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Tentamentsskrivning i MSF200/MVE330, 7.5 hp.

Tid: fredagen den 31 maj 2013 kl 8.30-12.30
Examinator och jour: Serik Sagitov, tel. 772-5351, mob. 0736 907 613, rum H3026 i MV-huset.
Hjälpmedel: miniräknare, egen formelsamling p̊a 4 A4 sidor (2 blad).
———————————————————————
CTH: för “3” fordras 12 poäng, för “4” - 18 poäng, för “5” - 24 poäng.
GU: för “G” fordras 12 poäng, för “VG” - 20 poäng.
Inklusive eventuella bonus poäng.

1. (6 points) Define a process Yn recursively by

Yn = Zn − 0.3 · Yn−1, n ≥ 1,

where Zn are independent r.v. with zero means and unit variance.

(a) Under which conditions on Y0 this process is weakly stationary? Compute its autoco-
variance function.

(b) Find the best linear predictor Ŷr+3 of Yr+3 given (Y0, . . . , Yr).

(c) What is the mean squared error of this prediction?

(d) Give an example when this process is strongly stationary.

2. (4 points) Consider a Poisson process with parameter λ.

(a) Describe the Poisson process as a renewal process. Compute its renewal function.

(b) Let E(t) be the excess life at time t. Write down a renewal equation for P(E(t) > x).
Solve this equation to find the distribution of E(t).

(c) What is the stationary distribution of the excess life?

3. (4 points) Let X1, X2, . . . be iid r.v. with finite mean µ, and let M be a stopping time with
respect to the sequence Xn such that E(M) <∞. Then

E(X1 + . . .+XM ) = µE(M).

(a) Give a detailed proof of the above formulated Wald’s equation lemma.

(b) Illustrate by an example that the statement may fail if M is not a stopping time.

4. (6 points) Let {Xn}∞n=1 be a sequence of stochastic variables defined by

Xn = I1 sin(φn) + I2 cos(φn),

where I1, I2, φ are independent random variables such that P (I1 = 1) = P (I1 = −1) =
P (I2 = 1) = P (I2 = −1) = 1

2 and φ is uniformly distributed over [−π, π].

(a) On the same graph draw three examples of trajectories of the process {Xn}. What is
random in these trajectories?

(b) Verify that {Xn} is a stationary process.

(c) Find the spectral density function of {Xn}.
(d) Find the spectral representation for the process {Xn} in the following form

Xn =

∫ π

0

cos(nλ)dU(λ) +

∫ π

0

sin(nλ)dV (λ).
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5. (4 points) Let random variables {Xn} be iid random variables with P(Xn = 2) = P(Xn =
0) = 1/2.

(a) Show that the product Sn = X1 · · ·Xn is a martingale.

(b) Show that Sn → 0 in probability but not in mean.

(c) Does Sn converge a.s.?

6. (3 points) For a filtration (Fn) let Bn ∈ Fn. Put Xn = 1B1 + . . .+ 1Bn .

(a) Show that (Xn) is a submartingale.

(b) What is the Doob decomposition for Xn?

7. (3 points) Theorem. Let (Yn,Fn) be a submartingale and let T be a stopping time. Then
(YT∧n,Fn) is a submartingale. If moreover, E|Yn| < ∞, then (Yn − YT∧n,Fn) is also a
submartingale.

(a) Referring to the above theorem carefully deduce the following statement. If (Yn,Fn)
is a martingale and T is a stopping time, then (YT∧n,Fn) and (Yn − YT∧n,Fn) are
martingales.

(b) Illustrate this theorem with a simple example.

Partial answers and solutions are also welcome. Good luck!
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Solutions

1. This is an example of AR(1) model Yn = αYn−1 + Zn. Observe that for n ≥ 0, m ≥ 0,

Yn+m = Zn+m + αZn+m−1 + . . .+ αn−1Zm+1 + αnYm.

1a. Let Y0 has mean µ and variance σ2. In the stationary case Yn should also have mean µ and
variance σ2. This leads to equations

µ = αnµ, σ2 = 1 + α2 + . . .+ α2n−2 + α2nσ2,

which imply µ = 0 and σ2 = 1
1−α2 ≈ 1.0989. Hence, using these values we compute for n ≥ 0,

c(n) = Cov(Yn+m, Ym) = E(Yn+mYm) = αnE(Y 2
m) =

αn

1− α2
= (−1)n

(0.3)n

0.91
.

1b. The best linear predictor Ŷr+k =
∑r
j=0 ajYr−j is found from the equations

r∑
j=0

ajc(|j −m|) = c(k +m), 0 ≤ m ≤ r.

or
r∑
j=0

ajα
|j−m| = αk+m, 0 ≤ m ≤ r.

Intuition suggests seeking a solution of the form Ŷr+k = a0Yr. Indeed, plugging a1 = . . . = ar = 0
we easily obtain a0 = αk. Thus Ŷr+k = (−0.3)kYr, and Ŷr+3 = −0.027 · Yr.

1c. The mean square error is

E
(
(Yr+k − Ŷr+k)2

)
= E

(
(Yr+k − αkYr)2

)
= E

(
(Zr+k + αZr+k−1 + . . .+ αk−1Zr+1)2

)
=

1− α2k

1− α2
=

1− (0.09)k

0.91
= 1.0981 for k = 3.

1d. If Y0 has a normal distribution with mean zero and variance σ2 = 1
1−α2 ≈ 1.0989, then the

process becomes Gaussian. For the Gaussian processes weak and strong stationarity are equivalent.

2a. Let T0 = 0, Tn = X1 + . . . + Xn, where Xi are iid exponential inter-arrival times with
parameter λ. The Poisson process N(t) is the renewal process giving the number of renewal events
during the time interval (0, t], so that

{N(t) ≥ n} = {Tn ≤ t}, TN(t) ≤ t < TN(t)+1.

Its renewal function m(t) := E(N(t)) satisfies the renewal equation

m(t) = F (t) +

∫ t

0

m(t− u)dF (u), F (t) = 1− e−λt.

In terms of the Laplace-Stieltjes transforms m̂(θ) :=
∫∞
0
e−θtdm(t) we get

m̂(θ) = F̂ (θ) + m̂(θ)F̂ (θ).

Since F̂ (θ) = λ
θ+λ , we obtain m̂(θ) = λ

θ , implying m(t) = λt.
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2b. The excess life time E(t) := TN(t)+1 − t. The distribution of E(t) is given by the following
recursion for b(t) := P(E(t) > y)

b(t) = E
(
E(1{E(t)>y}|X1)

)
= E

(
1{E(t−X1)>y}1{X1≤t} + 1{X1>t+y}

)
= 1− F (t+ y) +

∫ t

0

b(t− x)dF (x).

This renewal equation gives

P(E(t) > y) = 1− F (t+ y) +

∫ t

0

(1− F (t+ y − u))dm(u)

= e−λ(t+y) + λ

∫ t

0

e−λ(t+y−u)du = e−λ(t+y) + λ

∫ y+t

y

e−λxdx = e−λy.

Thus E(t) is geometrically distributed with parameter λ.

2c. From the previous calculation we see that the stationary distribution of E(t) is geometric
with parameter λ. This is in agreement with the general result, with µ standing for the mean
inter-arrival time,

lim
t→∞

P(E(t) ≤ y) = µ−1
∫ y

0

(1− F (x))dx = λ

∫ y

0

e−λxdx = 1− e−λy.

3a. Let X1, X2, . . . be iid r.v. with finite mean µ, and let M be a stopping time with respect
to the sequence Xn such that E(M) <∞. Then

E(X1 + . . .+XM ) = µE(M).

Proof. By dominated convergence

E(X1 + . . .+XM ) = E
(

lim
n→∞

n∑
i=1

Xi1{M≥i}

)
= lim
n→∞

E
( n∑
i=1

Xi1{M≥i}

)
=

∞∑
i=1

E(Xi)P(M ≥ i) = µE(M).

Here we used independence between {M ≥ i} and Xi, which follows from the fact that {M ≥ i}
is the complimentary event to {M ≤ i− 1} ∈ σ{X1, . . . , Xi−1}.

3c. Turn to the Poisson process and observe that M = N(t) is not a stopping time and in this
case E(TN(t)) 6= µm(t). Indeed, for the Poisson process µm(t) = t while TN(t) = t − C(t), where
C(t) > 0 is the current lifetime.
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4a. What looks on the figure as a cloud of stationary allocated points is produced by three
sinusoids:

pluses: sin(πn/5) + cos(πn/5),
circles: sin(πn/5)− cos(πn/5),
stars: sin(πn/3) + cos(πn/3).

The randomness is created by the random choice of the frequency and phase.

4b. The process
Xn = I1 sin(φn) + I2 cos(φn)

has zero means by independence and E(I1) = E(I2) = 0. Its autocovariancies are

Cov(Xn, Xm) = E(XnXm) = E(sin(φn) sin(φm) + cos(φn) cos(φm))

= E(cos(φ(n−m)) =

∫ π

−π
cos(φ(n−m))dφ = 1{n=m}.

Thus (Xn) is a weakly stationary sequence with mean zero, variance 1, and zero autocorrelation
ρ(n) = 0 for n 6= 0.

4c. The spectral density g must satisfy ρ(n) =
∫ π
0

cos(λn)g(λ)dλ. Then it is the uniform density
g(λ) = π−11{λ∈[0,π]}.

4d. In this case the spectral representation for the process {Xn} is straightforward

Xn = I1 sin(φn) + I2 cos(φn) =

∫ π

0

cos(nλ)dU(λ) +

∫ π

0

sin(nλ)dV (λ),

where
U(λ) = I11{λ≥φ}, V (λ) = I21{λ≥φ}.

Let us check the key properties of the random process (U(λ), V (λ)):
(i) U(λ) and V (λ) have zero means,
(ii) U(λ1) and V (λ2) are uncorrelated,
(iii) Var(U(λ)) = Var(V (λ)) = E(1{λ≥φ}) = λ = G(λ),
(iv) increments of U(λ) are uncorrelated, and increments of V (λ) are uncorrelated.

The last property is obtained as follows: for λ1 < λ2 < λ3,

E(U(λ3)− U(λ2))(U(λ2)− U(λ1)) = E(1{λ3≥φ} − 1{λ2≥φ})(1{λ2≥φ} − 1{λ1≥φ})

= E(1{λ2<φ≤λ3}1{λ1<φ≤λ2}) = 0.

5a. We have Sn = 2n with probability 2−n and Sn = 0 with probability 1 − 2−n, so that
E(Sn) = 1. Clearly, E(Sn+1|Sn = 2n) = 2n and E(Sn+1|Sn = 0) = 0, so that E(Sn+1|Sn) = Sn.

5b. On one hand, P(|Sn| > ε) = 2−n → 0, so that Sn
P→ 0. On the other hand, E(Sn) = 1 9 0,

so that Sn does not converge in mean.

5c. Put An = {Sn = 0}. We have An ⊂ An+1 and A = ∪nAn = {ω : Sn(ω) → 0}. Since
P(A) = limP(An) = 1, we conclude that Sn → 0 almost surely.

6a. The nondecreasing sequence of nonnegative random variables Xn(ω) has finite means
an := E(Xn) = P(B1) + . . .+ P(Bn). Therefore it is a submartingale.

6b. Doob’s decomposition: Xn = Mn + Sn, where (Mn,Fn) is a martingale and (Sn,Fn) is an
increasing predictable process (called the compensator of the submartingale). Here M and S are
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computed as: M0 = 0, S0 = 0, and for n ≥ 0

Mn+1 −Mn = Xn+1 − E(Xn+1|Fn) = 1{Bn+1} − P(Bn+1),

Sn+1 − Sn = E(Xn+1|Fn)−Xn = P(Bn+1).

Thus Mn = Xn − an and Sn = an.

7a. Theorem 1. Let (Yn,Fn) be a submartingale and let T be a stopping time. Then (YT∧n,Fn)
is a submartingale. If moreover, E|Yn| <∞, then (Yn − YT∧n,Fn) is also a submartingale.

Changing the sign we easily get the next sister theorem.
Theorem 2. Let (Yn,Fn) be a supermartingale and let T be a stopping time. Then (YT∧n,Fn)

is a supermartingale. If moreover, E|Yn| <∞, then (Yn − YT∧n,Fn) is also a supermartingale.
Since a martingale is both a submartingale and a supermartingale, these two theorems imply

the following desired result.
Theorem 3. Let (Yn,Fn) be a martingale and let T be a stopping time. Then (YT∧n,Fn) is a

martingale. If moreover, E|Yn| <∞, then (Yn − YT∧n,Fn) is also a martingale.

7b. Consider a symmetric simple random walk Yn = Sn and take T = the first hitting time of
the level a. On the figure we show the trajectories of the three martingales in question.
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