case means independence, we have

E
{(
X(tn)− E{X(tn)|X(t1), . . . , X(tn−1)}

)2

|X(t1), . . . , X(tn−1)
}

= E
{(
X(tn)− E{X(tn)|X(t1), . . . , X(tn−1)}

)2}
= E

{(
X(tn)− E{X(tn)|X(tn−1)}

)2}
= E

{(
X(tn)− E{X(tn)|X(tn−1)}

)2

|X(tn−1)
}
.

Example 6.30 A stationary Gaussian Markov process is called the Ornstein-Uhlenbeck process. It is
characterized by the auto-correlation function ρ(t) = e−αt, t ≥ 0 with a positive α. This follows from
the equation ρ(t+ s) = ρ(t)ρ(s) which is obtained as follows. From the property of the bivariate normal
distribution

E(X(t+ s)|X(s)) = θ + ρ(t)(X(s)− θ)

we derive

ρ(t+ s) = c(0)−1E((X(t+ s)− θ)(X(0)− θ)) = c(0)−1E{E((X(t+ s)− θ)(X(0)− θ)|X(0), X(s))}
= ρ(t)c(0)−1E((X(s)− θ)(X(0)− θ))
= ρ(t)ρ(s).
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7 Renewal theory and Queues

7.1 Renewal function and excess life

Let T0 = 0, Tn = X1 + . . .+Xn, where Xi are iid strictly positive random variables called inter-arrival
times. A renewal process N(t) gives the number of renewal events during the time interval (0, t]

{N(t) ≥ n} = {Tn ≤ t}, TN(t) ≤ t < TN(t)+1.

Put F (t) = P(X1 ≤ t), µ = E(X1), and define convolutions

F ∗0(t) = 1{t≥0}, F ∗k(t) =

∫ t

0

F ∗(k−1)(t− u)dF (u).

Then P(Tk ≤ t) = F ∗k(t).

Exercise 7.1 Show that
{N(t) ≤ n} = {Tn+1 > t}.

Definition 7.2 Put m(t) := E(N(t)). We will call U(t) = 1 +m(t) the renewal function.

Lemma 7.3 We have

U(t) =

∞∑
k=0

F ∗k(t),

and in terms of the Laplace-Stieltjes transforms F̂ (θ) :=
∫∞

0
e−θtdF (t)

Û(θ) =
1

1− F̂ (θ)
.

Proof. Using the recursion
N(t) = 1{X1≤t}(1 + Ñ(t−X1)),

where Ñ(t) is a renewed copy of the initial process N(t), we find after taking expectations

m(t) = F (t) +

∫ t

0

m(t− u)dF (u).

It follows

m(t) = F (t) + F ∗2(t) +

∫ t

0

m(t− u)dF ∗2(u) = . . . =

∞∑
k=1

F ∗k(t),

and consequently

m̂(θ) =

∫ ∞
0

e−θtdm(t) =

∞∑
k=1

∫ ∞
0

e−θtdF ∗k(t) =

∞∑
k=1

F̂ (θ)k =
F̂ (θ)

1− F̂ (θ)
.

Example 7.4 Poisson process is the Markovian renewal process with exponentially distributed inter-
arrival times. Since F (t) = 1 − e−λt, we find m̂(θ) = λ

θ , implying m(t) = λt. Notice that µ = 1/λ and
the rate is λ = 1/µ.

Definition 7.5 For a measurable function g(t) the relation

A(t) = g(t) +

∫ t

0

A(t− u)dF (u)

is called a renewal equation. Clearly, its solution for t ≥ 0 takes the form A(t) =
∫ t

0
g(t− u)dU(u).

Definition 7.6 The excess lifetime at t is E(t) = TN(t)+1 − t. The current lifetime (or age) at t is
C(t) = t− TN(t). The total lifetime at t is the sum C(t) + E(t).

38



Notice that {E(t), 0 ≤ t < ∞} is a Markov process of deterministic unit speed descent toward zero
with upward jumps when the process hits zero.

Lemma 7.7 The distribution of the excess life E(t) is given by

P(E(t) > y) =

∫ t

0

(1− F (t+ y − u))dU(u).

The distribution of the age C(t) is given by

P(C(t) ≥ y) = 1{y≤t}

∫ t−y

0

(1− F (t− u))dU(u).

In particular, P(C(t) = t) = 1− F (t).

Proof. The first claim follows from the following renewal equation for b(t) := P(E(t) > y)

b(t) = E
(
E(1{E(t)>y}|X1)

)
= E

(
1{Ẽ(t−X1)>y}1{X1≤t} + 1{X1>t+y}

)
= 1− F (t+ y) +

∫ t

0

b(t− x)dF (x).

It is the case that C(t) ≥ y if and only if there are no arrivals in (t− y, t]. Thus

P(C(t) ≥ y) = P(E(t− y) > y)

and the second claim follows from the first one.

Example 7.8 Return to the Poisson process with rate is λ. In this case

P(E(t) > y) =

∫ t

0

(1− F (t+ y − u))dU(u) = e−λ(t+y) + λ

∫ t

0

e−λ(t+y−u)du = e−λy

is independent of t. Therefore, for y ≤ t, we have

P(C(t) ≤ y) = 1− e−λy, 0 ≤ y < t, P(C(t) = t) = e−λt,

implying that the total lifetime has the mean

E(C(t) + E(t)) = 2µ− λ
∫ ∞
t

(y − t)e−λydy,

which for large t is twice as large as the inter-arrival mean µ = 1/λ. This observation is called the
”waiting time paradox”.

7.2 LLN and CLT for the renewal process

Theorem 7.9 Law of large numbers: N(t)/t
a.s.→ 1/µ as t→∞. So that 1/µ gives the rate of occurrence

of the renewal events.

Proof. Note that TN(t) ≤ t < TN(t)+1. Thus, if N(t) > 0,

TN(t)

N(t)
≤ t

N(t)
<

TN(t)+1

N(t) + 1

(
1 +

1

N(t)

)
.

Since N(t)→∞ as t→∞, it remains to apply Theorem 4.9, the classical law of large numbers, saying
that Tn/n→ µ almost surely.

Theorem 7.10 Central limit theorem. If σ2 = Var(X1) is positive and finite, then

N(t)− t/µ√
tσ2/µ3

d→ N(0, 1) as t→∞.
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Proof. The usual CLT implies that for any x,

P
(Ta(t) − µa(t)

σ
√
a(t)

≤ x
)
→ Φ(x) as a(t)→∞.

For a given x, put a(t) = bt/µ+ x
√
tσ2/µ3c, and observe that on one hand

P
(N(t)− t/µ√

tσ2/µ3
≥ x

)
= P(N(t) ≥ a(t)) = P(Ta(t) ≤ t),

and on the other hand, t−µa(t)

σ
√
a(t)
→ −x as t→∞. We conclude

P
(N(t)− t/µ√

tσ2/µ3
≥ x

)
→ Φ(−x) = 1− Φ(x).

7.3 Stopping times and Wald’s equation

Definition 7.11 Let M be a r.v. taking values in the set {1, 2, . . .}. We call it a stopping time with
respect to the sequence (Xn) of random variables, if

{M ≤ m} ∈ Fm, for all m = 1, 2, . . . ,

where Fm = σ{X1, . . . , Xm} is the σ-algebra of events generated by the events {X1 ≤ c1}, . . . , {Xm ≤
cm} for all ci ∈ (−∞,∞).

Theorem 7.12 Wald’s equation. Let X1, X2, . . . be iid r.v. with finite mean µ, and let M be a stopping
time with respect to the sequence (Xn) such that E(M) <∞. Then

E(X1 + . . .+XM ) = µE(M).

Proof. Observe that
n∑
i=1

Xi1{M≥i}
a.s.→

∞∑
i=1

Xi1{M≥i} = X1 + . . .+XM

and for all n,

|
n∑
i=1

Xi1{M≥i}| ≤ Y, Y =

∞∑
i=1

|Xi|1{M≥i},

where

E(Y ) =

∞∑
i=1

E(|Xi|1{M≥i}) =

∞∑
i=1

E(|Xi|)P(M ≥ i) = E(|X1|)E(M).

In the second equality we used independence between {M ≥ i} and Xi, which follows from the fact that
{M ≥ i} is the complimentary event to {M ≤ i− 1} ∈ σ{X1, . . . , Xi−1}. By the dominated convergence
Theorem 3.21

E(X1 + . . .+XM ) = lim
n→∞

E
( n∑
i=1

Xi1{M≥i}

)
=

∞∑
i=1

E(Xi)P(M ≥ i) = µE(M).

Example 7.13 Observe that M = N(t) is not a stopping time and in general E(TN(t)) 6= µm(t). Indeed,
for the Poisson process µm(t) = t while TN(t) = t− C(t), where C(t) is the current lifetime.

Theorem 7.14 Elementary renewal theorem: m(t)/t→ 1/µ as t→∞, where µ = E(X1).

Proof. Since M = N(t) + 1 is a stopping time for (Xn):

{M ≤ m} = {N(t) ≤ m− 1} = {X1 + . . .+Xm > t},
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the Wald equation implies
E(TN(t)+1) = µE(N(t) + 1) = µU(t).

From TN(t)+1 = t+ E(t) we get

U(t) = µ−1(t+ E(E(t)),

so that U(t) ≥ µ−1t. Moreover, if P(X1 ≤ a) = 1 for some finite a, then U(t) ≤ µ−1(t + a) and the
assertion follows.

If X1 is unbounded, then consider truncated inter-arrival times min(Xi, a) with mean µa and renewal
function Ua(t). It remains to observe that Ua(t) ∼ tµ−1

a , Ua(t) ≥ U(t), and µa → µ as a→∞.

7.4 Stationary excess lifetime distribution

Theorem 7.15 Renewal theorem. If X1 is not arithmetic, then for any positive h

U(t+ h)− U(t)→ µ−1h, t→∞.

Without proof.

Example 7.16 Arithmetic case. A typical arithmetic case is obtained, if we assume that the set of
possible values RX for the inter-arrival times Xi satisfies RX ⊂ {1, 2, . . .} and RX 6⊂ {k, 2k, . . .} for
any k = 2, 3, . . ., implying µ ≥ 1. If again U(n) is the renewal function, then U(n) − U(n − 1) is the
probability that a renewal event occurs at time n. A discrete time version of Theorem 7.15 claims that
U(n)− U(n− 1)→ µ−1.

Theorem 7.17 Key renewal theorem. If X1 is not arithmetic, µ < ∞, and g : [0,∞) → [0,∞) is a
monotone function, then ∫ t

0

g(t− u)dU(u)→ µ−1

∫ ∞
0

g(u)du, t→∞.

Sketch of the proof. Using Theorem 7.15, first prove the assertion for indicator functions of intervals,
then for step functions, and finally for the limits of increasing sequences of step functions.

Theorem 7.18 If X1 is not arithmetic and µ <∞, then

lim
t→∞

P(E(t) ≤ y) = µ−1

∫ y

0

(1− F (x))dx.

Proof. Apply the key renewal theorem and Lemma 7.7.

Definition 7.19 Let X1, X2, . . . be independent positive r.v. such that X2, X3, . . . have the same dis-
tribution. If as before, T0 = 0 and Tn = X1 + . . .+Xn, then Nd(t) = max{n : Tn ≤ t} is called a delayed
renewal process. It is described by two distributions F (t) = P(Xi ≤ t), i ≥ 2 and F d(t) = P(X1 ≤ t).

Lemma 7.20 The mean md(t) = ENd(t) satisfies the renewal equation

md(t) = F d(t) +

∫ t

0

md(t− u)dF (u).

Proof. First observe that conditioning on X1 gives

md(t) = F d(t) +

∫ t

0

m(t− u)dF d(u).

Now since

m(t) = F (t) +

∫ t

0

m(t− u)dF (u),

we have

m ∗ F d(t) :=

∫ t

0

m(t− u)dF d(u) = F ∗ F d(t) +m ∗ F ∗ F d(t) = F d ∗ F (t) +m ∗ F d ∗ F (t)

= (F d +m ∗ F d) ∗ F (t) = md ∗ F (t) =

∫ t

0

md(t− u)dF (u).
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Theorem 7.21 The process Nd(t) has stationary increments: Nd(s+ t)−Nd(s)
d
= Nd(t), if and only

if

F d(y) = µ−1

∫ y

0

(1− F (x))dx. (11)

In this case the renewal function is linear md(t) = t/µ and P(Ed(t) ≤ y) = F d(y) independently of t.

Proof. Necessity. If Nd(t) has stationary increments, then md(s + t) = md(s) + md(t), and we get
md(t) = tmd(1). Substitute this into the renewal equation of Lemma 7.20 to obtain

F d(t) = md(1)

∫ t

0

(1− F (x))dx

using integration by parts. Let t→∞ to find md(1) = 1/µ as stated in (11).
Sufficiency. Given (11), we have

F̂ d(θ) =

∫ ∞
0

e−θydF d(y) = µ−1

∫ ∞
0

e−θy(1− F (y))dy =
1− F̂ (θ)

µθ
.

Taking the Laplace-Stieltjes transforms in Lemma 7.20 yields

m̂d(θ) =
1− F̂ (θ)

µθ
+ m̂d(θ)F̂ (θ).

It follows that m̂d(θ) = 1/(µθ), and therefore md(t) = t/µ.
Observe that Nd(·) has stationary increments if and only if the distribution of Ed(t) does not depend

on t, and it is enough to check that P(Ed(t) > y) = 1− F d(y). This is obtained from

P(Ed(t) > y) = 1− F d(t+ y) +

∫ t

0

P(Ed(t− u) > y)dF d(u).

and
F d ∗ U(t) = md(t) = t/µ.

Indeed, writing g(t) = 1− F (t+ y) we have P(Ed(t) > y) = g ∗ U(t) and therefore∫ t

0

P(Ed(t− u) > y)dF d(u) = g ∗ U ∗ F d(t) = g ∗ F d ∗ U(t) = µ−1

∫ t

0

(1− F (t+ y − u))du

= µ−1

∫ t+y

y

(1− F (x))dx = F d(t+ y)− F d(y).

7.5 Renewal-reward processes

Let (Xi, Ri), i = 1, 2, . . . be iid pairs of possibly dependent random variables: Xi are positive inter-arrival
times and Ri the associated rewards. Cumulative reWard process

W (t) = R1 + . . .+RN(t).

Theorem 7.22 Renewal-reward theorem. Suppose (Xi, Ri) have finite means µ = E(X) and E(R).
Then

W (t)

t

a.s.→ E(R)

µ
,

EW (t)

t
→ E(R)

µ
, t→∞.

Proof. We have by the laws of large numbers, Theorem 4.9 and Theorem 7.9, that the first claim is valid

W (t)

t
=
R1 + . . .+RN(t)

N(t)
· N(t)

t

a.s.→ E(R)

µ
.

To prove the second claim we apply the argument used in the proof of Theorem 7.14

EW (t) = E(R1 + . . .+RN(t)+1)− ERN(t)+1 = U(t)E(R)− E(RN(t)+1).
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Figure 2: The queue length and the regeneration times. Here N1 = 2, N2 = 1, N3 = 2, N4 = 4, N5 = 3.

The result will follow once we have shown that r(t)/t → 0 as t → ∞, where r(t) = E(RN(t)+1). By
conditioning on X1, as usual, we arrive at the renewal equation

r(t) = H(t) +

∫ t

0

r(t− u)dF (u), H(t) = E(R11{X1>t}).

Since H(t)→ 0, for any ε > 0, there exists a finite M = M(ε) such that |H(t)| < ε for t ≥M . Therefore,
when t ≥M ,

t−1|r(t)| ≤ t−1

∫ t−M

0

|H(t− u)|dU(u) + t−1

∫ t

t−M
|H(t− u)|dU(u)

≤ t−1
(
εU(t) + (U(t)− U(t−M))E|R|

)
.

Using the renewal theorems we get lim sup |r(t)/t| ≤ ε/µ and it remains to let ε→ 0.

7.6 Regeneration technique for queues

Here we start by three applications (A-C) of Theorem 7.22 to a general queueing system. Customers
arrive one by one, and after spending some time in the system they depart from the system. Let Q(t) be
the number of customers in the system at time t with Q(0) = 0. Let T be the time of first return to zero
Q(T ) = 0. This can be called a regeneration time as starting from time T the future process Q(T + t)
is independent of the past and has the same distribution as the process Q(t).

Assuming the traffic is light so that P(T < ∞) = 1, we get a renewal process of regeneration times
0 = T0 < T = T1 < T2 < T3 < . . .. Write Ni for the number of customers arriving during the cycle
[Ti−1, Ti) and put N = N1. To be able to apply Theorem 7.22 we shall assume

E(T ) <∞, E(N) <∞, E(NT ) <∞.

(A) Let the reward associated with the inter-arrival time Xi = Ti − Ti−1 to be

Ri =

∫ Ti

Ti−1

Q(u)du.

Since R := R1 ≤ NT , we have E(R) ≤ E(NT ) <∞, and by Theorem 7.22,

t−1

∫ t

0

Q(u)du
a.s.→ E(R)/E(T ) =: L the long run average queue length.

(B) Let the reward associated with the inter-arrival time Xi to be Ni. Denote by W (t) the number
of customers arrived by time t. Then by Theorem 7.22,

W (t)/t
a.s.→ E(N)/E(T ) =: λ the long run rate of arrival.

(C) Consider now the reward-renewal process with discrete inter-arrival times Ni, and the associated
rewards Si defined as the total time spent in system by the customers arrived during [Ti−1, Ti). If the
n-th customer spends time Vn, then

S := S1 = V1 + . . .+ VN .
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Since E(S) ≤ E(NT ) <∞, again by Theorem 7.22, we have

n−1
n∑
i=1

Vi
a.s.→ E(S)/E(N) =: ν the long run average time spent by a customer in the system.

Theorem 7.23 Little’s law. If E(T ) <∞, E(N) <∞, and E(NT ) <∞, then L = λν.

Although it looks intuitively reasonable, it’s a quite remarkable result, as the relationship is not influenced
by the arrival process distribution, the service distribution, the service order, or practically anything else.

Proof. The mean amount of customer time spent during the first cycle can be represented in two ways

E(S) = E
( N∑
i=1

Vi

)
= E

(∫ T

0

Q(u)du
)

= E(R).

Thus combining (A), (B), (C) we get

L

λν
=

E(R)

E(T )
· E(T )

E(N)
· E(N)

E(S)
= 1.

7.7 M/M/1 queues

The most common notation scheme annotates the queueing systems by a triple A/B/s, where A describes
the distribution of inter-arrival times of customers, B describes the distribution of service times, and s
is the number of servers. It is assumed that the inter-arrival and service times are two independent iid
sequences (Xi) and (Si). Let Q(t) be the queue size at time t.

The simplest queue M/M/1 has exponential with parameter λ inter-arrival times and exponential
with parameter µ service times (M stands for the Markov discipline). It is the only queue with Q(t)
forming a Markov chain. In this case Q(t) is a birth-death process with the birth rate λ and the death
rate µ for the positive states, and no deaths at state zero.

Theorem 7.24 The probabilities pn(t) = P(Q(t) = n) satisfy the Kolmogorov forward equations{
p′n(t) = −(λ+ µ)pn(t) + λpn−1(t) + µpn+1(t) for n ≥ 1,
p′0(t) = −λp0(t) + µp1(t),

subject to the boundary condition pn(0) = 1{n=0}.

Proof. For n ≥ 1 and a small positive δ, put

Rn(t, δ) = P
(
Q(t+ δ) = n, at least two events during (t, t+ δ]

)
.

Observe that

Rn(t, δ) ≤ P(at least two events during (t, t+ δ]) ≤ C · δ2.

For example

P(at least two births during (t, t+ δ]) =
∑
k≥2

(λδ)k

k!
e−λδ

≤ (λδ)2
∑
j≥0

(λδ)j

j!
e−λδ = (λδ)2.

It follows,

pn(t+ δ) = P
(
Q(t+ δ) = n, at most one event during (t, t+ δ]

)
+Rn(t, δ)

= pn(t)P(no events during (t, t+ δ]) + pn−1(t)P(single birth during (t, t+ δ])

+ pn+1(t)P(single death during (t, t+ δ]) + o(δ)

= pn(t)(1− (λ+ µ)δ) + pn−1(t)λδ + pn+1(t)µδ + o(δ).
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Similarly,

p0(t+ δ) = p0(t)P(no birth during (t, t+ δ]) + p1(t)P(single death during (t, t+ δ]) + o(δ)

= p0(t)(1− λδ) + p1(t)µδ + o(δ).

Exercise 7.25 In terms of the Laplace transforms p̂n(θ) :=
∫∞

0
e−θtpn(t)dt we obtain{

µp̂n+1(θ)− (λ+ µ+ θ)p̂n(θ) + λp̂n−1(θ) = 0, for n ≥ 1,
µp̂1(θ)− (λ+ θ)p̂0(θ) = 1.

Its solution is given by

p̂n(θ) = θ−1(1− α(θ))α(θ)n, α(θ) :=
(λ+ µ+ θ)−

√
(λ+ µ+ θ)2 − 4λµ

2µ
.

Theorem 7.26 Stationarity. Let ρ = λ/µ be the traffic intensity. As t→∞ for all n ≥ 0

P(Q(t) = n)→ πn :=

{
(1− ρ)ρn if ρ < 1,

0 if ρ ≥ 1.

The result asserts that the queue settles down into equilibrium if and only if the service times are shorter
than the inter-arrival times on average. Observe that if ρ ≥ 1, we have

∑
n πn = 0 despite

∑
n pn(t) = 1.

Proof. As θ → 0

α(θ) =
(λ+ µ+ θ)−

√
(λ− µ)2 + 2(λ+ µ)θ + θ2

2µ
→ (λ+ µ+ θ)− |λ− µ|

2µ
=

{
ρ if λ < µ,
1 if λ ≥ µ.

Thus

θp̂n(θ) = (1− α(θ))α(θ)n →
{

(1− ρ)ρn if ρ < 1,
0 if ρ ≥ 1.

On the other hand, the process Q(t) is an irreducible Markov chain and the ergodic theorem there are
limits pn(t)→ πn as t→∞. Therefore, the statement follows from

θp̂n(θ) =

∫ ∞
0

e−upn(u/θ)du→ πn, θ → 0.

Exercise 7.27 Consider the M/M/1 queue with ρ < 1. According to Little’s Law the time V spent by
a customer in the stationary regime queue has mean L

λ = ρ
(1−ρ)λ = 1

µ−λ . Verify this by showing that V

has an exponential distribution with parameter µ− λ.
Hint. Show that V = S1 + . . . + S1+Q, where Si are independent Exp(µ) random variables and Q is
geometric with parameter 1− ρ, and then compute the Laplace transform E(e−uV ).

7.8 M/G/1 queues

In the M/G/1 queueing system customers arrive according to a Poisson process with intensity λ and the
service times Si have a fixed but unspecified distribution (G for General). Let ρ = λE(S) be the traffic
intensity.

Theorem 7.28 If the first customer arrives at time X1, define a typical busy period of the server as
B = inf{t > 0 : Q(t + X1) = 0}. We have that P(B < ∞) = 1 if ρ ≤ 1, and P(B < ∞) < 1 if ρ > 1.
The Laplace transform φ(u) = E(e−uB) satisfies the functional equation

φ(u) = Ψ(u+ λ− λφ(u)), where Ψ(x) := E(e−xS).

Proof. Imbedded branching process (recall Section 5.5). Call customer C2 an offspring of customer C1,
if C2 joins the queue while C1 is being served. Given S = t, the offspring number Z for a single customer
has conditional Pois(λt) distribution. Therefore, the conditional probability generating function of Z is

E(uZ |S) =

∞∑
j=0

uj
(λS)j

j!
e−λS = eSλ(u−1).
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This yields
h(u) := E(uZ) = E(eSλ(u−1)) = Ψ(λ(1− u)).

The mean offspring number is

E(Z) = h′(1) = −λΨ′(0) = λE(S) = ρ.

Observe that the event (B < ∞) is equivalent to the extinction of the branching process, and the first
assertion follows.

The functional equation follows from the representation B = S + B1 + . . . + BZ , where Bi are iid
busy time of the offspring customers and Z is the number of offspring with generating function h(u).
Indeed, we observe first that

E(e−uB1 . . . e−uBZ |S) = E(φ(u)Z |S) = e(λφ(u)−λ)S .

This implies

φ(u) = E(e−uSe−uB1 . . . e−uBZ ) = E(e−uSe(λφ(u)−λ)S) = Ψ(u+ λ− λφ(u)).

Exercise 7.29 Show that for the M/M/1 queue, Z is geometric with parameter 1
1+ρ . Compute the

generating function φ(u) for the busy period B.

Theorem 7.30 Stationarity. As t→∞ for all n ≥ 0

P(Q(t) = n)→

{
πn if ρ < 1, where

∑∞
j=0 πju

j = (1− ρ)(1− u) h(u)
h(u)−u ,

0 if ρ ≥ 1.

Partial proof. Let Dn be the number of customers in the system right after the n-th customer left the
system. Denoting Zn the offspring number of the n-th customer, we get

Dn+1 = Dn + Zn+1 − 1{Dn>0}.

Clearly, Dn forms a Markov chain with the state space {0, 1, 2, . . .} and transition probabilities
δ0 δ1 δ2 . . .
δ0 δ1 δ2 . . .
0 δ0 δ1 . . .
0 0 δ0 . . .
. . . . . . . . . . . .

 , δj = P(Z = j) = E
( (λS)j

j!
e−λS

)
.

The stationary distribution of this chain can be found from the equation

D
d
= D − 1{D>0} + Z.

For the probability generating function ψ(u) = E(uD), we have

ψ(u) = E(uD−1{D>0})h(u) =
(ψ(u)− ψ(0)

u
+ ψ(0)

)
h(u).

Thus

ψ(u) =
ψ(0)(u− 1)h(u)

u− h(u)
.

If ρ < 1, we get

1 = ψ(1) =
ψ(0)

1− h′(1)
=

ψ(0)

1− ρ
and therefore

E(uD) = (1− ρ)(1− u)
h(u)

h(u)− u
. (12)

gives the same stationary distribution as in the theorem statement (only for the embedded chain).
From this analysis of the chain (Dn) one can be derive (not shown) the stated convergence for the

queue size distribution.
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Theorem 7.31 Suppose a customer joins the queue after some large time has elapsed. She will wait a
period W of time before her service begins. If ρ < 1, then

E(e−uW ) =
(1− ρ)u

u− λ+ λE(e−uS)
.

Proof. Suppose that a customer waits for a period of length W and then is served for a period of length
S. In the stationary regime the length D of the queue on the departure of this customer is distributed
according (12). On the other hand, D conditionally on (W,S) has a Poisson distribution with parameter
λ(W + S):

(1− ρ)(1− s) h(s)

h(s)− s
= E(sD) = E(eλ(W+S)(s−1)) = E(eλW (s−1))h(s).

Thus, with u = λ(1− s),

E(e−uW ) = E(eλ(s−1)W ) =
(1− ρ)(s− 1)

s− E(eλ(s−1)S)
=

(1− ρ)u

u− λ+ λE(e−uS)
.

Exercise 7.32 Using the previous theorem show that for the M/M/1 queue we have

E(e−uW ) = 1− ρ+ ρ
µ− λ

µ− λ+ u
.

Theorem 7.33 Heavy traffic. Let ρ = λd be the traffic intensity of the M/G/1 queue with M = M(λ)
and G = D(d) concentrated at value d. For ρ < 1, let Qρ be a r.v. with the equilibrium queue length
distribution. Then (1 − ρ)Qρ converges in distribution as ρ ↗ 1 to the exponential distribution with
parameter 2.

Proof. Applying Theorem 7.30 with u = e−s(1−ρ) and h(u) = eρ(u−1), we find the Laplace transform of
the scaled queue length

E(e−s(1−ρ)Qρ) =

∞∑
j=0

πju
j = (1− ρ)(1− u)

eρ(u−1)

eρ(u−1) − u
=

(1− ρ)(1− e−s(1−ρ))
1− eρ(1−u)e−s(1−ρ)

which converges to 2
2+s as ρ↗ 1.

Exercise 7.34 For ρ = 0.99 find P(Qρ > 60) using the previous theorem. Answer 30%.

7.9 G/M/1 queues

Customers’ arrival times form a renewal process with inter-arrival times (Xn), and the service times are
exponentially distributed with parameter µ. The traffic intensity is ρ = (µE(X))−1.

An imbedded Markov chain. Consider the moment Tn at which the n-th customer joins the queue,
and let An be the number of customers who are ahead of him in the system. Define Vn as the number of
departures from the system during the interval [Tn, Tn+1). Conditionally on An and Xn+1 = Tn+1−Tn,
the r.v. Vn has a truncated Poisson distribution

P(Vn = v|An = a,Xn+1 = x) =

{
(µx)v

v! e−µx if v ≤ a,∑
i≥a+1

(µx)i

i! e−µx if v = a+ 1.

The sequence (An) satisfies
An+1 = An + 1− Vn

and forms a Markov chain with transition probabilities
1− α0 α0 0 0 . . .
1− α0 − α1 α1 α0 0 . . .
1− α0 − α1 − α2 α2 α1 α0 . . .
. . . . . . . . . . . . . . .

 , αj = E
( (µX)j

j!
e−µX

)
.
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Theorem 7.35 If ρ < 1, then the chain (An) is ergodic with a unique stationary distribution πj =
(1− η)ηj, where η is the smallest positive root of η = E(eXµ(η−1)). If ρ = 1, then the chain (An) is null
recurrent. If ρ > 1, then the chain (An) is transient.

Without proof.

Example 7.36 Consider a deterministic arrival process with P(X = 1) = 1 so that An = Q(n) − 1.
Then ρ = 1/µ and for µ > 1 we have the stationary distribution

P(A = j) = (1− η)ηj ,

where η = eµ(η−1). For t ∈ (0, 1), we have Q(n+ t) = An + 1− Vn(t), where

pt(a) := P(Vn(t) = v|An = a) =

{
(µt)v

v! e−µt if v ≤ a,∑
i≥a+1

(µt)i

i! e−µt if v = a+ 1.

Using the stationary distribution for An we get

P(Q(n+ t) = k) =

∞∑
j=k−1

(1− η)ηjpt(j).

This example demonstrates that unlike (Dn) in the case of M/G/1, the stationary distribution of (An)
need not be the limiting distribution of the queue size Q(t).

Theorem 7.37 Let ρ < 1, and assume that the chain (An) is in equilibrium. Then the waiting time W
of an arriving customer has an atom of size 1− η at zero and for x ≥ 0

P(W > x) = ηe−µ(1−η)x.

Proof. If An > 0, then the waiting time of the n-th customer is

Wn = S∗1 + S2 + S3 + . . .+ SAn ,

where S∗1 is the residual service time of the customer under service, and S2, S3, . . . , SAn are the service
times of the others in the queue. By the lack-of-memory property, this is a sum of An iid exponentials.
Use the equilibrium distribution of An to find that

E(e−uW ) = E((E(e−uS))A) = E
(( µ

µ+ u

)A)
=

(µ+ u)(1− η)

µ+ u− µη
= (1− η) + η

µ(1− η)

µ(1− η) + u
.

Exercise 7.38 Using the previous theorem show that for the M/M/1 queue we have

E(e−uW ) = 1− ρ+ ρ
µ− λ

µ− λ+ u
.

7.10 G/G/1 queues

Now the arrivals of customers form a renewal process with inter-arrival times Xn having an arbitrary
common distribution. The service times Sn have another fixed distribution. The traffic intensity is given
by ρ = E(S)/E(X).

Lemma 7.39 Lindley’s equation. Let Wn be the waiting time of the n-th customer. Then

Wn+1 = max{0,Wn + Sn −Xn+1}.

Proof. The n-th customer is in the system for a length Wn + Sn of time. If Xn+1 > Wn + Sn, then the
queue is empty at the (n + 1)-th arrival, and so Wn+1 = 0. If Xn+1 ≤ Wn + Sn, then the (n + 1)-th
customer arrives while the n-th is still present. In the second case the new customer waits for a period
of Wn+1 = Wn + Sn −Xn+1.

48



Theorem 7.40 Note that Un = Sn−Xn+1 is a collection of iid r.v. Denote by G(x) = P(Un ≤ x) their
common distribution function. Let Fn(x) = P(Wn ≤ x). Then for x ≥ 0

Fn+1(x) =

∫ x

−∞
Fn(x− y)dG(y).

There exists a limit F (x) = limn→∞ Fn(x) which satisfies the Wiener-Hopf equation

F (x) =

∫ x

−∞
F (x− y)dG(y).

Proof. If x ≥ 0 then due to the Lindley equation and independence between Wn and Un = Sn −Xn+1

P(Wn+1 ≤ x) = P(Wn + Un ≤ x) =

∫ x

−∞
P(Wn ≤ x− y)dG(y)

and the first part is proved. We claim that

Fn+1(x) ≤ Fn(x) for all x ≥ 0 and n ≥ 1. (13)

If (13) holds, then the second result follows immediately. We prove (13) by induction. Observe that
F2(x) ≤ 1 = F1(x), and suppose that (13) holds for n = k − 1. Then

Fk+1(x)− Fk(x) =

∫ x

−∞
(Fk(x− y)− Fk−1(x− y))dG(y) ≤ 0.

Theorem 7.41 If ρ < 1, then F is a non-defective distribution function. If ρ = 1 and G is not
concentrated at one point or if ρ > 1, then F (x) = 0 for all x.

Proof. Imbedded random walk. Define an imbedded random walk by

Σ0 = 0, Σn = U1 + . . .+ Un.

Lemma 7.39 implies

Wn+1 = max{0, Un, Un + Un−1, . . . , Un + Un−1 + . . .+ U1}
d
= max{Σ0, . . . ,Σn}.

Note that E(U) = E(S)− E(X), and E(U) < 0 is equivalent to ρ < 1. It follows that

F (x) = P(Σn ≤ x for all n), x ≥ 0.

(A) If E(U) < 0, then

P(Σn > 0 for infinitely many n) = P(n−1Σn > 0 i.o.) = P(n−1Σn − E(U) > |E(U)| i.o.) = 0

due to the LLN. Thus max{Σ0,Σ1, . . .} is either zero or the maximum of only finitely many positive
terms, and F is a non-defective distribution.

(B) Next suppose that E(U) > 0 and pick any x > 0. For n ≥ 2x/E(U)

P(Σn ≥ x) = P(n−1Σn−E(U) ≥ n−1x−E(U)) ≥ P(n−1Σn−E(U) ≥ −E(U)/2) = P(n−1Σn ≥ E(U)/2).

Since 1− F (x) ≥ P(Σn ≥ x), the weak LLN implies F (x) = 0.
(C) In the case when E(U) = 0 we need a more precise measure of the fluctuations of Σn. According

to the law of the iterated logarithm the fluctuations of Σn are of order O(
√
n log log n) in both positive

and negative directions with probability 1, and so for any given x ≥ 0,

1− F (x) = P(Σn > x for some n) = 1.

Definition 7.42 Define an increasing sequence of r.v. by

L(0) = 0, L(n+ 1) = min{k > L(n) : Σk > ΣL(n)}.

The L(n) are called ladder points of the random walk Σ, these are the times when the random walk Σ
reaches its new maximal values.
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Lemma 7.43 Let η = P(Σn > 0 for some n). The total number Λ of ladder points has a geometric
distribution

P(Λ = k) = (1− η)ηk, k = 0, 1, 2, . . . .

Theorem 7.44 If ρ < 1, the equilibrium waiting time W
d
= max{Σ0,Σ1, . . .} has the Laplace transform

E(e−θW ) =
1− η

1− ηE(e−θY )
,

where Y = ΣL(1) is the first ladder hight of the imbedded random walk.

Proof. Follows from the representation in terms of Yj = ΣL(j) −ΣL(j−1) which are iid copies of Y = Y1:

max{Σ0,Σ1, . . .} = ΣL(Λ) = Y1 + . . .+ YΛ.

Exercise 7.45 Using the previous theorem show that for the M/M/1 queue we have

E(e−uW ) = 1− ρ+ ρ
µ− λ

µ− λ+ u
.

8 Martingales

8.1 Definitions and examples

Example 8.1 Martingale: a betting strategy. After tossing a fair coin a gambler wins for heads and
looses for tails. Let Xn be the gain of a gambler doubling the bet after each loss. The game stops after
the first win. The distribution of Xn evolves as follows

X0 = 0,
X1 = 1 with probability 1/2 and X1 = −1 with probability 1/2,
X2 = 1 with probability 3/4 and X2 = −3 with probability 1/4,
X3 = 1 with probability 7/8 and X3 = −7 with probability 1/8,

and so on so that
Xn = 1 with probability 1− 2−n and Xn = −2n + 1 with probability 2−n.

If Hn and Tn are the heads and tails outcomes for the n-th tossing, then

Xn+1 = (2Xn − 1)1Tn+1
+ 1Hn+1

.

This yields in terms of the conditional expectations

E(Xn+1|Xn) = (2Xn − 1) · 1

2
+

1

2
= Xn.

If N is the number of coin tosses until one gets heads, then P(N = n) = 2−n, n = 1, 2, . . . with E(N) = 2.
Interestingly, the state XN−1 prior to the winning toss has the mean

E(XN−1) = E(1− 2N−1) = 1−
∞∑
n=1

2n−12−n = −∞.

Definition 8.2 A sequence of sigma-fields (Fn) such that F0 ⊂ F1 ⊂ . . . ⊂ Fn ⊂ . . . ⊂ F is called a
filtration. A sequence of r.v. (Yn) is called adapted to (Fn) if Yn is Fn-measurable for all n. In this case
the sequence (Yn,Fn) is called a martingale if, for all n ≥ 0,

• E(|Yn|) <∞,

• E(Yn+1|Fn) = Yn.

The origin of the term ”martingale”.

Definition 8.3 Let (Yn) be adapted to a filtration (Fn).
Then (Yn,Fn) is called a submartingale if

• E(Y +
n ) <∞,
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• E(Yn+1|Fn) ≥ Yn.

Definition 8.4 Let (Yn) be adapted to a filtration (Fn). Then (Yn,Fn) is called a supermartingale if

• E(Y −n ) <∞,

• E(Yn+1|Fn) ≤ Yn.

Definition 8.5 The sequence (Yn)n≥1 is a martingale (submartingale, supermartingale) with respect to
the sequence (Xn)n≥1, if (Yn,Fn) is a martingale (submartingale, supermartingale) for Fn = σ{X1, . . . , Xn},
the σ-algebras generated by (X1, . . . , Xn). It follows that Yn = ψn(X1, . . . , Xn). We sometimes just say
that (Yn) is a martingale.

Exercise 8.6 Consider the sequence of means mn = E(Yn). We have mn+1 ≥ mn for submartingales,
mn+1 ≤ mn for supermartingales, and mn+1 = mn for martingales. A martingale is both a sub- and
supermartingale. If (Yn) is a submartingale, then (−Yn) is a supermartingale.

Example 8.7 Consider a simple random walk Sn = S0 + X1 + . . . + Xn with P(Xi = 1) = p, P(Xi =
−1) = q, and S0 = k. The centered Sn − n(p− q) is a martingale:

E(Sn+1 − (n+ 1)(p− q)|X1, . . . , Xn) = Sn + E(Xn+1)− (n+ 1)(p− q) = Sn − n(p− q).

Another martingale is Yn = (q/p)Sn :

E(Yn+1|X1, . . . , Xn) = p(q/p)Sn+1 + q(q/p)Sn−1 = (q/p)Sn = Yn

with E(Yn) = E(Y0) = (q/p)k. It is called De Moivre’s martingale.

Example 8.8 Let Sn = X1 + . . . + Xn, where Xi are iid r.v. with zero means and finite variances σ2.
Then S2

n − nσ2 is a martingale

E(S2
n+1 − (n+ 1)σ2|X1, . . . , Xn) = S2

n + 2SnE(Xn+1) + E(X2
n+1)− (n+ 1)σ2 = S2

n − nσ2.

Example 8.9 Application of the optional stopping theorem. Consider a simple random walk Sn =
S0 + X1 + . . . + Xn with P(Xi = 1) = p, P(Xi = −1) = q, and S0 = k. Let T be the first time when it
hits 0 or N , where is 0 ≤ k ≤ N . Next we show that for p 6= q,

P(ST = 0) =
(p/q)N−k − 1

(p/q)N − 1
.

Put pk := P(ST = 0) so that P(ST = N) = 1 − pk. According to Definition 7.11, T is a stopping time.
Applying Theorem 8.41 to De Moivre’s martingale we get E(YT ) = E(Y0). Since P(YT = 1) = pk and
P(YT = (q/p)N ) = 1− pk, it follows

(q/p)0pk + (q/p)N (1− pk) = (q/p)k,

and we immediately derive the stated equality.
In terms of the simple random walk starting at zero and stopped either at −k or at N we find

P(ST = −k) =
(p/q)N − 1

(p/q)N+k − 1
.

If p > q and N →∞, we obtain P(ST = −1)→ q
p . Thus, if (−X) is the lowest level visited, then X has

a shifted geometric distribution distribution with parameter 1− q
p .

Example 8.10 Stopped de Moivre’s martingale. Consider the same simple random walk and let T be
a stopping time of the random walk. Denote Dn = YT∧n, where (Yn) is the de Moivre martingale. It is
easy to see that Dn is also a martingale:

E(Dn+1|X1, . . . , Xn) = E(Yn+11{T>n} +
∑
j≤n

Yj1{T=j}|X1, . . . , Xn)

= Yn1{T>n} +
∑
j≤n

Yj1{T=j} = Dn.
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Example 8.11 Branching processes (recall Section 5.5). Let Zn be a branching process with Z0 = 1
and the mean offspring number µ. In the supercritical case, µ > 1, the extinction probability η ∈ [0, 1)
of Zn is identified as a solution of the equation η = h(η), where h(s) = E(sX) is the generating function
of the offspring number. The process Vn = ηZn is a martingale

E(Vn+1|Z1, . . . , Zn) = E(ηX1+...+XZn |Z1, . . . , Zn) = h(η)Zn = Vn.

8.2 Convergence in L2

Lemma 8.12 If (Yn) is a martingale with E(Y 2
n ) < ∞, then Yn+1 − Yn and Yn are uncorrelated. It

follows that (Y 2
n ) is a submartingale.

Proof. The first assertion follows from

E(Yn(Yn+1 − Yn)|Fn) = Yn(E(Yn+1|Fn)− Yn) = 0.

The second claim is derived as follows

E(Y 2
n+1|Fn) = E((Yn+1 − Yn)2 + 2Yn(Yn+1 − Yn) + Y 2

n |Fn)

= E((Yn+1 − Yn)2|Fn) + Y 2
n ≥ Y 2

n .

Notice that

E(Y 2
n+1) = E(Y 2

n ) + E((Yn+1 − Yn)2)

so that E(Y 2
n ) is non-decreasing and there always exists a finite or infinite limit

M = lim
n→∞

E(Y 2
n ). (14)

Exercise 8.13 Let J(x) be a convex function. If (Yn) is a martingale with E[J(Yn)] < ∞, then J(Yn)
is a submartingale. (Hint: use Jensen’s inequality.)

Lemma 8.14 Doob-Kolmogorov’s inequality. If (Yn) is a martingale with E(Y 2
n ) < ∞, then for any

ε > 0

P( max
1≤i≤n

|Yi| ≥ ε) ≤
E(Y 2

n )

ε2
.

Proof. Let B1 = {|Y1| ≥ ε} and Bk = {|Y1| < ε, . . . , |Yk−1| < ε, |Yk| ≥ ε}. Then using a submartingale
property (in the second inequality) we get

E(Y 2
n ) ≥

n∑
i=1

E(Y 2
n 1Bi) ≥

n∑
i=1

E(Y 2
i 1Bi) ≥ ε2

n∑
i=1

P(Bi) = ε2P( max
1≤i≤n

|Yi| ≥ ε).

Theorem 8.15 If (Yn) is a martingale with finite M defined by (14), then there exists a random variable
Y such that Yn → Y a.s. and in mean square.

Proof. Step 1. For

Am(ε) =
⋃
i≥1

{|Ym+i − Ym| ≥ ε}

we will show that
P(Am(ε))→ 0, m→∞ for any ε > 0.

For a given m, put Sn = Ym+n − Ym. It is also a martingale, since

E(Sn+1|S1, . . . , Sn) = E(E(Sn+1|Fm+n)|S1, . . . , Sn) = E(Sn|S1, . . . , Sn) = Sn.

Apply the Doob-Kolmogorov inequality to this martingale to find that

P(|Ym+i − Ym| ≥ ε for some i ∈ [1, n]) ≤ ε−2E((Ym+n − Ym)2) = ε−2(E(Y 2
m+n)− E(Y 2

m)).
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Letting n→∞ we obtain
P(Am(ε)) ≤ ε−2(M − E(Y 2

m))

and hence the step 1 statement follows.
Step 2. Since Am(ε1) ⊂ Am(ε2) for ε1 > ε2, we have, by step 1,

P
( ⋃
ε>0

⋂
m≥1

Am(ε)
)

= lim
ε→0

P
( ⋂
m≥1

Am(ε)
)
≤ lim
ε→0

lim
m→∞

P(Am(ε)) = 0.

Therefore, the sequence (Yn) is a.s. Cauchy convergent:

P
( ⋂
ε>0

⋃
m≥1

Acm(ε)
)

= 1,

which implies the existence of Y such that Yn → Y a.s.
Step 3. Finally, we prove the convergence in mean square using the Fatou lemma

E((Yn − Y )2) = E(liminf
m→∞

(Yn − Ym)2) ≤ liminf
m→∞

E((Yn − Ym)2)

= liminf
m→∞

E(Y 2
m)− E(Y 2

n ) = M − E(Y 2
n )→ 0, n→∞.

Example 8.16 Branching processes (recall Section 5.5). Let Zn be a branching process with Z0 = 1 and
the offspring numbers having mean µ and variance σ2. Since E(Zn+1|Zn) = µZn, the ratio Wn = µ−nZn
is a martingale with

E(W 2
n) = 1 + (σ/µ)2(1 + µ−1 + . . .+ µ−n+1).

In the supercritical case, µ > 1, we have E(W 2
n)→ 1 + σ2

µ(µ−1) , and there is a r.v. W such that Wn →W

a.s. and in L2.
The Laplace transform of the limit φ(θ) = E(e−θW ) satisfies the functional equation φ(µθ) = h(φ(θ)).

8.3 Doob’s decomposition

Definition 8.17 The sequence (Sn,Fn) is called predictable if S0 = 0, and Sn is Fn−1-measurable for
all n ≥ 1. It is also called increasing if P(Sn ≤ Sn+1) = 1 for all n ≥ 0.

Theorem 8.18 Doob’s decomposition. A submartingale (Yn,Fn) with finite means can be expressed in
the form Yn = Mn+Sn, where (Mn,Fn) is a martingale and (Sn,Fn) is an increasing predictable process
(called the compensator of the submartingale). This decomposition is unique.

Proof. We define M and S explicitly: M0 = Y0, S0 = 0, and for n ≥ 0

Mn+1 −Mn = Yn+1 − E(Yn+1|Fn), Sn+1 − Sn = E(Yn+1|Fn)− Yn.

To see uniqueness suppose another such decomposition Yn = M ′n + S′n. Then

M ′n+1 −M ′n + S′n+1 − S′n = Mn+1 −Mn + Sn+1 − Sn.

Taking conditional expectations given Fn we get S′n+1 − S′n = Sn+1 − Sn. This in view of S′0 = S0 = 0
implies S′n = Sn.

Definition 8.19 Let (Yn) be adapted to (Fn), and (Sn) be predictable. The sequence

Zn = Y0 +

n∑
i=1

Si(Yi − Yi−1)

is called the transform of (Yn) by (Sn).

Example 8.20 Such transforms with Sn ≥ 0 are usually interpreted as gambling systems with (Yn)
being a supermartingale (the capital after n gambles each involving a unit stake). Optional skipping is
one such strategy. Here the gambler either wagers a unit stake or skip the round: Sn equals either 1 or
0. The following result says that you can not systematically beat the casino.
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Theorem 8.21 Let (Zn) be the transform of (Yn) by (Sn). Then
(i) If (Yn) is a martingale, then (Zn) is a martingale so long as E|Zn| <∞ for all n.
(ii) If (Yn) is a submartingale and in addition Sn ≥ 0 for all n, then (Zn) is a submartingale so long

as E(Z+
n ) <∞ for all n.

(iii) If (Yn) is a supermartingale and in addition Sn ≥ 0 for all n, then (Zn) is a supermartingale so
long as E(Z−n ) <∞ for all n.

Proof. All three assertions follow immediately from

E(Zn+1|Fn)− Zn = E(Sn+1(Yn+1 − Yn)|Fn) = Sn+1(E(Yn+1|Fn)− Yn).

Example 8.22 Optional stopping. The gambler wagers a unit stake on each play until a random time T .
In this case Sn = 1{n≤T} and Zn = YT∧n. If Sn is predictable, then {T = n} = {Sn = 1, Sn+1 = 0} ∈ Fn,
so that T is a stopping time.

Example 8.23 Optional starting. The gambler does not play until the (T + 1)-th round, where T is a
stopping time. In this case Sn = 1{T≤n−1} is a predictable sequence.

8.4 Hoeffding’s inequality

Definition 8.24 Let (Yn,Fn) be a martingale. The sequence of martingale differences is defined by
Dn = Yn − Yn−1, so that Dn is Fn-measurable and

E|Dn| <∞, E(Dn+1|Fn) = 0, Yn = Y0 +D1 + . . .+Dn.

Theorem 8.25 Hoeffding’s inequality. Let (Yn,Fn) be a martingale, and suppose P(|Dn| ≤ Kn) = 1
for a sequence of real numbers Kn. Then for any x > 0

P(|Yn − Y0| ≥ x) ≤ 2 exp
(
− x2

2(K2
1 + . . .+K2

n)

)
.

Proof. Let θ > 0.
Step 1. The function eθx is convex, therefore

eθd ≤ 1

2
(1− d)e−θ +

1

2
(1 + d)eθ for all |d| ≤ 1.

Hence if D is a r.v. with mean 0 such that P(|D| ≤ 1) = 1, then

E(eθD) ≤ e−θ + eθ

2
=

∞∑
k=0

θ2k

(2k)!
<

∞∑
k=0

θ2k

2k(k)!
= eθ

2/2.

Step 2. Using the martingale differences we obtain

E(eθ(Yn−Y0)|Fn−1) = eθ(Yn−1−Y0)E(eθDn |Fn−1) ≤ eθ(Yn−1−Y0)eθ
2K2

n/2.

Take expectations and iterate to find

E(eθ(Yn−Y0)) ≤ E(eθ(Yn−1−Y0))eθ
2K2

n/2 ≤ exp
(θ2

2

n∑
i=1

K2
i

)
.

Step 3. Due to the Markov inequality we have for any x > 0

P(Yn − Y0 ≥ x) ≤ e−θxE(eθ(Yn−Y0)) ≤ exp
(
− θx+

θ2

2

n∑
i=1

K2
i

)
.

Set θ = x/
∑n
i=1K

2
i to minimize the exponent. Then

P(Yn − Y0 ≥ x) ≤ exp
(
− x2

2(K2
1 + . . .+K2

n)

)
.

Since (−Yn) is also a martingale, we get

P(Yn − Y0 ≤ −x) = P(−Yn + Y0 ≥ x) ≤ exp
(
− x2

2(K2
1 + . . .+K2

n)

)
.
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Example 8.26 Large deviations. Let Xn be iid Ber(p) random variables. If Sn = X1 + . . .+Xn, then
Yn = Sn − np is a martingale with

|Yn − Yn−1| = |Xn − p| ≤ max(p, 1− p).

Due to the Hoeffding’s inequality for any x > 0

P(|Sn − np| ≥ x
√
n) ≤ 2 exp

(
− x2

2(max(p, 1− p))2

)
.

In particular, if p = 1/2,

P(|Sn − n/2| ≥ x
√
n) ≤ 2e−2x2

.

Putting here x = 3 we get P(|Sn − n/2| ≥ 3
√
n) ≤ 3 · 10−8.

8.5 Convergence in L1

On the figure below five time intervals are shown: (T1, T2], (T3, T4], . . . , (T9, T10] for the uppcrossings of
the interval (a, b). If for all rational intervals (a, b) the number of uppcrossings U(a, b) is finite, then the
corresponding trajectory has a (possibly infinite) limit.

T1 T2 T3 T4 T5 T6 T7 T8

a

11

b

T9 T10T

All Tk are stopping times. Definition 7.11 for the stopping times can be extended as follows.

Definition 8.27 A random variable T taking values in the set {0, 1, 2, . . .} ∪ {∞} is called a stopping
time with respect to the filtration (Fn), if

{T = n} ∈ Fn, for all n = 0, 1, 2, . . . .

Exercise 8.28 Define more exactly the crossing times Tk. Let (Yn,Fn)n≥0 be an adapted process, and
take a < b. Put T1 = n for the smallest n such that Yn ≤ a. In particular, if Y0 ≤ a, then T1 = 0.

For an even natural number k ≥ 2 put Tk = n if Yi < b for Tk−1 ≤ i ≤ n− 1, and Yn ≥ b. For an odd
natural number k ≥ 3 put Tk = n if Yi > a for Tk−1 ≤ i ≤ n − 1, and Yn ≤ a. Show that all crossing
times Tk are stopping times.

Lemma 8.29 Snell’s uppcrossing inequality. Let a < b and Un(a, b) is the number of uppcrossings of
the interval (a, b) for a submartingale (Y0, . . . , Yn). Then

E[Un(a, b)] ≤ E[(Yn − a)+]

b− a
.

Proof. Let Ii be the indicator of the event that i ∈ (T2k−1, T2k] for some k. Note that Ii is Fi−1-
measurable, since

{Ii = 1} =
⋃
k

{T2k−1 ≤ i− 1 < T2k} =
⋃
k

{T2k−1 ≤ i− 1} ∩ {T2k ≤ i− 1}c

is an event that depends on (Y0, . . . , Yi−1) only. Now, since Zn = (Yn − a)+ forms a submartingale, we
get

E((Zi − Zi−1) · Ii) = E[E(Ii · (Zi − Zi−1)|Fi−1)] = E[Ii · (E(Zi|Fi−1)− Zi−1)]

≤ E[E(Zi|Fi−1)− Zi−1] = E(Zi)− E(Zi−1).

55



Now, observe that (inspect the figure above)

(b− a) · Un(a, b) ≤
n∑
i=1

(Zi − Zi−1)Ii.

Thus
(b− a) · E(Un(a, b)) ≤ E(Zn)− E(Z0) ≤ E(Zn).

Theorem 8.30 Suppose (Yn,Fn) is a submartingale such that for some finite constant M ,

sup
n≥1

E(Y +
n ) ≤M.

(i) There exists a r.v. Y such that Yn → Y almost surely. In addition: (ii) if E|Y0| < ∞, the limit Y
has a finite mean, and (iii) if (Yn) is uniformly integrable, see Definition 3.22, then Yn → Y in L1.

Proof. (i) Using Snell’s inequality we obtain that U(a, b) = limUn(a, b) satisfies

E(U(a, b)) ≤ M + |a|
b− a

.

Therefore, P(U(a, b) < ∞) = 1. Since there are only countably many rationals, it follows that with
probability 1, U(a, b) <∞ for all rational (a, b), and Yn → Y almost surely.

(ii) We have to check that E|Y | < ∞ given E|Y0| < ∞. Indeed, since |Yn| = 2Y +
n − Yn and

E(Yn|F0) ≥ Y0, we get
E(|Yn|

∣∣F0) ≤ 2E(Y +
n

∣∣F0)− Y0.

By Fatou’s lemma

E(|Y |
∣∣F0) = E(liminf

n→∞
|Yn|

∣∣F0) ≤ liminf
n→∞

E(|Yn|
∣∣F0) ≤ 2 liminf

n→∞
E(Y +

n

∣∣F0)− Y0,

and it remains to observe that E(liminfn→∞ E(Y +
n

∣∣F0)) ≤M , again due to Fatou’s lemma.

(iii) Finally, recall that according to Theorem 3.25, given Yn
P→ Y , the uniform integrability of (Yn)

is equivalent to E|Yn| <∞ for all n, E|Y | <∞, and Yn
L1

→ Y .

Corollary 8.31 Any martingale, submartingale or supermartingale (Yn,Fn) satisfying supn E|Yn| ≤M
converges almost surely to a r.v. with a finite limit.

Corollary 8.32 A non-negative supermartingale converges almost surely. A non-positive submartingale
converges almost surely.

Example 8.33 De Moivre martingale Yn = (q/p)Sn is non-negative and hence converges a.s. to some
limit Y . Let p 6= q. Since Sn →∞ for p > q and Sn → −∞ for p < q, in both cases we get P(Y = 0) = 1.
Note that Yn does not converge in mean, since E(Yn) = E(Y0) 6= 0.

Example 8.34 Doob’s martingale. Let Z be a r.v. on (Ω,F ,P) such that E(|Z|) <∞. For a filtration
(Fn) define Yn = E(Z|Fn). Then (Yn,Fn) is a martingale: first, by Jensen’s inequality,

E(|Yn|) = E|E(Z|Fn)| ≤ E(E(|Z| |Fn)) = E(|Z|),

and secondly
E(Yn+1|Fn) = E(E(Z|Fn+1)|Fn)) = E(Z|Fn) = Yn.

As we show next the Doob martingale is uniformly integrable. Again due to Jensen’s inequality,

|Yn| = |E(Z|Fn)| ≤ E(|Z| |Fn) =: Zn,

so that for any a
|Yn|1{|Yn|≥a} ≤ Zn1{Zn≥a}.
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By the Definition 2.7 of conditional expectation we have

E
(
(|Z| − Zn)1{Zn≥a}

)
= 0,

which together with the previous inequality imply

E(|Yn|1{|Yn|≥a}) ≤ E(|Z|1{Zn≥a}).

To derive from here the uniform integrability

sup
n

E(|Yn|1{|Yn|≥a})→ 0, a→∞,

it is enough to show that
sup
n

E(|Z|1{Zn≥a})→ 0, a→∞.

The latter is obtained using the Markov inequality:

E(|Z|1{Zn≥a}) ≤ C · P(Zn ≥ a) + E(|Z|1{|Z|≥C}) ≤ C ·
E(Zn)

a
+ E(|Z|1{|Z|≥C}),

for arbitrary C > 0, implying that

sup
n

E(|Z|1{Zn≥a}) ≤ C ·
E|Z|
a

+ E(|Z|1{|Z|≥C}).

It remains to send first a→∞ and then C →∞.
By Theorem 8.30, Doob’s martingale converges E(Z|Fn) → Y a.s. and in mean as n → ∞. It is

actually the case (without proof) that the limit Y = E(Z|F∞), where F∞ is the smallest σ-algebra
containing all Fn. There is an important converse result (without proof): if a martingale (Yn,Fn)
converges in mean, then there exists a r.v. Z with finite mean such that Yn = E(Z|Fn).

Exercise 8.35 Knapsack problem. It is required to pack a knapsack of volume c to maximum benefit.
Suppose you have n objects, the ith object having volume Vi and worth Wi, where V1, . . . , Vn,W1, . . . ,Wn

are independent non-negative random variables with finite means. You wish to find a vector z1, . . . , zn
of 0’s and 1’s such that

z1V1 + . . .+ znVn ≤ c

and which maximizes W = z1W1 + . . .+ znWn. Let Z be the maximal possible W , and show that given
Wi ≤ 1 for all i,

P(|Z − EZ| ≥ x) ≤ 2e−
x2

2n .

In particular,
P(|Z − EZ| ≥ 3

√
n) ≤ 0.022.

Solution. Consider a filtration F0 = {∅,Ω} and Fi = σ(V1,W1, . . . , Vi,Wi) for i = 1, . . . , n. And let
Yi = E(Z|Fi), i = 0, 1, . . . , n be a Doob martingale. The assertion follows from the Hoeffding inequality
if we verify that |Yi− Yi−1| ≤ 1. To this end define Z(j) as the maximal worth attainable without using
the jth object. Clearly,

E(Z(j)|Fj) = E(Z(j)|Fj−1).

Since obviously Z(j) ≤ Z ≤ Z(j) + 1, we have

Yi − Yi−1 = E(Z|Fi)− E(Z|Fi−1) ≤ 1 + E(Z(i)|Fi)− E(Z(i)|Fi−1) = 1,

and

Yi − Yi−1 = E(Z|Fi)− E(Z|Fi−1) ≥ E(Z(i)|Fi)− E(Z(i)|Fi−1)− 1 = −1.
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8.6 Bounded stopping times. Optional sampling theorem

The stopped de Moivre martingale from Example 8.10 is also a martingale. A general statement of this
type follows next.

Theorem 8.36 Let (Yn,Fn) be a submartingale and let T be a stopping time. Then (YT∧n,Fn) is a
submartingale. If moreover, E|Yn| <∞, then (Yn − YT∧n,Fn) is also a submartingale.

Proof. The random variable Zn = YT∧n is Fn-measurable:

Zn =

n−1∑
i=0

Yi1{T=i} + Yn1{T≥n},

with

E(Z+
n ) ≤

n∑
i=0

E(Y +
i ) <∞.

It remains to see that
Zn+1 − Zn = (Yn+1 − Yn)1{T>n}

implies one hand,
E(Zn+1 − Zn|Fn) = E(Yn+1 − Yn|Fn)1{T>n} ≥ 0,

and on the other hand,

E(Yn+1 − Zn+1 − Yn + Zn|Fn) = E(Yn+1 − Yn|Fn)1{T≤n} ≥ 0.

Corollary 8.37 If (Yn,Fn) is a martingale, then it is both a submartingale and a supermartingale, and
therefore, for a given stopping time T , both (YT∧n,Fn) and (Yn − YT∧n,Fn) are martingales.

Definition 8.38 For a stopping time T with respect to filtration (Fn), denote by FT the σ-algebra of
all events A such that

A ∩ {T = n} ∈ Fn for all n.

The stopping time T is called bounded if P(T ≤ N) = 1 for some finite constant N .

Theorem 8.39 Optional sampling. Let (Yn,Fn) be a submartingale.
(i) If T is a bounded stopping time, then E(Y +

T ) <∞ and E(YT |F0) ≥ Y0.
(ii) If 0 = T0 ≤ T1 ≤ T2 ≤ . . . is a sequence of bounded stopping times, then (YTj ,FTj ) is a

submartingale.

Proof. (i) Let P(T ≤ N) = 1 where N is a positive constant. Since Zn = YT∧n is a submartingale and
ZN = YT , we have E(Y +

T ) <∞ and E(YT |F0) ≥ Y0.
(ii) It is easy to see that for an arbitrary stopping time S, the random variable YS is FS-measurable:

{YS ≤ x} ∩ {S = n} = {Yn ≤ x} ∩ {S = n} ∈ Fn.

Consider two bounded stopping times S ≤ T ≤ N . We have to show that W := E(YT |FS) ≥ YS . For
this, observe that for A ∈ FS we have

E(W1A) = E(YT 1A) =
∑
k≤N

E(YT 1A∩{S=k}) =
∑
k≤N

E
(

1A∩{S=k}E(YT |Fk)
)
,

and since in view of Theorem 8.36,

E(YT |Fk) = E(YT∧N |Fk) ≥ YT∧k for all k ≤ N,

we conclude

E(W1A) ≥ E
( ∑
k≤N

1A∩{S=k}YT∧k

)
= E

( ∑
k≤N

1A∩{S=k}Yk

)
= E(YS1A),

so that E((W −YS)1A) ≥ 0 for all A ∈ FS . In particular, for any ε > 0 and Aε = {W ≤ YS− ε}, we have

0 ≤ E((W − YS)1Aε) ≤ −εP(Aε)

implying P(Aε) = 0. Thus W ≥ YS with probability 1.

Exercise 8.40 Let the process (Yn) be a martingale and T be a bounded stopping time. Show that
according to Theorem 8.39 we have E(YT |F0) = Y0 and E(YT ) = E(Y0).
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8.7 Unbounded stopping times

The martingale property in Exercise 8.40 is not enough for Example 8.9 because the corresponding
stopping time T is not bounded. However, according to Section 5.1,

E(T ) =
1

q − p

[
k −N · 1− (q/p)k

1− (q/p)N

]
is finite and the following theorems work.

Theorem 8.41 Optional stopping. Let (Yn,Fn) be a martingale and T be a stopping time. Then
E(YT ) = E(Y0) if (a) P(T <∞) = 1, (b) E|YT | <∞, and (c) E(Yn1{T>n})→ 0 as n→∞.

Proof. From YT = YT∧n + (YT − Yn)1{T>n} using that E(YT∧n) = E(Y0) we obtain

E(YT ) = E(Y0) + E(YT 1{T>n})− E(Yn1{T>n}).

It remains to apply (c) and observe that due to the dominated convergence E(YT 1{T>n})→ 0.

Theorem 8.42 Let (Yn,Fn) be a martingale and T be a stopping time. Then E(YT ) = E(Y0) if
(a) E(T ) <∞ and (b) there exists a constant c such that for any n

E(|Yn+1 − Yn|
∣∣Fn)1{T>n} ≤ c1{T>n}.

Proof. Since T ∧ n→ T , we have YT∧n → YT a.s. It follows that

E(Y0) = E(YT∧n)→ E(YT )

as long as (YT∧n) is uniformly integrable. By Exercise 3.23, to prove the uniform integrability it is
enough to observe that

sup
n
|YT∧n| ≤ |Y0|+W, W := |Y1 − Y0|+ . . .+ |YT − YT−1|,

and to verify that E(W ) < ∞. Indeed, since E(|Yi − Yi−1|1{T≥i}
∣∣Fi−1) ≤ c1{T≥i}, we have E(|Yi −

Yi−1|1{T≥i}) ≤ cP(T ≥ i) and therefore

E(W ) = E
( T∑
i=1

|Yi − Yi−1|
)

=

∞∑
i=1

E(|Yi − Yi−1|1{T≥i}) =

∞∑
i=1

E
(
E(|Yi − Yi−1|1{T≥i}

∣∣Fi−1)
)

≤ c
∞∑
i=1

P(T ≥ i) ≤ cE(T ) <∞.

Example 8.43 Wald’s equality. Let (Xn) be iid r.v. with finite mean µ and Sn = X1 + . . .+Xn, then
Yn = Sn − nµ is a martingale with respect to Fn = σ{X1, . . . , Xn}. Now

E(|Yn+1 − Yn|
∣∣Fn) = E|Xn+1 − µ| = E|X1 − µ| <∞.

We deduce from Theorem 8.42 that E(YT ) = E(Y0) for any stopping time T with finite mean, implying
that E(ST ) = µE(T ).

Lemma 8.44 Wald’s identity. Let (Xn) be iid r.v. with a finite M(t) = E(etX). Put Sn = X1+. . .+Xn.
If T is a stopping time with finite mean such that |Sn|1{T>n} ≤ c1{T>n}, then

E(etSTM(t)−T ) = 1 whenever M(t) ≥ 1.

Proof. Define Y0 = 1, Yn = etSnM(t)−n, and let Fn = σ{X1, . . . , Xn}. It is clear that (Yn) is a
martingale and thus the claim follows from Theorem 8.42 if verify condition (b). Indeed,

E(|Yn+1 − Yn|
∣∣Fn) = YnE|etXM(t)−1 − 1| ≤ YnE(etXM(t)−1 + 1) = 2Yn.

Furthermore, given M(t) ≥ 1,

Yn1{T>n} = etSnM(t)−n1{T>n} ≤ ec|t|1{T>n}.
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Example 8.45 Simple random walk Sn with P(Xi = 1) = p and P(Xi = −1) = q. Let T be the first
exit time of (−a, b). By Lemma 8.44 with M(t) = pet + qe−t,

e−atE(M(t)−T 1{ST=−a}) + ebtE(M(t)−T 1{ST=b}) = 1 whenever M(t) ≥ 1.

Setting M(t) = s−1 in M(t) = pet + qe−t we obtain a quadratic equation for et having two solutions
λi = λi(s):

λ1 =
1 +

√
1− 4pqs2

2ps
, λ2 =

1−
√

1− 4pqs2

2ps
, s ∈ [0, 1].

They give us two linear equations

λ−ai E(sT 1{ST=−a}) + λbiE(sT 1{ST=b}) = 1, i = 1, 2,

resulting in

E(sT 1{ST=−a}) =
λa1λ

a
2(λb1 − λb2)

λa+b
1 − λa+b

2

, E(sT 1{ST=b}) =
λa1 − λa2

λa+b
1 − λa+b

2

.

Summing up these two relations we get the probability generating function

E(sT ) =
λa1(1− λa+b

2 ) + λa2(λa+b
1 − 1)

λa+b
1 − λa+b

2

.

8.8 Maximal inequality

Theorem 8.46 Maximal inequality.
(i) If (Yn) is a submartingale, then for any ε > 0

P( max
0≤i≤n

Yi ≥ ε) ≤
E(Y +

n )

ε
.

(ii) If (Yn) is a supermartingale and E|Y0| <∞, then for any ε > 0

P( max
0≤i≤n

Yi ≥ ε) ≤
E(Y0) + E(Y −n )

ε
.

Proof. (i) If (Yn) is a submartingale, then (Y +
n ) is a non-negative submartingale with finite means.

Introduce a stopping time
T := min{n : Yn ≥ ε} = min{n : Y +

n ≥ ε}

and notice that
{T ≤ n} = { max

0≤i≤n
Yi ≥ ε}.

By the second part of Theorem 8.36, E(Y +
n − Y +

T∧n) ≥ 0. Therefore,

E(Y +
n ) ≥ E(Y +

T∧n) = E(Y +
T 1{T≤n}) + E(Y +

n 1{T>n}) ≥ E(Y +
T 1{T≤n}) ≥ εP(T ≤ n),

implying the first stated inequality.
Furthermore, since E(Y +

T∧n1{T>n}) = E(Y +
n 1{T>n}), we have

E(Y +
n 1{T≤n}) ≥ E(Y +

T∧n1{T≤n}) = E(Y +
T 1{T≤n}) ≥ εP(T ≤ n).

Using this we get even a stronger inequality

P(A) ≤ E(Y +
n 1A)

ε
, where A = { max

0≤i≤n
Yi ≥ ε}. (15)

(ii) If (Yn) is a supermartingale, then by the first part of Theorem 8.36, E(−YT∧n) ≥ E(−Y0). Thus

E(Y0) ≥ E(YT∧n) = E(YT I{T≤n}) + E(YnI{T>n}) ≥ εP(T ≤ n)− E(Y −n )

giving the second assertion.
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Corollary 8.47 If (Yn) is a submartingale and E|Y0| <∞, then for any ε > 0

P( max
0≤i≤n

|Yi| ≥ ε) ≤
2E(Y +

n )− E(Y0)

ε
.

Proof. Let ε > 0. If (Yn) is a submartingale, then (−Yn) is a supermartingale so that according to (ii),

P( min
0≤i≤n

Yi ≤ −ε) = P( max
0≤i≤n

(−Yi) ≥ ε) ≤
E(−Y0) + E[(−Yn)−]

ε
=

E(Y +
n )− E(Y0)

ε
.

Adding this to (i) we arrive at the asserted inequality.

Exercise 8.48 Show that if (Yn) is a martingale, then

P( max
0≤i≤n

|Yi| ≥ ε) ≤
E|Yn|
ε

.

Corollary 8.49 Doob-Kolmogorov’s inequality. If (Yn) is a martingale with finite second moments, then
(Y 2
n ) is a submartingale for any ε > 0

P( max
1≤i≤n

|Yi| ≥ ε) = P( max
1≤i≤n

Y 2
i ≥ ε2) ≤ E(Y 2

n )

ε2
.

Corollary 8.50 Kolmogorov’s inequality. Let (Xn) are independent r.v. with zero means and finite
variances (σ2

n), then for any ε > 0

P( max
1≤i≤n

|X1 + . . .+Xi| ≥ ε) ≤
σ2

1 + . . .+ σ2
n

ε2
.

Theorem 8.51 Convergence in Lr. Let r > 1. Suppose (Yn,Fn) is a martingale such that E(|Yn|r) ≤M
for some constant M and all n. Then Yn → Y in Lr, where Y is the a.s. limit of Yn as n→∞.

Proof. Combining Corollary 8.31 and Lyapunov’s inequality we get the a.s. convergence Yn → Y . We

prove Yn
Lr→ Y using Theorem 3.26. For this we need to verify that (Y rn ) is uniformly integrable. Observe

first that
Ȳn := max

0≤i≤n
|Yi|

have finite r-th moment
E
(
Ȳ rn
)
≤ E

(
(|Y0|+ . . .+ |Yn|)r

)
<∞.

By Exercise 3.20,

E
(
Ȳ rn
)

=

∫ ∞
0

rxr−1P
(
Ȳn > x

)
dx.

Applying (15) to A(x) = {Ȳn ≥ x}, we obtain

E
(
Ȳ rn
)
≤
∫ ∞

0

rxr−2E
(
|Yn|1A(x)

)
dx = E

(
|Yn|

∫ ∞
0

rxr−21A(x)dx
)

=
r

r − 1
E
(
|Yn|Ȳ r−1

n

)
.

By Hölder’s inequality,

E
(
|Yn|Ȳ r−1

n

)
≤
(
E(|Yn|r)

)1/r(
E(Ȳ rn )

)(r−1)/r

and we conclude

E
(

max
0≤i≤n

|Yi|r
)

= E
(
Ȳ rn
)
≤
( r

r − 1

)r
E(|Yn|r) ≤

( r

r − 1

)r
M.

Thus by monotone convergence E
(

supn |Yn|r
)
< ∞ implying that (Y rn ) is uniformly integrable, see

Exercise 3.23.
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8.9 Backward martingales. Strong LLN

Definition 8.52 Let (Gn) be a decreasing sequence of σ-algebras:

G0 ⊃ G1 ⊃ G2 ⊃ . . . ,

and (Yn) be a sequence of adapted r.v. The sequence (Yn,Gn) is called a backward (or reversed) mar-
tingale if, for all n ≥ 0,

E(|Yn|) <∞,
E(Yn|Gn+1) = Yn+1.

Theorem 8.53 Let (Yn,Gn) be a backward martingale. Then Yn converges to a limit Y almost surely
and in mean.

Proof. The sequence Yn = E(Y0|Gn) is uniformly integrable, see the proof in Example 8.34. Therefore,
it suffices to prove a.s. convergence. Applying Lemma 8.29 to the martingale (Yn,Gn), . . . , (Y0,G0) we

obtain E(Un(a, b)) ≤ E((Y0−a)+)
b−a for the number Un(a, b) of [a, b] uppcrossings by (Yn, . . . , Y0). Now let

n→∞ and repeat the proof of Theorem 8.30 to get the required a.s. convergence.

Theorem 8.54 Strong LLN. Let X1, X2, . . . be iid random variables defined on the same probability
space. If E|X1| <∞, then

X1 + . . .+Xn

n
→ EX1

almost surely and in L1. On the other hand, if

X1 + . . .+Xn

n

a.s.→ µ

for some constant µ, then E|X1| <∞.

Proof. Let E|X1| <∞. Set Sn = X1 + . . .+Xn and let Gn = σ(Sn, Sn+1, . . .), then by symmetry,

E(Sn|Gn+1) = E(Sn|Sn+1) =

n∑
i=1

E(Xi|Sn+1) = nE(X1|Sn+1).

On the other hand,

Sn+1 = E(Sn+1|Sn+1) = (n+ 1)E(X1|Sn+1).

We conclude that Sn/n is a backward martingale, and according to the Backward Martingale Convergence
Theorem there exists Y such that Sn/n → Y a.s. and in mean. By Kolmogorov’s zero-one law, Y is
almost surely constant, and hence a.s.

Y = E(Sn/n) = E(X1).

To prove the second part assume that Sn/n
a.s.→ µ for some constant µ. Then Xn/n

a.s.→ 0 by the
theory of convergent real series. Indeed, from (a1 + . . .+ an)/n→ µ it follows that

an
n

=
a1 + . . .+ an−1

n(n− 1)
+
a1 + . . .+ an

n
− a1 + . . .+ an−1

n− 1
→ 0

Now, in view of Xn/n
a.s.→ 0, the second Borell-Cantelli lemma gives∑

n

P(|Xn| ≥ n) <∞,

since otherwise P(n−1|Xn| ≥ 1 i.o.) = 1. Thus

E|X1| =
∫ ∞

0

P(|X1| > x)dx ≤
∑
n

P(|X1| ≥ n) =
∑
n

P(|Xn| ≥ n) <∞.
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9 Diffusion processes

9.1 The Wiener process

Definition 9.1 The standard Wiener process W (t) = Wt is a continuous time analogue of a simple
symmetric random walk. It is characterized by three properties:

• W0 = 0,

• Wt has independent increments with Wt −Ws ∼ N(0, t− s) for 0 ≤ s < t,

• the path t→Wt is continuous with probability 1.

Next we sketch a construction of Wt for t ∈ [0, 1]. First observe that the following theorem is not enough.

Theorem 9.2 Kolmogorov’s extension theorem. Assume that for any vector (t1, . . . , tn) with ti ∈ [0, 1]
there given a joint distribution function F(t1,...,tn)(x1, . . . , xn). Suppose that these distribution functions
satisfy two consistency conditions

(i) F(t1,...,tn,tn+1)(x1, . . . , xn,∞) = F(t1,...,tn)(x1, . . . , xn),
(ii) if π is a permutation of (1, . . . , n), then F(tπ(1),...,tπ(n))(xπ(1), . . . , xπ(n)) = F(t1,...,tn)(x1, . . . , xn).

Put Ω = {functions ω : [0, 1] → R} and F is the σ-algebra generated by the finite-dimensional sets
{ω : ω(ti) ∈ Bi, i = 1, . . . , n}, where Bi are Borel subsets of R. Then there is a unique probability
measure P on (Ω,F) such that a stochastic process defined by X(t, ω) = ω(t) has the finite-dimensional
distributions F(t1,...,tn)(x1, . . . , xn).

The problem is that the set {ω : t→ ω(t) is continuous} does not belong to F , since all events in F may
depend on only countably many coordinates.

The above problem can be fixed if we focus of the subset Q be the set of dyadic rationals {t = m2−n

for some 0 ≤ m ≤ 2n, n ≥ 1}.
Step 1. Let (Xm,n) be a collection of Gaussian r.v. such that if we put X(t) = Xm,n for t = m2−n,

then

• X(0) = 0,

• X(t) has independent increments with X(t)−X(s) ∼ N(0, t− s) for 0 ≤ s < t, s, t ∈ Q.

According to Theorem 9.2 the process X(t), t ∈ Q can be defined on (Ωq,Fq,Pq) where index q means
the restriction t ∈ Q.

Step 2. For m2−n ≤ t < (m+ 1)2−n define

Xn(t) = Xm,n + 2n(t−m2−n)(Xm+1,n −Xm,n).

For each n the process Xn(t) has continuous paths for t ∈ [0, 1]. Think of Xn+1(t) as being obtained
from Xn(t) by repositioning the centers of the line segments by iid normal amounts. If t ∈ Q, then
Xn(t) = X(t) for all large n. Thus Xn(t)→ X(t) for all t ∈ Q.

Step 3. Show that X(t) is a.s. uniformly continuous over t ∈ Q. It follows from Xn(t) → X(t) a.s.
uniformly over t ∈ Q. To prove the latter we use the Weierstrass M-test by observing that Xn(t) =
Z1(t) + . . .+ Zn(t), where Zi(t) = Xi(t)−Xi−1(t), and showing that

∞∑
i=1

sup
t∈Q
|Zi(t)| <∞. (16)

Using independence and normality of the increments one can show for xi = c
√
i2−i log 2 that

P(sup
t∈Q
|Zi(t)| > xi) ≤ 2i−1 2−ic

2

c
√
i log 2

.

The first Borel-Cantelli lemma implies that for c > 1 the events supt∈Q |Zi(t)| > xi occur finitely many
times and (16) follows.

Step 4. Define W (t) for any t ∈ [0, 1] by moving our probability measure to (C, C), where C =
continuous ω : [0, 1)→ R and C is the σ-algebra generated by the coordinate maps t → ω(t). To do
this, we observe that the map ψ that takes a uniformly continuous point in Ωq to its unique continuous
extension in C is measurable, and we set P(A) = Pq(ψ−1(A)).
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9.2 Properties of the Wiener process

We will prove some of the following properties of the standard Wiener process.

(i) The vector (W (t1), . . . ,W (tn)) has the multivariate normal distribution with zero means and co-
variances Cov(W (ti),W (tj)) = min(ti, tj).

(ii) For any positive s the shifted process W̃t = Wt+s−Ws is a standard Wiener process. This implies
the (weak) Markov property.

(iii) For any non-negative stopping time T the shifted process Wt+T − WT is a standard Wiener
process. This implies the strong Markov property.

(iv) Let T (x) = inf{t : W (t) = x} be the first passage time. It is a stopping time for the Wiener
process.

(v) The r.v. M(t) = max{W (s) : 0 ≤ s ≤ t} has the same distribution as |W (t)| and has density

function f(x) = 2√
2πt

e−
x2

2t for x ≥ 0.

(vi) The r.v. T (x)
d
= (x/Z)2, where Z ∼ N(0,1), has density function f(t) = |x|√

2πt3
e−

x2

2t for t ≥ 0.

(vii) If Ft is the filtration generated by (W (u), u ≤ t), then (eθW (t)−θ2t/2,Ft) is a martingale.

(viii) Consider the Wiener process on t ∈ [0,∞) with a negative drift W (t) −mt with m > 0. Its
maximum is exponentially distributed with parameter 2m.

Proof of (i) If 0 ≤ s < t, then

E(W (s)W (t)) = E[W (s)2 +W (s)(W (t)−W (s))] = E[W (s)2] = s.

Proof of (v) For x > 0 we have {T (x) ≤ t} = {M(t) ≥ x}. This and

P(M(t) ≥ x) = P(M(t) ≥ x,W (t)− x ≥ 0) + P(M(t) ≥ x,W (t)− x < 0)

imply

P(M(t) ≥ x,W (t) < x) = P(M(t) ≥ x,W (t)−W (T (x)) < 0, T (x) ≤ t)
= P(M(t) ≥ x,W (t)−W (T (x)) ≥ 0, T (x) ≤ t) = P(M(t) ≥ x,W (t) ≥ x).

Thus

P(M(t) ≥ x) = 2P(M(t) ≥ x,W (t) ≥ x) = 2P(W (t) ≥ x)

= P(W (t) ≥ x) + P(W (t) ≤ −x) = P(|W (t)| ≥ x).

Proof of (vi) We have

P(T (x) ≤ t) = P(M(t) ≥ x) = P(|W (t)| ≥ x) =
2√
2πt

∫ ∞
x

e−
y2

2t dy =

∫ t

0

|x|√
2πu3

e−
x2

2u du.

Proof of (vii) Bringing eθW (s) outside

E(eθW (t)|Fs) = eθW (s)E(eθ(W (t)−W (s))|Fs) = eθW (s)eθ
2(t−s)/2.

Proof of (viii) It suffices to prove that for any x > 0

P(W (t)−mt = x for some t) = e−2mx.

Let T (a, b) be the first exit time from the interval (a, b). Applying a continuous version of the optional

stopping theorem to the martingale U(t) = e2mW (t)−2m2t we obtain E(U(T (a, x))) = E(U(0)) = 1. Thus

1 = e2mxP(U(T (a, x)) = x) + e2maP(U(T (a, x)) = a).

Letting a→ −∞ we obtain the desired relation.
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9.3 Examples of diffusion processes

Definition 9.3 An Ito diffusion process X(t) = Xt is a Markov process with continuous sample paths
characterized by the standard Wiener process Wt in terms of a stochastic differential equation

dXt = µ(t,Xt)dt+ σ(t,Xt)dWt. (17)

Here µ(t, x) and σ2(t, x) are the instantaneous mean and variance for the increments of the diffusion
process.

The second term of the stochastic differential equation is defined in terms of the Ito integral leading to
the integrated form of the equation

Xt −X0 =

∫ t

0

µ(s,Xs)ds+

∫ t

0

σ(s,Xs)dWs.

The Ito integral Jt =
∫ t

0
YsdWs is defined for a certain class of adapted processes Yt. The process Jt is

a martingale (cf Theorem 8.21).

Example 9.4 The Wiener process with a drift Wt +mt corresponds to µ(t, x) = m and σ(t, x) = σ2.

Example 9.5 The Ornstein-Uhlenbeck process: µ(t, x) = −α(x− θ) and σ(t, x) = σ2. Given the initial
value X0 the process is described by the stochastic differential equation

dXt = −α(Xt − θ)dt+ σdWt, (18)

which is a continuous version of an AR(1) process Xn = aXn−1 + Zn. This process can be interpreted
as the evolution of a phenotypic trait value (like logarithm of the body size) along a lineage of species in
terms of the adaptation rate α > 0, the optimal trait value θ, and the noise size σ > 0.

Let f(t, y|s, x) be the density of the distribution of Xt given the position at an earlier time Xs = x.
Then

forward equation
∂f

∂t
= − ∂

∂y
[µ(t, y)f ] +

1

2

∂2

∂y2
[σ2(t, y)f ],

backward equation
∂f

∂s
= −µ(s, x)

∂f

∂x
− 1

2
σ2(s, x)

∂2f

∂x2
.

Example 9.6 The Wiener process Wt corresponds to µ(t, x) = 0 and σ(t, x) = 1. The forward and

backward equations for the density f(t, y|s, x) = 1√
2π(t−s)

e−
(y−x)2
2(t−s) are

∂f

∂t
=

1

2

∂2

∂y2
,

∂f

∂s
= −1

2

∂2f

∂x2
.

Example 9.7 For dXt = σ(t)dWt the equations

∂f

∂t
=
σ2(t)

2

∂2

∂y2
,

∂f

∂s
= −σ

2(t)

2

∂2f

∂x2

imply that Xt has a normal distribution with zero mean and variance
∫ t

0
σ2(u)du.

9.4 The Ito formula

Main rule: (dWt)
2 should be replaced by dt.

Theorem 9.8 Let f(t, x) be twice continuously differentiable on [0,∞) × R and Xt is given by (17).
Then Yt = f(t, Bt) is also an Ito process given by

dYt = {ft(t,Xt) + fx(t,Xt)µ(t,Xt) +
1

2
fxx(t,Xt)σ

2(t,Xt)}dt+ fx(t,Xt)σ(t,Xt)dWt,

where

fx(t,Xt) =
∂

∂x
f(t, x)|x=Xt , ft(t,Xt) =

∂

∂t
f(t, x)|x=Xt , fxx(t,Xt) =

∂2

∂x2
f(t, x)|x=Xt .
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Example 9.9 The distribution of the Ornstein-Uhlenbeck process Xt is normal with

E(Xt) = θ + e−αt(X0 − θ), Var(Xt) = σ2(1− e−2αt)/2α (19)

implying that Xt looses the effect of the ancestral state X0 at an exponential rate. In the long run X0

is forgotten, and the OU–process acquires a stationary normal distribution with mean θ and variance
σ2/2α.

To verify these formula for the mean and variance we apply the following simple version of Ito’s
lemma: if dXt = µtdt+ σtdWt, then for any nice function f(t, x)

df(t,Xt) =
∂f

∂t
dt+

∂f

∂x
(µtdt+ σtdWt) +

1

2

∂2f

∂x2
σ2
t dt.

Let f(t, x) = xeαt. Then using (18) we obtain

d(Xte
αt) = αXte

αtdt+ eαt
(
α(θ −Xt)dt+ σdWt

)
= θeαtαdt+ σeαtdWt.

Integration gives

Xte
αt −X0 = θ(eαt − 1) + σ

∫ t

0

eαudWu,

implying (19), since in view of Example 9.7 (see also (8) with Ft = t) we have

E
(∫ t

0

eαudWu

)2

=

∫ t

0

e2αudu =
e2αt − 1

2α
.

Observe that the correlation coefficient between X(s) and X(s+ t) equals

ρ(s, s+ t) = e−αt
√

1− e−2αs

1− e−2α(s+t)
→ e−αt, s→∞.

Example 9.10 Geometric Brownian motion Yt = eµt+σWt . Due to the Ito formula

dYt = (µ+
1

2
σ2)Ytdt+ σYtdWt,

so that µ(t, x) = (µ+ 1
2σ

2)x and σ2(t, x) = σ2x2. The process Yt is a martingale iff µ = − 1
2σ

2.

Example 9.11 Take f(t, x) = x2. Then the Ito formula gives

dX2
t = 2XtdXt + σ(t,Xt)

2dt.

In particular, dW 2
t = 2WtdWt + dt so that

∫ t
0
WtdWt = (W 2

t − t)/2.

Example 9.12 Product rule. If

dXt = µ1(t,Xt)dt+ σ1(t,Xt)dWt, dYt = µ2(t, Yt)dt+ σ2(t, Yt)dWt,

then
d(XtYt) = XtdYt + YtdXt + σ1(t,Xt)σ2(t, Yt)dt.

This follows from 2XY = (X + Y )2 −X2 − Y 2 and

dX2
t = 2XtdXt + σ1(t,Xt)

2dt, dY 2
t = 2YtdYt + σ2(t,Xt)

2dt,

d(Xt + Yt)
2 = 2(Xt + Yt)(dXt + dYt) + (σ1(t,Xt) + σ2(t,Xt))

2dt.
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9.5 The Black-Scholes formula

Lemma 9.13 Let (Wt, 0 ≤ t ≤ T ) be the standard Wiener process on (Ω,F ,P) and let ν ∈ R. Define

another measure by Q(A) = E(eνWT−ν2T/21{A}). Then Q is a probability measure and W̃t = Wt − νt,
regarded as a process on the probability space (Ω,F ,Q), is the standard Wiener process.

Proof. By definition, Q(Ω) = e−ν
2T/2E(eνWT ) = 1. For the finite-dimensional distributions let 0 = t0 <

t1 < . . . < tn = T and x0, x1, . . . , xn ∈ R. Writing {W (ti) ∈ dxi} for the event {xi < W (ti) ≤ xi + dxi}
we have that

Q(W (t1) ∈ dx1, . . . ,W (tn) ∈ dxn) = E
(
eνWT−ν2T/21{W (t1)∈dx1,...,W (tn)∈dxn}

)
= eνxn−ν

2T/2
n∏
i=1

1√
2π(ti − ti−1)

exp
(
− (xi − xi−1)2

2(ti − ti−1)

)
dxi

=

n∏
i=1

1√
2π(ti − ti−1)

exp
(
− (xi − xi−1 − ν(ti − ti−1))2

2(ti − ti−1)

)
dxi.

Black-Scholes model. Writing Bt for the cost of one unit of a risk-free bond (so that B0 = 1) at time
t we have that

dBt = rBtdt or Bt = ert.

The price (per unit) St of a stock at time t satisfies the stochastic differential equation

dSt = St(µdt+ σdWt) with solution St = exp{(µ− σ2/2)t+ σWt}.

This is a geometric Brownian motion, and parameter σ is called volatility of the price process.
European call option. The buyer of the option may purchase one unit of stock at the exercise date T

(fixed time) and the strike price K:

• if ST > K, an immediate profit will be ST −K,

• if ST ≤ K, the call option will not be exercised.

The value of the option at time t < T is Vt = e−r(T−t)(ST −K)+, where ST is not known.

Theorem 9.14 Black-Scholes formula. Let t < T . The value of the European call option at time t is

Vt = StΦ(d1(t, St))−Ke−r(T−t)Φ(d2(t, St)),

where Φ(x) is the standard normal distribution function and

d1(t, x) =
log(x/K) + (r + σ2/2)(T − t)

σ
√
T − t

, d2(t, x) =
log(x/K) + (r − σ2/2)(T − t)

σ
√
T − t

.

Definition 9.15 Let Ft be the σ-algebra generated by (Su, 0 ≤ u ≤ t). A portfolio is a pair (αt, βt)
of Ft-adapted processes. The value of the portfolio is Vt(α, β) = αtSt + βtBt. The portfolio is called
self-financing if

dVt(α, β) = αtdSt + βtdBt.

We say that a self-financing portfolio (αt, βt) replicates the given European call if VT (α, β) = (ST −K)+

almost surely.

Proof. We are going to apply Lemma 9.13 with ν = r−µ
σ . Note also that under Q the process e−rtSt =

exp{(νσ − σ2/2)t+ σWt} = eσW̃t−σ2t/2 is a martingale.
Take without a proof that there exists a self-financing portfolio (αt, βt) replicating the European

call option in question. If the market contains no arbitrage opportunities, we have Vt = Vt(α, β) and
therefore

d(e−rtVt) = e−rtdVt − re−rtVtdt = e−rtαt(dSt − rStdt) + e−rtβt(dBt − rBtdt)
= αte

−rtSt((µ− r)dt+ σdWt) = αte
−rtStσdW̃t.
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This defines a martingale under Q:

e−rtVt = V0 +

∫ t

0

αue
−ruSuσdW̃u.

Thus

Vt = ertEQ(e−rTVT |Ft) = e−r(T−t)EQ((ST −K)+|Ft) = e−r(T−t)EQ((aeZ −K)+|Ft),

where a = St with

Z = exp{(µ− σ2/2)(T − t) + σ(WT −Wt)} = exp{(r − σ2/2)(T − t) + σ(W̃T − W̃t)}.

Since (Z|Ft)Q ∼ N(γ, τ2) with γ = (r− σ2/2)(T − t) and τ2 = (T − t)σ2. It remains to observe that for
any constant a and Z ∼ N(γ, τ2)

E((aeZ −K)+) = aeγ+τ2/2Φ
( log(a/K) + γ

τ
+ τ
)
−KΦ

( log(a/K) + γ

τ

)
.
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