
Tentamentsskrivning i MSF200/MVE330, 7.5 hp.

Tid: fredagen den 1 juni 2018 kl 8.30-12.30
Examinator och jour: Serik Sagitov, tel. 031-7725351, rum H3026 i MV-huset.
Hjälpmedel: miniräknare, egen kurs sammanfattning p̊a fyra A4 sidor (dvs 2 blad).
———————————————————————
Chalmers: för “3” fordras 12 poäng, för “4” - 18 poäng, för “5” - 24 poäng.
GU: för “G” fordras 12 poäng, för “VG” - 20 poäng. Inklusive eventuella bonus poäng.

Reminder. Attach your digest report to the exam solutions. If the report is
generated by Latex and appropriately summarises the course, you may get
bonus point(s) for it.

1. (5 points) Define a sequence of random variables X2, X3, . . . on the probability space
{[0, 1],B[0,1],P}, where P(dω) = dω is the Lebesgue measure, by

Xn(ω) = n · 1{n−1<ω<2n−1} − (n+ 1) · 1{(n+1)−1<ω<2(n+1)−1}.

(a) Show that E(Xn) = 0. Check if (Xn) is a weakly stationary sequence.

(b) Sketch a typical trajectory of (Xn) and explain how you do it. Does X0 converge
almost surely as n→∞?

(c) Does Xn converge in mean as n→∞?

2. (5 points) Consider a Poisson process {N(t), t ≥ 0} with parameter λ = 1. Distin-
guishing between short and long inter-arrival times (Xn) put

N(t) = Ns(t) +Nl(t),

where Ns(t) is the number of Xn observed in the time interval [0, t] which were smaller
than ln 2. Take the difference

D(t) = Ns(t)−Nl(t).

(a) Sketch a typical trajectory of D(t). What happens with it in the long run?

(b) Referring to one of the results presented in this course, describe the long term
behaviour of of D(t)/t.

3. (5 points) Let (Xn, n ≥ 1) be a sequence of independent random values with

P(Xn = 0) = P(Xn = 1
2
) = 1

2
,

and define (Un) as an autoregression AR(1) process

Un+1 = 1
2
Un +Xn+1, n ≥ 1,

where U0 has a uniform distribution over the unit interval [0, 1] which is independnt
of the sequence of innovations (Xn).
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(a) Sketch a typical trajectory of (Un). From your drawings, would you expect that
the autocorrelations are positive, negative, or zero?

(b) Compute the distribution of Un.

(c) Calculate the autocorrelation function of (Un).

(d) Is (Un) a stationary random process? If not, why? If yes, in what sense?

4. (5 points) Consider a G/G/1 queue, with both the inter-arrival times of customers
and service times having gamma distributions. The former has mean and variance
(α
λ
, α
λ2

), and the latter has mean and variance (α
µ
, α
µ2

).

(a) Find the traffic intensity parameter. Which set of parameters (α, λ, µ) charac-
terises the light traffic regime of the model? Explain.

(b) How would you generate the trajectories of the queue length for this model
for a given set of parameters (α, λ, µ) = (2, 3, 3)? Indicate major steps of your
algorithm.

(c) How the trajectories generated by the algorithm (b) would look like in the long
run? Explain referring to the properties of an associated random walk.

(d) How the light traffic regime is identified in the general setting of the Little Law?

5. (5 points) Consider a random walk Sn = 1 + X1 + . . . + Xn with independent jump
sizes having a common distribution

P(Xi = 1) = P(Xi = −1) = p, P(Xi = 0) = 1− 2p,

for some p ∈ (0, 1
2
]. Put Yn = 2Sn .

(a) Find for which values of p the process (Yn, n ≥ 0) is a submartingale, is a
martingale, is a supermartingale. Specify the underlying filtration.

(b) In the case (Yn, n ≥ 0) is a submartingale, compute its compensator.

6. (5 points) Let T be a stopping time with respect to a filtration (Fn, n ≥ 0). For any
n ≥ 0, let Yn be Fn-measurable. Put

Zn = Yn +
n∑
i=1

(Yi − Yn)1{T=i}, n ≥ 0.

(a) Show that
Zn = YT∧n.

Draw several plausible trajectories of (Yn) and then on top of them, the corre-
sponding trajectories of (Zn).

(b) What interpretation has the process (Zn) in the gambling setting, when (Yn) is
assumed to be a supermartingale? Justify the requirement of T being a stopping
time.
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(c) Prove that
E(Zn+1|Fn) = E(Yn+1|Fn)1{T≥n+1} + YT1{T≤n}.

(d) Derive from (b) that given (Yn) is a supermartingale, (Zn) is also a supermartin-
gale.

Partial answers and solutions are also welcome. Good luck!
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Solutions summaries

1a. We have EXn = 0, and therefore,

Cov(Xn, Xn+k) = E(XnXn+k) = n(n+ k)P{( 1
n
, 2
n
) ∩ ( 1

n+k
, 2
n+k

)}
− (n+ 1)(n+ k)P{( 1

n+1
, 2
n+1

) ∩ ( 1
n+k

, 2
n+k

)}
− n(n+ k + 1)P{( 1

n
, 2
n
) ∩ ( 1

n+k+1
, 2
n+k+1

)}
+ (n+ 1)(n+ k + 1)P{( 1

n+1
, 2
n+1

) ∩ ( 1
n+k+1

, 2
n+k+1

)}.

This yields

VarXn = n2( 2
n
− 1

n
)− 2n(n+ 1)( 2

n+1
− 1

n
) + (n+ 1)2( 2

n+1
− 1

n+1
)

= 3,

and for k ≥ 1, n ≥ 2,

Cov(Xn, Xn+k) = n(n+ k)( 2
n+k
− 1

n
)+

− (n+ 1)(n+ k)( 2
n+k
− 1

n+1
)+

− n(n+ k + 1)( 2
n+k+1

− 1
n
)+

+ (n+ 1)(n+ k + 1)( 2
n+k+1

− 1
n+1

)+

= (n− k)+ − (n− k + 2)+ − (n− k − 1)+ + (n− k + 1)+

= −1{n=k} − 1{n=k−1}.

Not stationary.

1c. No convergence in mean, since

E|Xn| = n( 2
n
− 1

n
) + (n+ 1)( 2

n+1
− 1

n+1
) = 2.

3b. Using the total probability law check that the distribution of U1 is uniform over
[0,1]. Thus all Un have the same distribution.

3c. We have

E(UnUn+k) = E(Un(1
2
Un+k−1 +Xn+k)) = 1

2
E(UnUn+k−1) + 1

8

= 1
2k

E(U2
n) + 1

8
(1 + 1

2
+ . . .+ 1

2k−1 ) = 1
4

+ 1
12·2k ,

which yields

Cov(Un, Un+k) = E(UnUn+k)− 1
4

= 1
12·2k .

We conclude that the autocorrelation function is stationary

ρ(k) = 1
2k
.
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3d. The process is a stationary Markov process and therefore is stationary in the strong
sense.

4a. From
P(U = 1) = P(U = 0) = 0.25, P(U = −1) = 0.5,

we can write the Wiener-Hopf equation as

F (x) = (1/4)F (x− 1) + (1/4)F (x) + (1/2)F (x+ 1),

or
3F (x) = F (x− 1) + 2F (x+ 1).

The function F is the distribution function for the waiting time of a customer in a station-
ary regime. Thus F (x) = 0 for negative x. It follows from the previous relation with x = 0
that 3F (0) = 2F (1) so that F (1) = (3/2)F (0).

4b. We have to check that F (x) = F (0)(2− 2−x) satisfies the recursion

3F (x) = F (x− 1) + 2F (x+ 1), x ≤ 1.

Indeed

3F (x) = 3F (0)(2−2−x) = F (0)(2−2 ·2−x) + 2F (0)(2− (1/2)2−x) = F (x−1) + 2F (x+ 1).

In terms of the embedded random walk F (x) is the probability that the random walk never
goes above the level x.

5a. From the conditional expectation formula

E(Yn+1|Fn) = E(2Sn+1|Fn) = 2SnE2Xn+1 = 2Sn(2−1p+ 20(1− 2p) + 2p) = Yn(1 + p
2
)

we see that we have a submatingale for any given p ∈ (0, 1
2
].

5b. By Doob’s decomposition,

Yn = Mn + Cn,

where Mn is a martingale, the compensator for (Yn) is computed recursively from

C0 = 0, Cn+1 − Cn = E(Yn+1|Fn)− Yn = Yn
p
2
,

so that

Cn = p
2
(Y0 + . . .+ Yn−1) = p

2
(1 +

n−1∑
k=1

2X1+...+Xk).

6c. Eventhough the mean EWn = 0 for all n, the variance can not be constant since

VarWn = VarW0 + 1 > VarW0.

So the sequence (Wn)n≥0 can not be stationary.
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