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Abstract

This text contains my lecture notes for the graduate course “Weak Convergence”
given in September-October 2013 and then in March-May 2015. The course is
based on the book Convergence of Probability Measures by Patrick Billingsley,
partially covering Chapters 1-3, 5-9, 12-14, 16, as well as appendices. In this text
the formula label (x) operates locally. The visible theorem labels often show the
theorem numbers in the book, labels involving PM refer to the other book by
Billingsley - ” Probability and Measure”.

I am grateful to Timo Hirscher whose numerous valuable suggestions helped me
to improve earlier versions of these notes.
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Introduction

Throughout these lecture notes we use the following notation

1 z 2
d(z2) = \/—2_7/ e 2 du.

Consider a symmetric simple random walk S,, = & + ... + &, with P(§; = 1) = P(§; =
—1) = 1/2. The random sequence S,, has no limit in the usual sense. However, by de
Moivre’s theorem (1733),

P(S, < zv/n) = ®(2) as n — oo for any 2z € R.

This is an example of convergence in distribution j—% = Z to a normally distributed

random variable. Define a sequence of stochastic processes X" = (X]")cjo,1) by linear
interpolation between its values X7 (w) = i#\/%) at the points t = i/n, see Figure 1.
The much more powerful functional CLT claims convergence in distribution towards the

Wiener process X" = W.



Figure 1: Scaled symmetric simple random walk X7 (w) for a fixed w € Q and n = 4, 16, 64.

This course deals with weak convergence of probability measures on Polish spaces
(S,S). For us, the principal examples of Polish spaces (complete separable metric spaces)
are

the space C = C|0, 1] of continuous trajectories = : [0, 1] — R (Section 4),

the space D = DJ0, 1] of cadlag trajectories x : [0,1] — R (Section 6),
the space DJ0, o0) of cadlag trajectories z : [0,00) — R (Section 9).

To prove the functional CLT X" = W, we have to check that Ef(X™) — Ef(W)
for all bounded continuous functions f : C|[0,1] — R, which is not practical to do
straightforwardly. Instead, one starts with the finite-dimensional distributions

(Xi, XD )= Wy, W),

To prove the weak convergence of the finite-dimensional distributions, it is enough to
check the convergence of moment generating functions, thus allowing us to focus on a
special class of continuous functions fy, ., : RF — R, where \; > 0 and

P (1, ) = exp(Awy + .+ Az

For the weak convergence in the infinite-dimensional space C|0, 1], the usual additional
step is to verify tightness of the distributions of the family of processes (X™). Loosely
speaking, tightness means that no probability mass escapes to infinity. By Prokhorov
theorem (Section 3), tightness implies relative compactness, which means that each sub-
sequence of X™ contains a further subsequence converging weakly. Since all possible
limits have the finite-dimensional distributions of W, we conclude that all subsequences
converge to the same limit W, and by this we establish the convergence X" = V.

This approach makes it crucial to find tightness criteria in C|0, 1], DJ[0, 1], and then
in DJ0, 00).

1 The Portmanteau and mapping theorems

1.1 Metric spaces

Consider a metric space S with metric p(x,y). For subsets A C S, denote the closure by
A7, the interior by A°, and the boundary by 0A = A~ — A°. We write

p(x, A) = inf{p(x,y) : y € A}, A ={x:p(x, A) < €}.
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Definition 1.1 Open balls B(z,r) = {y € S : p(z,y) < r} form a base for S: each open
set in S is a union of open balls. Complements to the open sets are called closed sets.
The Borel o-algebra S is formed from the open and closed sets in S using the operations
of countable intersection, countable union, and set difference.

Definition 1.2 A collection A of S-subsets is called a m-system if it is closed under
intersection, that is if A;B € A, then AN B € A. We say that £ is a A-system if:
(i) S € £, (ii) A € £ implies A° € L, (iii) for any sequence of disjoint sets A, € L,
UnA, € L.

Theorem 1.3 Dynkin’s w-\ lemma. If A is a w-system such that A C L, where L is a
A-system, then o(A) C L, where o(A) is the o-algebra generated by A.

Definition 1.4 A metric space S is called separable if it contains a countable dense
subset. It is called complete if every Cauchy (fundamental) sequence has a limit lying in
S. A complete separable metric space is called a Polish space.

Separability is a topological property, while completeness is a property of the metric
and not of the topology.

Definition 1.5 An open cover of A C S is a class of open sets whose union contains A.

Theorem 1.6 These three conditions are equivalent:

(i) S is separable,

(ii) S has a countable base (a class of open sets such that each open set is a union of
sets in the class),

(7ii) Each open cover of each subset of S has a countable subcover.

Theorem 1.7 Suppose that the subset M of S is separable.

(i) There is a countable class A of open sets with the property that, if v € GNM and
G is open, thenx € A C A~ C G for some A € A.

(i) Lindelof property. Each open cover of M has a countable subcover.

Definition 1.8 A set K is called compact if each open cover of K has a finite subcover. A
set A C S is called relatively compact if each sequence in A has a convergent subsequence
the limit of which may not lie in A.

Theorem 1.9 Let A be a subset of a metric space S. The following three conditions are
equivalent:

(i) A~ is compact,

(ii) A is relatively compact,

(iii) A~ is complete and A is totally bounded (that is for any e > 0, A has a finite
e-net the points of which are not required to lie in A).



1.2 Convergence in distribution and weak convergence

Definition 1.10 Let P,, P be probability measures on (S,S). We say P, = P weakly
converges as n — oo if for any bounded continuous function f: S — R

/Lgf(x)Pn(dx)%/Sf(x)p(de o o

Definition 1.11 Let X be a (S,S)-valued random element defined on the probability
space (2, F,IP). We say that a probability measure P on S is the probability distribution
of X if P(A)=P(X € A) forall A€ S.

Definition 1.12 Let X,,, X be (S, S)-valued random elements defined on the probability
spaces (2, Fn, Py), (2, F,P). We say X,, converge in distribution to X as n — oo and
write X,, = X, if for any bounded continuous function f: S — R,

En(f(Xn)) = E(f(X)), n—oc.

This is equivalent to the weak convergence P, = P of the respective probability distri-
butions.

Example 1.13 The function f(z) = 1{zca} is bounded but not continuous, therefore if
P, = P, then P,(A) — P(A) does not always hold. For S = R, the function f(z) =z
is continuous but not bounded, therefore if X,, = X, then E,(X,) — E(X) does not
always hold.

Definition 1.14 Call A € § a P-continuity set if P(0A) = 0.

Theorem 1.15 Portmanteau’s theorem. The following five statements are equivalent.
(i) P, = P.
(ii) [ f(z)P,(dx) — [ f(xz)P(dz) for all bounded uniformly continuous f : S — R.
(i3i) lim sup,,, . P,(F) < P(F) for all closed F € S.
(i) liminf,,_,  P,(G) > P(G) for all open G € S.

(v) P,(A) — P(A) for all P-continuity sets A.

Proof. (i) — (ii) is trivial.
(ii) — (iii). For a closed F' € S put

g(x) = (1— € p(, F)) V0.

'p(z,y). Using

This function is bounded and uniformly continuous since |g(z)—g(y)| < e~
Liwery < 9(7) < lpaere,

we derive (iii) from (ii):

n—00 n—oo

limsup P,(F) < limsup/g(m)Pn(dx) = /g(:z:)P(dx) < P(F) — P(F), e€—0.

(ili) — (iv) follows by complementation.



(iii) + (iv) — (v). If P(OA) = 0, then then the leftmost and rightmost probabilities
coincide:

P(A™) > limsup P,(A™) > limsup P, (A)

> liminf P,(A) > liminf P,(A°) > P(A°).
n—o0 n—oo
(v) — (i). By linearity we may assume that the bounded continuous function f satisfies
0 < f < 1. Then putting A; = {z : f(z) >t} we get

/S (@) Py (dz) = /0 Pu(ANdE /0 CP(AdE = /S F(@)P(dz).

Here the convergence follows from (v) since f is continuous, implying that 0A; = {z :
f(z) = t}, and since {x : f(z) = t} are P-continuity sets except for countably many ¢.
We also used the bounded convergence theorem.

Example 1.16 Let F(z) = P(X < x). Then X,, = X + n~! has distribution F,(z) =
F(x—n=1). Asn — oo, F,(x) — F(x—), so convergence only occurs at continuity points.

Corollary 1.17 A single sequence of probability measures can not weakly converge to
each of two different limits.

Proof. It suffices to prove that if [ f(z)P(dz) = [g f(2)Q(dx) for all bounded, uniformly
continuous functions f : S — R, then P = (). Using the bounded, uniformly continuous
functions g(x) = (1 — e 'p(z, F)) V 0 we get

P(F) < / 9(x)P(dz) = / 9(2)Qdz) < Q(F?).

Letting € — 0 it gives for any closed set F', that P(F) < Q(F) and by symmetry we
conclude that P(F) = Q(F). It follows that P(G) = Q(G) for all open sets G.

It remains to use regularity of any probability measure P: if A € S and € > 0, then
there exist a closed set F. and an open set G, such that F, C A C G, and P(G.—F},) < e.
To this end we denote by Gp the class of S-sets with the just stated property. If A is
closed, we can take F = A and G = F%, where § is small enough. Thus all closed sets
belong to Gp, and we need to show that Gp forms a o-algebra. Given A, € Gp, choose
closed sets F,, and open sets G, such that F,, C A, C G, and P(G, — F,) < 27" le.
If G = U,G, and F = U,<y, F,, with ng chosen so that P(U,F,, — F) < €/2, then
F CcU,A, C G and P(G — F) < e. Thus Gp is closed under the formation of countable
unions. Since it is closed under complimentation, Gp is a g-algebra.

Theorem 1.18 Mapping theorem. Let X,, and X be random elements of a metric space
S. Let h: S — 8’ be a S/S'-measurable mapping and Dy, be the set of its discontinuity
points. If X, = X and P(X € Dy) =0, then h(X™) = h(X).

In other terms, if P, = P and P(Dy) =0, then P,h=' = Ph™1.

Proof. We show first that Dj is a Borel subset of S. For any pair (e,d) of positive
rationals, the set

A ={xr €S : there exist y, 2 € S such that p(z,y) < d, p(x,2) <, p'(hy, hz) > €}

6
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is open. Therefore, D), = U, Ns As € S. Now, for each F' € &',

limsup P,(h ' F) <limsup P,((h"'F)™) < P((h"'F)7)

n—oo n—oo

< P(h™HF7)UDy) = P(h™'(F7)).

To see that (h™'F)~ C h™'(F~)U Dy, take an element € (h~'F)~. There is a sequence
x, — « such that h(z,) € F, and therefore, either h(x,) — h(z) or & € D). By the
Portmanteau theorem, the last chain of inequalities implies P,h~! = Ph™1.

Example 1.19 Let P, = P. If A is a P-continuity set and h(x) = lzca}, then by the
mapping theorem, P,h~! = Ph~L.

1.3 Convergence in probability and in total variation. Local
limit theorems

Definition 1.20 Suppose X,, and X are random elements of S defined on the same
probability space. If P(p(X,,X) < €) — 1 for each positive €, we say X,, converge to X

wn probability and write X, X,

Exercise 1.21 Convergence in probability X" 5 X is equivalent to the weak conver-
gence p(X™, X) = 0. Moreover, (X7,...,X") 5 (X1,...,X;) if and only if X" & X
foralle=1,... k.

Theorem 1.22 Suppose (X, Xyun) are random elements of S x S. If X, = Z, as
n — oo for any fized u, and Z, = X as u — oo, and

lim limsup P(p(X ., X)) > €) =0, for each positive e,

U—00 N—00

then X, = X.
Proof. Let F' € S be closed and define F, as the set {z : p(z, F)) < ¢}. Then

P(X, € F)=P(X, € F,Xyn & F.)+P(X, € F, Xy, € F)
S ]P)(p(Xu,naXn) Z 6) + IED(AXVu,n S Fe)

Since F; is also closed and F, | F as € | 0, we get

limsupP(X,, € F) < limsup limsuplimsupP(X,,, € F)

n—o00 e—0 U—00 n—o00
<limsupP(X € F,) =P(X € F).
e—0

Corollary 1.23 Suppose (X,,Y,) are random elements of S x S. If Y, = X asn — o
and p(X,,Y,) = 0, then X,, = X. Taking Y, = X, we conclude that convergence in
probability implies convergence in distribution.

Definition 1.24 Convergence in total variation P, Y P means

sup | P (A) — P(A)] — 0.
AeS



Theorem 1.25 Scheffe’s theorem. Suppose P, and P have densities f, and f with re-

E3.3

spect to a measure p on (S,S). If f, = f almost everywhere with respect to , then
P, W p and therefore P, = P.

Proof. For any A € S

P = PA) = | [ () = flaDutan)] < [ 1£@) = ut@lnie)

- / F(@2) = fule)* pld),

where the last equality follows from

0= / (f(2) — fule))pde) = / (f(2) — foule))*plde) — / (f(2) — ful)) pld).

On the other hand, by the dominated convergence theorem, [(f(z)— fu(z))"p(dz) — 0.

Example 1.26 According to Theorem 1.25 the local limit theorem implies the integral
limit theorem P, = P. The reverse implication is false. Indeed, let P = p be Lebesgue
measure on S = [0, 1] so that f = 1. Let P, be the uniform distribution on the set

n—1

B, = U (kn~ Y kn~' 4+ n7%)
k=0

with density f,(z) = n®liep,). Since u(B,) = n~?, the Borel-Cantelli lemma implies
that p(B, i.0.) = 0. Thus f,(x) — 0 for almost all = and there is no local theorem. On
the other hand, |P,[0,z] — 2| <n~! implying P, = P.

Theorem 1.27 Let S = R*. Denote by L, C R* a lattice with cells having dimensions
(01(n),...,0k(n)) so that the cells of the lattice L, all having the form

Bu(x)={y:xz1—0(n) <y1 <zq,...,0— 0(n) <yp <y}, x€L,

have size v, = d1(n) - --0r(n). Suppose that (P,) is a sequence of probability measures on
R, where P, is supported by L, with probability mass function p,(z).

Suppose that P is a probability measure on RF having density f with respect to
Lebesgue measure. Assume that all 6;(n) — 0 as n — oco. I ’@ — f(x) whenever
r, € L, and x, — x, then P, = P. !

Proof. Define a probability density f, on R* by setting f,(y) = 2= W (). Tt
follows that f,(y) — f(y) for all y € R". Let a random vector Y, have the density f, and
X have the density f. By Theorem 1.25, Y,, = X. Define X, on the same probability
space as Y,, by setting X,, = z if Y}, lies in the cell B, (x). Since || X, — Y,|| < [|[6(n)||, we
conclude using Corollary 1.23 that X,, = X.
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Example 1.28 If S, is the number of successes in n Bernoulli trials, then according to
the local form of the de Moivre-Laplace theorem,

. N\ i op—i
P(S, = 1i)y/npq = <i)pq npq —

1—np

\V1pq

Ln:{z_np,iez}
N

—22/2

1
e

Vor
provided ¢ varies with n in such a way that — z. Therefore, Theorem 1.27 applies

to the lattice

with v, = \/%ﬂ and the probability mass function pn(f;%) =P(S,=1) fori=0,...,n.
As a result we get the integral form of the de Moivre-Laplace theorem:
Sp —
P(—npgz) — ®(z) as n — oo for any z € R.
\/1Pq

2 Convergence of finite-dimensional distributions

2.1 Separating and convergence-determining classes

Definition 2.1 Call a subclass A C S a separating class if any two probability measures
with P(A) = Q(A) for all A € A, must be identical: P(A) = Q(A) for all A € S.

Call a subclass A C S a convergence-determining class if, for every P and every
sequence (P,), convergence P,(A) — P(A) for all P-continuity sets A € A implies
P, = P.

Lemma 2.2 If A C S is a m-system and o(A) = S, then A is a separating class.

Proof. Consider a pair of probability measures such that P(A) = Q(A) for all A € A.
Let £ = Lpg be the class of all sets A € S such that P(A) = Q(A). Clearly, S € L. If
A € L, then A° € L since P(A°) =1—P(A) =1-Q(A) = Q(A°). If A,, are disjoint sets
in £, then U, A,, € L since

P(UnAn) = ZP<An) = ZQ(AH) = Q(UnAn)'

Therefore £ is a A-system, and since A C £, Theorem 1.3 gives o(A) C £, and £ = S.

Theorem 2.3 Suppose that P is a probability measure on a separable S, and a subclass
Ap C S satisfies

(i) Ap is a m-system,

(i) for every x € S and € > 0, there is an A € Ap for which x € A° C A C B(x,¢).
If P,(A) — P(A) for every A € Ap, then P, = P.

Proof. If Ay, ..., A, liein Ap, so do their intersections. Hence, by the inclusion-exclusion
formula and a theorem assumption,

Pn(OAZ) =3 P A) = Y P AN A+ S Pu(A N AN Ay) —

—>ZP(AZ-)—ZP(AiﬂAj)JrZP(AiﬂAjﬂAk)—...:P<0Ai>.

ij ijk i=1
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If G C S is open, then for each x € G, x € A, C A, C G holds for some A, € Ap. Since
S is separable, by Theorem 1.6 (iii), there is a countable sub-collection (A3 ) that covers
G. Thus G = U;A,,, where all A,, are Ap-sets.

With A; = A,, we have G = U;A;. Given ¢, choose r so that P( ur_, Ai) > P(G) —e.
Then,

P(G) — e < P({JA:) =tim P, ([ JA;) < liminf P, (G).
i=1 " i=1 "
Now, letting € — 0 we find that for any open set liminf, P,(G) > P(G).

Theorem 2.4 Suppose that S is separable and consider a subclass A C S. Let A, be
the class of A € A satisfying x € A° C A C B(z,€), and let 0 A, be the class of their
boundaries. If

(i) A is a m-system,

(i) for every x € S and € > 0, 0A, . contains uncountably many disjoint sets,
then A is a convergence-determining class.

Proof. For an arbitrary P let Ap be the class of P-continuity sets in .[A. We have to
show that if P,(A) — P(A) holds for every A € Ap, then P, = P. Indeed, by (i), since
J(ANB) C 0(A)Ud(B), Ap is a m-system. By (ii), there is an A, € A, . such that
P(0A,) =0 so that A, € Ap. It remains to apply Theorem 2.3.

2.2 Weak convergence in product spaces

Definition 2.5 Let P be a probability measure on S = S’ x §” with the product metric
p((x/’ x//)7 (y/)y//)) — p/(x/’ y/) \/ p//(x//7y//>'

Define the marginal distributions by P'(A’) = P(A’ x S§”) and P"(A") = P(S' x A”). If
the marginals are independent, we write P = P’ x P”. We denote by &’ x §” the product
o-algebra generated by the measurable rectangles A’ x A” for A’ € &’ and A” € §”.

Lemma 2.6 If S = S’ x §” is separable, then the three Borel o-algebras are related by
S§=8x8".

Proof. Consider the projections 7’ : S — S’ and 7" : S — S” defined by #'(2/,2") = 2’
and 7”(2',2") = 2", each is continuous. For A’ € §" and A” € §”, we have

A x A" — (ﬂ_/)—lA/ N (ﬂ_//)—lA// €S,

since the two projections are continuous and therefore measurable. Thus &' x §” C S.
On the other hand, if S is separable, then each open set in S is a countable union of the
balls

B((z',2"),r) = B'(z',r) x B"(2",r)

and hence liesin &' x S”. Thus S C &' x §”.

10
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Theorem 2.7 Consider probability measures P, and P on a separable metric space S =
S’ x S”.

(a) P, = P implies P, = P’ and P! = P".

(b) P, = P if and only if P,(A" x A") — P(A" x A") for each P’-continuity set A’
and each P"-continuity set A”.

(¢c) P, x P! = P if and only if P, = P', P! = P", and P = P’ x P".

Proof. (a) Since P’ = P(x')~!, P” = P(«”)~! and the projections 7/, 7 are continuous,
it follows by the mapping theorem that P, = P implies P, = P’ and P = P".

(b) Consider the m-system .4 of measurable rectangles A’ x A”: A" € &’ and A” € §”.
Let Ap be the class of A" x A” € A such that P'(0A’) = P"(0A”) = 0. Since

(A NB") c (oA"Y U (0B, I(A"NB") c (0A") U (0B"),
it follows that Ap is a m-system:
Ax A" B xB" e Ap = (A xA)N(B xB")e Ap.

And since

DA x A”) C ((0A") x 8")U (S x (9A")),

each set in Ap is a P-continuity set. Since B’(z/,r) in have disjoint boundaries for
different values of r, and since the same is true of the B”(z” 1), there are arbitrarily
small r for which B(x,r) = B'(z/,r) x B"(2”,r) lies in Ap. It follows that Theorem 2.3
applies to Ap: P, = P if and only if P,(A) — P(A) for each A € Ap.

The statement (c) is a consequence of (b).

Exercise 2.8 The uniform distribution on the unit square and the unit distribution on
the its diaginal have identical marginal distributions. Use this fact to demonstrate that
the reverse to (a) in Theorem 2.7 is false.

Exercise 2.9 Let (X,,,Y,,) be a sequence of two-dimensional random vectors. Show that
if (X,,,Y,) = (X,Y), then besides X,, = X and Y,, = Y, we have X,, + Y, = X + VY.

Give an example of (X,,,Y;,) such that X,, = X and Y,, = Y but the sum X, + Y,
has no limit distribution.

2.3 Weak convergence in R* and R™

Let R* denote the k-dimensional Euclidean space with elements 2 = (1, ..., x;) and the
ordinary metric

[z =yl = v/ (z1 = 90)? + .+ (2 — yp)?.
Denote by R* the corresponding class of k-dimensional Borel sets. Put A, = {y :
y1 < x1,...,yr < 21}, © € R*. The probability measures on (R*, R¥) are completely

determined by their distribution functions F(z) = P(A;) at the points of continuity
r € R

Lemma 2.10 The Weierstrass M-test. Suppose that sequences of real numbers x} — x;
converge for each i, and for all (n,i), |xI'| < M;, where >, M; < co. Then ), x; < o0,
Yol <oo, and Y xl = > . x;.

11
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E2.4

Proof. The series of course converge absolutely, since ) . M; < co. Now for any (n, i),
PIEDIIED DA s

i<io i>ig
Given € > 0, choose 4 so that ) ,_, M; < €/3, and then choose ng so that n > ng implies
|27 — @3] < 5= for i <ip. Then n > ng implies [ Y2, 27 — >, 7| <e.

Lemma 2.11 Let R™ denote the space of the sequences x = (x1, 25 ...) of real numbers
with metric

1A |$z - yi'
pay) =3 Ll
i=1

Then p(z™,x) — 0 if and only if |x? — x;| — 0 for each i.

Proof. If p(z™, ) — 0, then for each i we have 1A|z! —x;| — 0 and therefore | —z;| — 0.
The reverse implication holds by Lemma 2.10.

Definition 2.12 Let 1, : R® — R be the natural projections m(z) = (z1,...,2%),
k=1,2,..., and let P be a probability measure on (R> R>°). The probability measures
Pr ! defined on (R*, R¥) are called the finite-dimensional distributions of P.

Theorem 2.13 The space R™ is separable and complete. Let P and Q) be two probability
measures on (R, R*®). If Pm,' = Qn, "' for each k, then P = Q.

Proof. Convergence in R>™ implies coordinatewise convergence, therefore 7, is continuous
so that the sets

Bk(ZE,E):{yGROOZ|yi—ZEi| < €, z'zl,...,k:}:wk_l{yERk:|yi—xi| < €, z':l,...,k:}

are open. Moreover, y € By(z, €) implies p(x,y) < € +27%. Thus By(z,¢) C B(z,r) for
r > e+ 27%. This means that the sets By(z,¢) form a base for the topology of R>®. It
follows that the space is separable: one countable, dense subset consists of those points
having only finitely many nonzero coordinates, each of them rational.

If (z™) is a fundamental sequence, then each coordinate sequence (z) is fundamental
and hence converges to some z;, implying ™ — x. Therefore, R is also complete.

Let A be the class of finite-dimensional sets {x : mx(z) € H} for some k and some
H € R*. This class of cylinders is closed under finite intersections. To be able to apply
Lemma 2.2 it remains to observe that A generates R*>°: by separability each open set
G C R™ is a countable union of sets in A, since the sets By (z,€) € A form a base.

Theorem 2.14 Let P,, P be probability measures on (R, R>). Then P, = P if and
only if in,g_l = PW,;I for each k.

Proof. Necessity follows from the mapping theorem. Turning to sufficiency, let A, again,

be the class of finite-dimensional sets {x : m,(z) € H} for some k and some H € R*. We
proceed in three steps.

12



ket

Step 1. Show that A is a convergence-determining class. This is proven using Theorem
2.4. Given x and e, choose k so that 2% < ¢/2 and consider the collection of uncountably
many finite-dimensional sets

An:{yifyi—l’i\<77,i:1,...,k}f0r0<77<e/2,

We have A, € A, .. On the other hand, A, consists of the points y such that |y;—z;| <7
with equality for some 7, hence these boundaries are disjoint. And since R™ is separable,
Theorem 2.4 applies.

Step 2. Show that O(m,'H) = m, 'OH.

From the continuity of 7 it follows that 8(7TI;1H ) C 7Tk_10H . Using special properties
of the projections we can prove inclusion in the other direction. If x € 7, '0H, so that
mex € OH, then there are points o® € H, 3™ € H¢ such that /¥ — mz and S — mz
as u — 00. Since the points (ocg“), .. ,a,g“), Tgy1,--.) lie in 7 ' H and converge to z, and
since the points (ﬁ@, e I(Cu),xkﬂ, ...) lie in (7, ' H)¢ and converge to x, we conclude
that = € d(m;, ' H).

Step 3. Suppose that P, ' (0H) = 0 implies P, ' (H) — P, '(H) and show that
P, = P.

If A € Ais a finite-dimensional P-continuity set, then we have A = 7, ' H and

Pr ' (0H) = P(m,'0H) = P(0m, ' H) = P(0A) = 0.

Thus by assumption, P,(A) — P(A) and according to step 1, P, = P.

2.4 Kolmogorov’s extension theorem

Definition 2.15 We say that the system of finite-dimensional distributions g, 4, is
consistent if the joint distribution functions

Fooo(z1yeooy2k) = iy, ((—00, 21] X ..o X (=00, 2])

satisfy two consistency conditions

(1) El,...,tk,tk_;,_l(zb <oy Rl OO) = Ftl,...,tk (Z17 ceey zk)a
(ii) if 7 is a permutation of (1,...,k), then

Ftﬂ(l),...,tﬂ(k) (ZTr(l)v s 7Z7T(k)) = Ftl,...,tk (Z].? sty Zk‘)

Theorem 2.16 Let ju, .4, be a consistent system of finite-dimensional distributions.
Put Q = {functions w : [0,1] — R} and F is the o-algebra generated by the finite-
dimensional sets {w : w(t;) € B;,i = 1,...,n}, where B; are Borel subsets of R. Then
there is a unique probability measure P on (2, F) such that a stochastic process defined
by Xi(w) = w(t) has the finite-dimensional distributions ju, . 4, .

Without proof. Kolmogorov’s extension theorem does not directly imply the existence of
the Wiener process because the o-algebra F is not rich enough to ensure the continuity
property for trajectories. However, it is used in the proof of Theorem 7.17 establishing
the existence of processes with cadlag trajectories.
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3 Tightness and Prokhorov’s theorem

3.1 Tightness of probability measures

Convergence of finite-dimensional distributions does not always imply weak convergence.
This makes important the following concept of tightness.

Definition 3.1 A family of probability measures II on (S,S) is called tight if for every
¢ there exists a compact set K C S such that P(K) > 1 — e for all P € II.

Lemma 3.2 If S is separable and complete, then each probability measure P on (S,S)
18 tight.

Proof. Separability: for each k there is a sequence Ay; of open 1/k-balls covering S.
Choose ny, large enough that P(By,) > 1—e27% where By, = A U. . .UAj,, . Completeness:
the totally bounded set By N By N ... has compact closure K. But clearly P(K¢) <

Y P(Bp) <e
Exercise 3.3 Check whether the following sequence of distributions on R
Py(A) = (1—n""1gea +n "p2eny, n>1,
is tight or it “leaks” towards infinity. Notice that the corresponding mean value is n.

Definition 3.4 A family of probability measures IT on (S, S) is called relatively compact
if any sequence of its elements contains a weakly convergent subsequence. The limiting
probability measures might be different for different subsequences and lie outside II.

Definition 3.5 Let P be the space of probability measures on (S,S). The Prokhorov
distance w( P, Q)) between P, @ € P is defined as the infimum of those positive e for which

P(A) <Q(A)+e, Q(A) < P(A)+e foral AeS.
Lemma 3.6 The Prokhorov distance 7 is a metric on P.

Proof. Obviously 7(P, Q) = n(Q,P) and n(P,P) = 0. If n(P,Q) = 0, then for any
FeSande>0, P(F) <Q(F)+e. For closed F letting ¢ — 0 gives P(F) < Q(F). By
symmetry, we have P(F) = Q(F') implying P = Q.

To verify the triangle inequality notice that if 7(P, Q) < ¢; and 7(Q, R) < €9, then

P(A) <Q(AY) + €61 < R((AM)?) + €1+ €2 < R(AMT?) + ¢4 + €.

Thus, using the symmetric relation we obtain 7(P, R) < €; + €5. Therefore, (P, R) <

(P, Q)+ 7(Q, R).

Theorem 3.7 Suppose S is a complete separable metric space. Then weak convergence
is equivalent to m-convergence, (P, m) is separable and complete, and I1 C P is relatively
compact iff its w-closure is w-compact.

Without proof.
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Theorem 3.8 A necessary and sufficient condition for P, = P is that each subsequence
P, contains a further subsequence P,» converging weakly to P.

Proof. The necessity is easy but useless. As for sufficiency, if P, # P, then |, s f(x)Py(dz) =
[ f(x)P(dx) for some bounded, continuous f. But then, for some € > 0 and some sub-
sequence P,

‘ / (@) P (dar) — / f(x)P(dx)’ >¢  for all o,
s s
and no further subsequence can converge weakly to P.

Theorem 3.9 Prokhorov’s theorem, the direct part. If a family of probability measures
IT on (S,S) is tight, then it is relatively compact.

Proof. See the next subsection.

Theorem 3.10 Prokhorov’s theorem, the reverse part. Suppose S is a complete separable
metric space. If 11 is relatively compact, then it is tight.

Proof. Consider open sets G, T S. For each € there is an n such that P(G,) > 1 — ¢ for
all P € II. To show this we assume the opposite: P,(G,) < 1 — € for some P, € II. By
the assumed relative compactness, P, = @ for some subsequence and some probability
measure (). Then

Q(G,) < liminf P,/ (G,,) < liminf P,/(G,) <1 —¢

n n

which is impossible since G,, T S.

If Aj; is a sequence of open balls of radius 1/k covering S (separability), so that
S = U;Ay; for each k. From the previous step it follows that, that there is an n; such
that P(Uj<p, Agi) > 1 —€27% for all P € II. Let K be the closure of the totally bounded
set Ng>1 Ui<n, Agi, then K is compact (completeness) and P(K) > 1 — e for all P € II.

3.2 Proof of Prokhorov’s theorem

This subsection contains a proof of the direct half of Prokhorov’s theorem. Let (P,) be
a sequence in the tight family II. We are to find a subsequence (P,/) and a probability
measure P such that P,, = P. The proof, like that of Helly’s theorem will depend on a
diagonal argument.

Choose compact sets K; C Ky C ... such that P,(K;) > 1 — 4! for all n and i.
The set K, = U; K is separable: compactness = each open cover has a finite subcover,
separability = each open cover has a countable subcover. Hence, by Theorem 1.7, there
exists a countable class A of open sets with the following property: if G is open and
2 € KNG, thenx € AC A~ C G for some A € A. Let H consist of () and the finite
unions of sets of the form A~ N K, for A € A and 7 > 1.

Consider the countable class H = (H;). For (P,) there is a subsequence (P,,) such
that P,, (H;) converges as n; — oco. For (P,,) there is a further subsequence (P,,) such
that P,,(Hz) converges as ny — oco. Continuing in this way we get a collection of indices
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nik) D (nax) O ... such that P, (H;) converges as k — oo for each j > 1. Putting
;; we find a subsequence (P,/) for which the limit

Il
S

a(H) =lim P,/ (H) exists for each H € H.

n

Furthermore, for open sets G C S and arbitrary sets M C S define

B(G) = sup a(H), ~(M)= inf 5(G).
HcG GOM
Our objective is to construct on (S,S) a probability measure P such that P(G) = 3(G)
for all open sets GG. If there does exist such a P, then the proof will be complete: if
H C G, then
a(H) =lim P,y (H) < liminf P,/(G),

whence P(G) < liminf,, P,/(G), and therefore P, = P. The construction of the proba-
bility measure P is divided in seven steps.

Step 1: if F' C G, where F' is closed and G is open, and if F' C H, for some H € H,
then F' C Hy C G, for some Hy € H.

Since F' C K, for some iy, the closed set F' is compact. For each x € F', choose an
A, € Asuch that x € A, C A, C G. The sets A, cover the compact F', and there is a
finite subcover A,,,..., A,,. We can take Hy = U;?:l(A;j N K;,).

Step 2: [ is finitely subadditive on the open sets.

Suppose that H C G1 U G5, where H € ‘H and G, Gy are open. Define

p(x,G3)},
p(x, G},
so that H = Fy U F; with F; C G and F5 C G5. According to Step 1, since F; C H, we

have F; C H; C G; for some H; € H.
The function a(H) has these three properties

Fy={z€H:p(z,GY)

>
F={xeH:px,G5 >

Q(Hl) S O[(HQ) if H1 C HQ,
Oé(HlLJHQ) IO{(Hl)—l—(X(HQ) if HlﬂHQI@,
OZ(Hl U HQ) S Oé(Hl) + O{(HQ).

It follows first,
a(H) < a(Hy U Hy) < a(Hy) + a(Hy) < B8(Gr) + B(G2),

and then
B(Gl U Gg) = sup Oé(H) S ﬁ(Gl) + 6(G2)

HCG1UGo

Step 3: [ is countably subadditive on the open sets.
If H C U,G,, then, since H is compact, H C U,<,,G, for some ng, and finite
subadditivity imples

a(H) < 3" B(G) <D B(G).

n<ng
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Taking the supremum over H contained in U,,G,, gives (U, G,) < >, B(Gy).

Step 4: 7 is an outer measure.

Since v is clearly monotone and satisfies v(()) = 0, we need only prove that it is
countably subadditive. Given a positive € and arbitrary M, C S, choose open sets G,

such that M,, C G,, and 5(G,) < v(M,) + ¢/2". Apply Step 3
UM < 8UG) < S B(G) < S A(M,) + e

and let e — 0 to get v(U, M,) <>, v(M,).
Step 5: B(G) > v(FNG)+~v(F°NG) for F closed and G open.
Choose Hs, Hy € H for which

H; C F°NG  and «a(H;) > B(F°NG) —e,
HyC HiNG and «(Hy) > B(HSNG) —e.

Since H3 and H, are disjoint and are contained in G, it follows from the properties of the
functions «, 3, and v that

>A(F°NG)+~v(FNG) — 2e.

Now it remains to let ¢ — 0.

Step 6: if I C S is closed, then F' is in the class M of y-measurable sets.

By Step 5, 5(G) > v(FNL)+~(F°nNL)if F is closed, G is open, and G D L.
Taking the infimum over these G gives y(L) > v(F N L) + v(F°N L) confirming that F
is y-measurable.

Step 7: & C M, and the restriction P of 7 to § is a probability measure satisfying
P(G) =~(G) = B(G) for all open sets G C S.

Since each closed set lies in M and M is a o-algebra, we have S C M. To see that
the P is a probability measure, observe that each K; has a finite covering by A-sets and
therefore K; € H. Thus

1> P(S) = B(S) > supa(K;) > sgp(l —i ) =1.

(2

3.3 Skorokhod’s representation theorem

Theorem 3.11 Suppose that P, = P and P has a separable support. Then there ex-
ist random elements X,, and X, defined on a common probability space (2, F,P), such
that P, 1is the probability distribution of X,,, P 1is the probability distribution of X, and
Xp(w) = X(w) for every w.

Proof. We split the proof in four steps.
Step 1: show that for each e, there is a finite S-partition By, By, ..., By of S such
that
P(BO> < €, P(&BZ) =0, dlam(BZ) <€, i=1,... k.

Let M be a separable S-set for which P(M) = 1. For each z € M, choose r, so that
0 <r, <¢€/2and P(OB(z,r;)) = 0. Since M is a separable, it can be covered by a
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countable subcollection Ay, Ay, ... of the balls B(z,r,). Choose k so that P(UF_ A;) >
1 —e. Take

k
By=(|JA)", Bi=A;, Bi=A{n.. .NA NA,
=1

and notice that 0B; C 0A; U ... U 0A,.
Step 2: definition of n;. o A
Take €; = 277. By step 1, there are S-partitions B}, BY, ..., Bj such that

P(B)) <¢;, P(OB))=0, diam(B))<e¢;, i=1,...,k;.

If some P(B!) = 0, we redefine these partitions by amalgamating such B! with B}, so
that P(-|B/) is well defined for i > 1. By the assumption P, = P, there is for each j an
n; such that

P.(B))>(1—¢)P(B)), i=0,1,....k;, n>n,.
Putting ng = 1, we can assume ng < n; < ---.

Step 3: construction of X,Y,,,Y,;, Z,,¢&.

Define m,, = j for n; < n < n,4; and write m instead of m,,. By Theorem 2.16 we can
find an (Q, F,P) supporting random elements X, Y,,, Y,;, Z, of S and a random variable
¢, all independent of each other and having distributions satisfying: X has distribution
P, Y, has distribution P,,

P(Y,; € A) = P,(A|B"), P <e¢) =k,
km
enP(Zy € A) = > Po(AIB) (PalB) = (1= en) P(B")).
i=0
Note that P(Y,; € B") = 1.
Step 4: construction of X,,.
Put X,, =Y, for n < ny. For n > nq, put

km

Xn = Yecimeny O YxenmyYai + Lies1-e,) Zn-
=0

By step 3, we X, has distribution P, because

k

P(X,€A) =(1—-en) zm:IP’(X € B", Yy € A) +e,,P(Z, € A)
—(1—en) ijﬂ»(x € B")P.(A|B™)
+3 PuAB) (RB — (1 - ) P
— p,(4).

Let o -
E; ={X ¢ B}; {<1—¢;} and E = liminf E; = | J[") Ex.
J

j=li=j
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secC

E1.3

Since P(EY) < 2¢;, by the Borel-Cantelli lemma, P(E°) = P(EY i.0.) = 0 implying P(E) =
1. f w € E, then both X, (w) and X (w) lie in the same B/ having diameter less than
€m. Thus, p(X,(w), X(w)) < €, and X, (w) = X(w) for w € E. It remains to redefine
X,, as X outside E.

Corollary 3.12 The mapping theorem. Let h : 8§ — S’ be a continuous mapping between
two metric spaces. If P, = P on S and P has a separable support, then P,h~! = Ph™1
on S'.

Proof. Having X,,(w) — X (w) we get h(X,(w)) — h(X(w)) for every w. It follows, by
Corollary 1.23 that h(X,,) = h(X) which is equivalent to P,h~!' = Ph~L.

4 Functional Central Limit Theorem on C = C|0, 1]

4.1 Weak convergence in C

Definition 4.1 An element of the set C = CJ0,1] is a continuous function = = xz(t).
The distance between points in C' is measured by the uniform metric

plz,y) = llz =yl = sup |z(t) —y(?)].
0<t<1
Denote by C the Borel o-algebra of subsets of C.

Exercise 4.2 Draw a picture for an open ball B(z,r) in C.
For any real number a and t € [0, 1] the set {z : z(¢) < a} is an open subset of C.

Example 4.3 Convergence p(z,,r) — 0 means uniform convergence of continuous func-
tions, it is stronger than pointwise convergence. Consider the function z,(¢) that increases
linearly from 0 to 1 over [0, n~1], decreases linearly from 1 to 0 over [n ™!, 2n7!], and equals
0 over [2n~*,1]. Despite z,(t) — 0 for any ¢ we have ||z, = 1 for all n.

Theorem 4.4 The space C' is separable and complete.

Proof. Separability. Let Lj be the set of polygonal functions that are linear over each
subinterval [%, 7] and have rational values at the end points. We will show that the
countable set Uy>1 Ly, is dense in C. For given x € C and € > 0, choose £ so that

lw(t) — 2(i/k)| < e forallte[(i—1)/ki/k], 1<i<k

which is possible by uniform continuity. Then choose y € Ly, so that |y(i/k) —x(i/k)| < €
for each 7. It remains to draw a picture with trajectories over an interval [%, 1) and
check that p(x,y) < 3e.

Completeness. Let (x,) be a fundamental sequence so that

€n, = sSup sup |z,(t) —xn(t)] =0, n— occ.
m>n 0<t<1

Then for each ¢, the sequence (z,(t)) is fundamental on R and hence has a limit z(t).
Letting m — oo in the inequality |z, (t) — z,,(t)| < €, gives |z, (t) — 2(t)| < €,. Thus z,
converges uniformly to x € C.
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Definition 4.5 Convergence of finite-dimensional distributions X" X4 X means that
for all tq,...,t
(X7

t17°

XY = (X, X)),

Exercise 4.6 The projection 7;, _; : C — R defined by 7y, 4 (z) = (2(t1), ..., z(t))
is a continuous map.

Example 4.7 By the mapping theorem, if X™ = X, then X" 14X The reverse in

not true. Consider z,(t) from Example 4.3 and put X" = z,, X = 0 so that X" 4 X,

Take h(z) = sup, z(t). It satisfies |h(z) — h(y)| < p(x,y) and therefore is a continuous
function on C. Since h(z,) = 1, we have h(X") # h(X), and according to the mapping
theorem X" = X.

Definition 4.8 Define a modulus of continuity of a function = : [0,1] — R by

w,(0) = w(z,0) = sup |z(s) —x(t)], o€ (0,1].

|s—t/<6

For any z : [0,1] — R its modulus of cotinuity w,(d) is non-decreasing over 4. Clearly,
x € C if and only if w,(0) — 0 as 6 — 0. The limit j, = lim,_,,w,(0) is the absolute
value of the largest jump of x.

Exercise 4.9 Show that for any fixed § € (0,1] we have |w,(d) — wy(9)] < 2p(x,y)
implying that w,(d) is a continuous function on C.

Example 4.10 For z, € C defined in Example 4.3 we have w(z,,0) =1 for n > §'.

Exercise 4.11 Given a probability measure P on the measurable space (C,C) there
exists a random process X on a probability space (§2, F,P) such that P(X € A) = P(A)
for any A € C.

Theorem 4.12 Let B,, P be probability measures on (C,C). Suppose P, "

holds for all tuples (t1,...,t;) C [0,1]. If for every positive €

(7) lim limsup P, (z : w,(0) >¢€) =0,

6—0 n—oo

then P, = P.

Proof. The proof is given in terms of convergence in distribution using Theorem 1.22.

For w = 1,2,..., define M, : C — C in the following way. Let (M,z)(t) agree with
x(t) at the points 0,1/u,2/u,...,1 and be defined by linear interpolation between these
points. Observe that p(M,z,x) < 2w, (1/u).

Further, for a vector a = (ap, a1, ...,q,) define (L,a)(t) as an element of C' such
that it has values a; at points ¢ = i/n and is linear in between. Clearly, p(L,c, L) =
max, |a; — ;| so that L, : C — C'is continuous.

Let t; = i/u. Observe that M, = L,m, ¢, Since my, 1, X" = Ty,
continuous, the mapping theorem gives M, X" = M, X as n — co. Since

+,X and L, is

----------

lim sup p(M, X, X) < 2limsup w(X, 1/u) =0,

U— 00 U—00
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Figure 2: Cylinder sets.

we have M, X — X in probability and therefore M, X = X.
Finally, due to p(M, X", X™) < 2w(X",1/u) and condition (i) we have

lim sup lim sup P(p(M, X", X") > €) < limsup limsup P(2w(X",1/u) > €) = 0.

U—00 n—oo U—00 n—o0

It remains to apply Theorem 1.22.

,,,,,

forall0 <t <...<tp, <1, then P=Q.
Proof. Denote by C; the collection of finite-dimensional sets of the form

mil W (H) = {y € C: (y(t),....y(t) € H}, (x)
where 0 < #; < ... < t;, < 1 and a Borel subset H C RF. Due to the continuity of the
projections we have Cy C C.

It suffices to check, using Lemma 2.2, that C; is a separating class. Clearly, Cy is
closed under formation of finite intersections. To show that ¢(Cs) = C, observe that a
closed ball centered at x of radius a can be represented as N,.(y : |y(r) —z(r)| < a), where
r ranges over rationals in [0,1]. It follows that o(Cy) contains all closed balls, hence the
open balls, and hence the o-algebra generated by the open balls. By separability, the
o-algebra generated by the open balls, the so-called ball o-algebra, coincides with the
Borel o-algebra generated by the open sets.

Exercise 4.14 Which of the three paths on Figure 2 belong to the cylinder set (x) with
k=3t =021t =051t =08, and H = [~2,1] x [-2,2] x [~2, 1].

Theorem 4.15 Let P, be probability measures on (C,C). If their finite-dimensional
1

.....

(b) P, = P.
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Proof. Tightness implies relative compactness which in turn implies that each subse-
quence (P,/) C (P,) contains a further subsequence (P,») C (P,/) converging weekly to
some probability measure P. By the mapping theorem Pn”’/r};,l...,tk = P7rt_171___7tk. Thus
by hypothesis, Pﬂt:,lmytk = [it,,..t,- Moreover, by Lemma 4.13, the limit P must be the
same for all converging subsequences, thus applying Theorem 3.8 we may conclude that
P,= P.

4.2 Wiener measure and Donsker’s theorem

Definition 4.16 Let & be a sequence of r.v. defined on the same probability space
(Q,F,P). Put S,, = & +...&, and let X'(w) as a function of ¢ be the element of C

defined by linear interpolation between its values Xj) (w) = i’\(/%) at the points t = i/n.

Theorem 4.17 Let X™ = (X}* : 0 <t < 1) be defined by Definition 4.16 and let P, be
the probability distribution of X™. If & are iid with zero mean and finite variance o2,
then

(a) Pnﬂ,;}wtk = [y, 1., Where g, 4 are Gaussian distributions on RF satisfying

k
Q
,utl,m,tk{(xl, ce ,Z'k) X — X S ai,z’ = 1, Cey k} = H(I)<—>7 where To = 07
o1 Wi —tia

(b) the sequence (P,) of probability measures on (C,C) is tight.

Proof. The claim (a) follows from the classical CLT and independence of increments of
S,. For example, if 0 < s <t <1, then
(X2 XP = X2) = —(Sna), Spnt) — Spoa)) + €
- = = ns|yP|nt] — P|ns (S
5940t s o/n Lns]s 2 nt) Lns) it
1
= = ns)+1, 1N 5§|n - ns )
ot Jﬁ({ns}Q J41 At} e 1 — {18} ina 1)

where {nt} stands for the fractional part of nt. By the classical CLT and Theorem 2.7c,
#E(SLRSJ,SWJ — S|ns)) has pis, as a limit distribution. Applying Corollary 1.23 to €7,
we derive in;tl = [lst-

The proof of (b) is postponed until the next subcection.

Definition 4.18 Wiener measure W is a probability measure on C with Wﬂt_lltk =
ft, ¢, given by the formula in Theorem 4.17 part (a). The standard Wiener process W
is the random element on (C,C, W) defined by W(z) = =(t).

The existence of W follows from Theorems 4.15 and 4.17.

Theorem 4.19 Let X™ = (X' : 0 <t < 1) be defined by Definition 4.16. If & are iid
with zero mean and finite variance o2, then X™ converges in distribution to the standard
Wiener process.
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Proof 1. This is a corollary of Theorems 4.15 and 4.17.

Proof 2. An alternative proof is based on Theorem 4.12. We have to verify that condition
(i) of Theorem 4.12 holds under the assumptions of Theorem 4.17. To this end take
t; =76,7=0,...,0"" assuming nd > 1. Then

1/6
Pw(X", 6) > 3¢) < Zp(t sup X7~ X7 | > e)
i— J—1385L;
S I NN
= ]P’( max Jn ) ]P’(max S| > ea\/_>
j;l (j—1)nd<k<jnd U\/ﬁ Z k<n6’ k‘

=6t (maX\Sk| > ea\/_> 30~ ZnaX]P’OSM > ea\/_/3>

k<néd

where the last is Etemadi’s inequality:

P(max|5k\ > a) < 3r21aXlP’<|Sk| > a/3>

k<n

Remark: compare this with Kolmogorov’s inequality P(max;.,, [Sk| > ) < %‘22
It suffices to check that assuming o = 1,

lim lim sup A\? maXIP’<|Sk| > 6)\\/5> =

A—00 N—0oo k<n

Indeed, by the classical CLT,
6
P(|Sk] > eAVE) < 4(1 — ®(e))) < ——
et
for sufficiently large k& > k(Xe). It follows,

limsup A> max IP’<|Sk| > @\ﬁ) < limsup A\* max IP’(|Sk| > e)\\/E> < i

n—00 k(he)<k<n n—00 E>k(Xe) eI\
On the other hand, by Chebyshev’s inequality,
A2k (Xe)

limsup A\* max P<|Sk| > e)\\/_> < hmsup—
e2\%n

n—o00 k<k(Xe)

=0

finishing the proof of (i) of Theorem 4.12.

Example 4.20 We show that h(x) = sup, z(t) is a continuous mapping from C to R.
Indeed, if h(z) > h(y), then there are t; such that

0 <h(z) = h(y) =2(t1) —y(t2) < x(t1) —y(t) < [lz —yl.

Thus, we have |h(x) — h(y)| < p(x,y) and continuity follows.
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Example 4.21 Turning to the symmetric simple random walk, put M,, = max(Sy, ..., Sy).
As we show later in Theorem 5.1, for any b > 0,

7u2/2du

M, <b

P Vi) = V2 /
From h(X") = h(W) with h(z) = sup, z(t) we conclude that supy.,.; W; is distributed
as [W;|. The same limit holds for M, = max(2, Slg_“ Ce S";”“) for sums of iid r.v. with

mean 4 and standard deviation o. For this reason the functional CLT is also called an
wmwvariance principle: the general limit can be computed via the simplest relevant case.

Exercise 4.22 Check if the following functionals are continuous on C"

sup [2(t) — 2(s)|. /0 ()t

{0<s,t<1}

4.3 Tightness in C

Theorem 4.23 The Arzela-Ascoli theorem. The set A C C' is relatively compact if and
only if

(4) sup|z(0)] < oo,
z€EA

(#7)  limsupw,(d) = 0.
0—0 xz€A

Proof. Necessity. If the closure of A is compact, then (i) obviously must hold. For a
fixed x the function w,(d) monotonely converges to zero as ¢ | 0. Since for each ¢ the
function w,(0) is continuos in x this convergence is uniform over x € K for any compact
K. Tt remains to see that taking K to be the closure of A we obtain (ii).

Sufficiency. Suppose now that (i) and (ii) hold. For a given ¢ > 0, choose n large
enough for sup,. 4 w,(1/n) < €. Since

[2(8)] < |2(O)] + ) la(ti/n) — w(t(i = 1)/n)| < [(0)] + nsupw.(1/n),
i=1 v
we derive a 1= sup,c4 ||z]] < co. The idea is to use this and (ii) to prove that A is totally
bounded, since C' is complete, it will follow that A is relatively compact. In other words,
we have to find a finite B, C C forming a 2e-net for A.

Let —a=ap <oy < ... <o = abesuch that a; —a;_; <e. Then B, can be taken
as a set of the continuous polygonal functions y : [0,1] — [—«, ] that linearly connect
the pairs of points (=1, j,_,), (£, a;,). See Figure 3. Let # € A. It remains to show that
there is a y € B, such that p(x,y) < 2e. Indeed, since |z(i/n)| < a, there is a y € B,
such that |x(i/n) —y(i/n)| < e for all i = 0,1,...,n. Both y(i/n) and y((i — 1)/n) are
within 2¢ of z(t) for t € [(i — 1)/n,i/n]. Since y(t) is a convex combination of y(i/n) and
y((i — 1)/n), it too is within 2¢ of z(¢). Thus p(z,y) < 2¢ and B, is a 2¢-net for A.

Exercise 4.24 Draw a curve x € A (cf Figure 3) for which you can not find a y € B,
such that p(z,y) <e.
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Figure 3: The Arzela-Ascoli theorem: constructing a 2e-net.

The next theorem explains the nature of condition (i) in Theorem 4.12.

Theorem 4.25 Let P, be probability measures on (C,C). The sequence (P,) is tight if
and only if the following two conditions hold:

(¢)  lim limsup BP,(x : |z(0)] > a) =0,

a—0o0 N—00

(27) limlimsup P,(x : w,(0) > €) =0, for each positive e.

0—0 n—oo

Proof. Suppose (P,) is tight. Given a positive 1, choose a compact K such that P, (K) >
1 —n for all n. By the Arzela-Ascoli theorem we have K C (x : |2(0)| < a) for large
enough a and K C (z : w,(0) < €) for small enough §. Hence the necessity.

According to condition (i), for each positive 7, there exist large a, and n, such that

Pua:|2(0) 2 a) < n>n,

and condition (ii) implies that for each positive e and 7, there exist a small J., and a
large n., such that
Po(x :wy(0ey) =€) <n, 1> ney,

Due to Lemma 3.2 for any finite k the measure P is tight, and so by the necessity there is
a ay,, such that Py(z : [2(0)| > ak,) < n, and there is a 0y, such that Py(z : wy(0p.ey) >
€) <.

Thus in proving sufficiency, we may put n,, = n., = 1 in the above two conditions. Fix
an arbitrary small positive 7. Given the two improved conditions, we have P,(B) > 1—n
and P, (By) > 1 — 2%y with B = (z : |2(0)| < a,) and By = (@ : wo (6 0-1,) < 1/k). If
K is the closure of intersection of BN By N By N ..., then P,(K) > 1—2n. To finish the
proof observe that K is compact by the Arzela-Ascoli theorem.

Example 4.26 Consider the Dirac probability measure P, concentrated on the point
z, € C from Example 4.3. Referring to Theorem 4.25 verify that the sequence (P,) is
not tight.

Proof of Theorem 4.17 part b. The stated tightness follows from Theorem 4.25.
Indeed, condition (i) in Theorem 4.25 is trivially fulfilled as X} = 0. Furthermore,
condition (i) of Theorem 4.12 (established in the proof 2 of Theorem 4.19) translates into
(ii) in Theorem 4.25.
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5 Applications of the functional CLT

5.1 The minimum and maximum of the Brownian path

(9.10) | Theorem 5.1 Consider the standard Wiener process W = (W;,0 <t < 1) and let

m = inf W, M = sup W,.

0<t<1 0<t<1
Ifa<0<banda<d <V <b, then

Pla<m<M<b o <W; <U)

_ i (®(2k(b — a) + ) = B(2k(b — a) + )

— Z ( (2k(b—a) +2b—d') — <I>(2k(b—a)+2b—b’)>,

so that with a’ = a and b/ = b we get

[e.9]

Pa<m<M<b)=Y (—1)’“<<I>(k;(b —a)+b) — B(k(b—a) + a>).
k=—o00
Proof. Let S, be the symmetric simple random walk and put m, = min(Sp, ..., S,),

M, = max(Sp,...,S,). Since the mapping of C into R* defined by

x — (irtlf:c(t), sup x(t), z(1))

is continuous, the functional CLT entails n='/2(m,,, M,, S,) = (m, M, W,;). The theo-
rem’s main statement will be obtained in two steps.
Step 1: show that for integers satisfying i < 0 < j and i < i’ < 5/ < 7,

Pl <m, <M, <j;i <S,<j)

- i P2k(j —i)+1i' < S, <2k(j—1i)+7")

k=—0o0
- Z (2k(j—i)4+2j— 5 < Sp<2k(j—1i)+25—7).
k=—o0

In other words, we have to show that fori <0< j,i <<y

o0

P(i <my <M, <j; Sy=10)= > P(S,=2k(j—i)+1)
k=—00
—Z 2k(j — i) +2j — ). (*)

Observe that here both series are just finite sums as |S,| < n.
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Equality (x) is proved by induction on n. For n =1, if j > 1, then
IP’(i<m1 < M, <j; 51:1):]}»(51:1)

o o

= > P(Si=2k(j—i)+1)— Y P(Sy =2k(j —i)+2j — 1),

k=—00 k=—00
and if ¢+ < —1, then
P(i <m < M, <j; S)=—1) =P(S, = —1)

— i P(Sy = 2k(j —i) — 1) — i P(Sy = 2k(j — i) + 2 + 1).

k=—o00 k=—o0

Assume as induction hypothesis that the statement holds for (n—1, 4, j,1) with all relevant
triplets (4, j,1). Conditioning on the first step of the random walk, we get

1
P(i < m, <M, < j; Sn:l):§-]P’(z'—1<mn_1§Mn_1<j—1; Spo1=1-1)

1
+§P(Z+1<mn,1§Mn,1<‘7+1, Sn,1:l+1),

which together with the induction hypothesis yields the stated equality (x)
2P(i <my, < M, < j; S, =1)

- i (P(Sn,l = 2h(j — i)+ 1 — 1)+ P(Sp_1 = 2k(j —4) + 1 + 1))
- i (P(Sn_l:2k(j—i)+2j—l+1)+IP(Sn_1=2k(j—z')+2j—l—1)>
k=—o00
—22 k(j—i —I—Z—QZ 2k(j — i)+ 25 —1).

Step 2: show that for ¢ > 0 and a < b,

[e.e]

3 ]P’(Qk[c\/ﬁj + lav/n) <S, < 2k|ev/n) + Lbﬁj)

k=—o0

— Z( (2kc+b) — <I>(2k:c+a)>, n — oo.

This is obtained using the CLT. The interchange of the limit with the summation over k
follows from

lim " P(2k[cvn] + av/n] < S, < 2k[ev/n] + [bVn] ) =

k0—>oo ‘k‘>k’0

which in turn can be justified by the following series form of Scheffe’s theorem. If
Y kSkn = Y_pSk = 1, the terms being nonnegative, and if s, — s for each k, then
>k TkSkn — Y TkSk provided 7y is bounded. To apply this in our case we should take

St = P(2k|v/0] = (Vi) < S0 < 2K[Va] + [V0]), s = ®(2k +1) — B(2k — 1),
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M15

Corollary 5.2 Consider the standard Wiener process W. If a < 0 < b, then

P(sup W, < b) =29(b) — 1,

0<t<1
P( inf Wi >a)=1—-2%(a),
0<t<1
P(sup Wi <b)=2 > {@((4]{: 1)) — B((4k — 1)5)}.
0<t<1 antt

5.2 The arcsine law

Lemma 5.3 For x € C and a Borel measurable, bounded v : R — R, put h(x) =
folv(x(t))dt. If v is continuous except on a set D, with \(D,) = 0, where X is the
Lebesgue measure, then h is C-measurable and is continuous except on a set of Wiener
measure (.

Proof. Since both mappings # — z(t) and ¢ — z(t) are continuous, the mapping (z,t) —
x(t) is continuous in the product topology and therefore Borel measurable. It follows that
the mapping ¢(x,t) = v(x(t)) is also measurable. Since 1 is bounded, h(x) = fol Y(x, t)dt
is C-measurable, see Fubini’s theorem.

Let E = {(z,t) : z(t) € D,}. If W is Wiener measure on (C,C), then by the
hypothesis A(D,) = 0,

W{xz: (z,t) € E} = W{z : z(t) € D,} = 0 for each ¢ € [0, 1].

It follows by Fubini’s theorem applied to the measure W x A on C x [0,1] that A{t :
(x,t) € E} = 0 for all x outside a set A, € C satisfying W(A4,) = 0. Suppose that
|z, — || = 0. If © ¢ A,, then z(t) ¢ D, for almost all ¢t and hence v(x,(t)) — v(z(t))
for almost all ¢. It follows by the bounded convergence theorem that

1 1
if v ¢ A, and ||z, — z|| = 0, then / v(z,(t))dt — / v(x(t))dt.
0 0

Exercise 5.4 Let W be a standard Wiener process and ¢y, € (0,1). Put W! = %
for s = i:ig, t € [to, 1]. Using the Donsker invariance principle show that (W.,0 < s <1)

is also distributed as a standard Wiener process.

Lemma 5.5 Fach of the following three mappings h; : C — R

hy(z) = sup{t: z(t) = 0,t € [0, 1]},
ho(x) = Mt : z(t) > 0,t € [0, 1]},
hs(z) = Mt : z(t) > 0,t € [0, h1(2)]}

1s C-measurable and continuous except on a set of Wiener measure 0.

Proof. Using the previous lemma with v(2) = 1{.c(0,00)} We obtain the assertion for h,.
Turning to hy, observe that

{z:h(x)<a}={z:2(t)>0,t o, 1]} U{x:x(t) <0,t€ [a,1]}
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(9.23)

is open and hence h; is measurable. If h; is discontinuous at z, then there exist 0 < ty <
t; < 1 such that z(t;) = 0 and

either z(t) >0 forallt € [ty,1]\ {t:} or x(t) <O0forallte [ty 1]\ {t:}.

That h; is continuous except on a set of Wiener measure 0 will therefore follow if we
show that, for each ty, the random variables

My = sup{W, t € [ty,1]} and inf{W,;, ¢t € [to, 1]}

have continuous distributions. By the last exercise and Theorem 5.1, M’ = M, — W, has
a continuous distribution. Because M’ and W, are independent, we conclude that their
sum also has a continuous distribution. The infimum is treated the same way.

Finally, for hs, use the representation

hs(z) = ¥(x,hi(z)), where ¢(x,t) = /0 v(z(u))du  with v(2) = Lc(0,00)}-

Theorem 5.6 Consider the standard Wiener process W and let
T = hi(W) be the time at which W last passes through 0,
U = ho(W) be the total amount of time W spends above 0, and
V' = h3(W) be the total amount of time W spends above 0 in the interval [0,T].
so that
U=V +(1-T)1w,>0-

Then the triplet (T, V,W7) has the joint density

1 |Z| _ 22
f(t,v,2) = Locvarayg(t, 2),  g(t, 2) = %me 20-1) .

In particular, the conditional distribution of V' given (T, W7) is uniform on [0,T], and

2
P(T <t)=P(U <t) = =arcsin(vt), 0<t<1.
7
Proof. The main idea is to apply the invariance principle via the symmetric simple
random walk S,,. We will use three properties of S,, and its path functionals (7,,, Uy, V,,).
First, we need the local limit theorem for p, (i) = P(S,, = ¢) similar to that of Example

1.28:
' 1
if z, with n — ¢ being even, then \/—ﬁpn(z) — —#/2

vn 2

Second, we need the fact that

P(S; >1,...,8 1 >1,5 =i) = —pu(), i>1.
n

The third fact we need is that if Sy, = 0, then Us,,, = V5, and

1
n+1

P(‘/Qn:zy’SQn:O): s jZO,l,...,n.
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Using these three facts we obtain that for 0 < 25 <2k <n and 7 > 1,

P(T, = 2k,Vay = 2j, Sy = 1)
=P(Sor, = 0,Va,, = 27,41 > 1,..., 5,1 > 1,5, =1)
=P(Sor = 0)P(Var = 2jj|Sor = 0)P(Sop41 > 1,...,8,-1 > 1,5, = i[Sy = 0)
1 7

— 0)—— ok (7).
P03 g pmanll)
We apply Theorem 1.27 to the three-dimensional lattice of points (%, %, \/Lﬁ) for which
i =n (mod 2). The volume of the corresponding cell is 2 - 2 . \/lﬁ = 8n %2 If
2k 27 1
— =t ——=v, —=—=2z 0O<ov<t<]l, 2z>0,
n n Vn
then
n5/2
Vn V2 (0) n i n vnoovn—2k (i)
NG S 2k + 1) v/nn—2kn—2k 2 [
1 1 1 1 22

e 200 = g(t, 2).

_> [ —
o t3/zz(1 — )32 \ox

The same result holds for negative z by symmetry.
The joint density of (T, W) is tg(t, ) 1{o<t<1}, hence the marginal density for 7" equals

o0 22 zdz 1
frt) = / Folh,2)dz = /0 © a(1—t)P2t12 ~ (1 —t)1/241/?

o0

implying )
P(T <t) = =arcsin(vt), 0<t<1.

- ™
Notice also that

zdz
/ / tzdtdz—// 62” 1—t)3/2t3/2dt

Loqr=1/2 _2 dy _2
= — —_— y - U_l - 1

/u 7r(1—15)1/2t3/2 ), Vi-t =/, V2 — T

If (T,W;) = (t,2), then U is distributed uniformly over [1 —t, 1] for z > 0, and uniformly
over [0, t] for z < 0:

u—1+1

PU <u|T =t, W, =2) = ;

Liuei-t,1],2>0) + — 1{u€[0 #),2<0} + L{ue(t,1],2<0}-
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(9.32)

Thus the marginal distribution function of U equals

u—1+T
P(U <u) = E(—l{ue[l —T,1],W1 >0} T _1{u€ 0,7, W <0} T L{ue(r), W1<0})

/ / (u—1+1)g tzdtdz—l—/ /ugtzdtdz—i—/ /tgtzdtdz

zﬁ/l_ufT(t) (1—uw)+5 ZG(u /fT

1 1 2
= §IP’(T >1—u)+ §IP’(T < u) = = arcsin(y/u).
s

5.3 The Brownian bridge

Definition 5.7 The transformed standard Wiener process W2 = W, — tWy, t € [0, 1], is
called the standard Brownian bridge.

Exercise 5.8 Show that the standard Brownian bridge W*° is a Gaussian process with
zero mean and covariance E(WW?) = s(1 —t) for s < t.

Example 5.9 Define h: C — C by h(x(t)) = x(t)—tz(1). This is a continuous mapping
since p(h(x),h(y)) < 2p(x,y), and h(X™) = W° by Theorem 4.19.

Theorem 5.10 Let P. be the probability measure on (C,C) defined by
P(A)=P(W e Al0<W; <¢), AeC.
Then P. = W° as € — 0, where W° is the distribution of the Brownian bridge W°.

Proof. We will prove that for every closed F' € C
limsupP(W € F|0 <W; <¢€) <P(W° € F).

e—0

Using Wy = W, — tW; we get E(W2 W) = 0 for all ¢. From the normality we conclude
that W, is independent of each (W, ..., W¢ ). Therefore,

P(W°e AW, eB)=PW°e A)P(W;, € B), AeC;BEeTR,

and since Cy, the collection of finite-dimensional sets, see the proof of Lemma 4.13, is a
separating class, it follows

PW°e A0<W;<e)=P(W°e€ A), AeC,BeR.
Observe that p(W, W®) = |IW;|. Thus,
{{W1| <6yn{W € F} C {W° € Fs}, where Fs ={x:p(x,F) < d}.
Therefore, if € < 0
P(W e FI0<W, <e¢e) <P(W° e F5|0<W, <¢)=P(W° € Fy),
leading to the required result

limsupP(W € F|0 < W) <€) <limsupP(W° € Fs) =P(W° € F).

e—0 §—0
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Theorem 5.11 Distribution functions for several functionals of the Brownian bridge:

P(a < inf W <sup W7 < b) = Z <e_2k2(b_“)2 — 6_2(b+k(b_a))2), a<0<b,
t t

k=—o00

(sup\W°]<b)—1+22 2k2b2, b >0,
k=1

P(sup Wy <b) =P(inf W7 > —b) =1—e2, >0,
t t
P(ha(W°) <u) =u, wuel0,1].

Proof. The main idea of the proof is the following. Suppose that h : C — R is a
measurable mapping and that the set Dy, of its discontinuities satisfies W°(Dj,) = 0. It
follows by Theorem 5.10 and the mapping theorem that

P(h(W°) < @) = imP(h(W) < a0 < W, < ¢).

Using either this or alternatively,

P(h(W°) < a) =limP(h(W) <a| —e <W; <0)

e—0
one can find explicit forms for distributions connected with W°.
Turning to Theorem 5.1 with a <0 < b and o' = 0,0 = € we get

Pla<m<M<b0<W <e)

= (@(Zk(b —a)+¢) — P(2k(b - a)))

k=—o00

- Z ( (2k(b — a) + 2b) — (2k(b—a)+2b—e)>.

k=—o00

This implies the first statement as

D(z4€)—D(z) e/
— .
€ V271
As for the last statement, we need to show, in terms of U = hyo(W), that
ImP(U <u| —e <W; <0) = u,

e—0

or, in terms of V' = h3(W), that
ImP(V <ul —e <W; <0) = u.

e—0

Recall that the distribution of V' for given 7" and W is uniform on (0,7"), in other words,
L =V/T is uniformly distributed on (0, 1) and is independent of (7", ;). Thus,

PV<ul—-e<W <0)=PTL<ul—e<W <0)

1
:/ P(T <u/s|—e<W; <0)ds
0

1
:u+/ P(T <u/s| —e<W; <0)ds.
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It remains to see that
1

—CID(e) —500) / P(T <wu/s;—e < W; <0)ds

1
Sce_l/]P’(T<r—e<W1<O)—<ce ///tgtzdzdtdr

S ! dt
S ClEUu Om—}(), e — 0.

1
/ P(T <u/s|—e<W; <0)ds =

6 The space D = D|0, 1]

6.1 Cadlag functions

Definition 6.1 Let D = D0, 1] be the space of functions z : [0, 1] — R that are right
continuous and have left-hand limits.

Exercise 6.2 If z,, € D and ||z, — z|| — 0, then x € D.
For x € D and T' C [0, 1] we will use notation

we(T) = w(x, T) = sup |x(t) — x(s)],

s,teT

and write w,[t, t + 0] instead of w,([t, ¢+ d]). This should not be confused with the earlier
defined modulus of continuity

w,(0) = w(z,d) = sup wg[t,t+ J],
0<t<1-6

Clearly, if 77 C Ty, then w,(7T1) < w,(13). Hence w,(J) is monotone over 9.

Example 6.3 Consider x,(t) = the fractional part of nt. It has regular downward jumps
of size 1. For example, z(t) = tfort € [0,1), and x;(1) = 0. Another example: z5(t) = 2¢
for t € [0,1/2), z2(t) =2t — 1 for t € [1/2,1), and x5(1) = 0. Placing an interval [t, ¢ + ]
around a jump, we find w,, (§) = 1.

Lemma 6.4 For each x € D and each € > 0 there exist points 0 =to <ty < ...<t,=1
such that
Weltiog, t) <€, i=1,2,...,0.

It follows, that there exist at most finitely many points t at which |z(t) — z(t—)| > e,
therefore x has at most countably many jumps. It follows also that x is bounded, and also
that x can be uniformly approximated by simple functions constant over intervals, so that
it is Borel measurable.

Proof. Let t° = t°(¢) be the supremum of those ¢ € [0,1] for which [0,¢) can be de-
composed into finitely many subintervals satisfying w,[t;_1,t;) < €. To show that t° =1
observe first that t° > 0, because z(0) = z(0+). Since x(t°—) exists, the interval [0,¢°)
can itself be so decomposed. Now relation z(t°) = x(¢°+) makes t° < 1 impossible.
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Exercise 6.5 Find a bounded function = ¢ D with the following property: for any set
0=ty <t <...<t,=1there exists an i such that w,[t;_1,t;) > 1.

Definition 6.6 Let 0 € (0,1). Aset 0 =1ty < t; < ... <t, =11is called d-sparse if
t; —t;_y >d fori=1,... v. Define an analog of the modulus of continuity w,(d) by

wh (0) = w'(x,0) = inf max w,[t;_1,t;),
{t:} 1<i<v

where the infimum extends over all J-sparse sets {t;}. The function w/(0) is called a
cadlag modulus of x.

Exercise 6.7 Using Lemma 6.4 show that a function z : [0, 1] — R belongs to D if and
only if w/(d) — 0.

Exercise 6.8 Compute w}(9) for x = 1 q).

Lemma 6.9 For any z, w.(6) is non-decreasing over §, and w.,(8) < w,(25). Moreover,

for any x € D,
Jo S we(0) < 2w, (0) + jo,  Jo = sup |2(t) — z(i-)|.
0<t<1
Proof. Taking a d-sparse set with ¢; 1 <26 we get wl(6) < wx(25) To see that

w,(9) < 2w (5) + j. take a d-sparse set such that wg[ti—1,t;) < wl(6) + € for all 7. If
|t —s| <6, then s,t € [t;_1,t;41) for some i and |z(t) — x(s)| < 2(wl () + €) + Ja-

(12.28) | Lemma 6.10 Considering triples t1,t,ts in [0,1] put

Wl(8) = w'(2,0) = sup  sup {|e(t) — a(t)| A e(tz) — 2(0)]}.

t1<ta<t1+0 t1<t<t2
For any x, w/(0) is non-decreasing over §, and w?(§) < w ().

Proof. Suppose that w/(0) < w and {7;} be a d-sparse set such that w,[r;_1,7;) < w for
all i. If t; <t <ty <t +9, then either |z(t) — z(t;)| < w or |x(t2) — z(t)| < w. Thus
wr(§) < w and letting w | w’,(§) we obtain w(§) < wl,(0).

Example 6.11 For the functions z,(t) = lgecon-1yy and ¥, = lgep—n-1,1; we have
wy (0) =wjy () = 0, although w), (0) =w; (§) =1 forn>45"".

T

Exercise 6.12 Consider z,(t) from Example 6.3. Find w), (6) and w}, (9) for all (n,d).

xwx| Exercise 6.13 Compare the values of w/ () and w/(J) for the curve x on the Figure 4.

Lemma 6.14 For any x € D and ¢ € (0,1),

L2 < wl5)V Jo(6) — 2 0)] V]a1-) — (1 - 9] < ).
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delta

Figure 4: Exercise 6.13.

Proof. The second inequality follows from the definition of w/,(0) and Lemma 6.10. For
the first inequality it suffices to show that

(i) wl(8/2) < 6(w;’(5) V w,[0,8) V w,[1 — 6, 1)),

as these two relations imply

%‘/2) < w!/(6) V w,[0,8) V w,[1 — 5,1)

< (2w (0) +2[x(5) — 2(0)[) V (2wy(6) + 2|z (1—) — z(1 = 5)|)
< (4w (0)) V (4|2 (8) — z(0)]) V (4|lz(1=) — (1 = 9)]).
Here we used the trick

we[l —0,1) = limw,[1 —§,t) < 2wl(§) + 2lim |z(t) — z(1 — 9)|.
11 11
To see (i), note that, if t; <t < t5 < t; + 6, then either |z(t) — z(t1)| < wl(d), or
|z(ta) — x(t)| < wl(5). In the latter case, we have
() = ()] < |2(t) — x(t2)] + |o(tz) — =(t)] < wi(0) + [z (t2) — x(t1)].
Therefore, for to < t; + 9,

sup |2(t) — z(tr)| < wg(0) + |(t2) — x(t1)];

t1<t<ts

hence
sup |2(t) — x(s)] < 2(wy(9) + |2(t2) — z(t1)])-

t1<s,t<ta

We prove (ii) in four steps.
Step 1. We will need the following inequality

|z (s)—z(t1) [Nz (ta) —x(t)] < 2wl () if t1 < s <t <ty <ty+0. (%)

To see this observe that, by the definition of w’ (), either |z(s) — z(t1)| < w’(d) or both
|z(t2) — x(s)| < w?(5) and |z(t) — z(s)] < wl(d). In the second case, using the triangular
inequality we get |z(ty) — x(t)] < 2w7(9) .
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Step 2. Putting
a :=wh(0) Vwg0,0) Vw1l —461), Tpo:=A{t:x(t) —z(t—) > 2a},
show that there exist points 0 = sp < s < ... < s, = 1 such that s; — s;_1 > § and

Ty C{505---,5r}

Suppose uy,uz € T, o and 0 < u3 < uy < ug + 9. Then there are disjoint intervals
(t1,s) and (t,t2) such that uy € (t1,s), us € (t,t2), and t5 —t; < 0. As both these
intervals are short enough, we have a contradiction with (x). Thus (0,1) can not contain
two points from 7, ,, within ¢ of one another. And neither [0,0) nor [1 —J, 1) can contain
a point from T} .

Step 3. Recursively adding middle points for the pairs (s;_1, s;) such that s;—s;_1 > ¢
we get and enlarged set {so,...,s,} (with possibly a larger r) satisfying

Tpa C{s0,---,5}, 0/2<s8;—8-1<9, 1=1,...,r

Step 4. It remains to show that w/(§/2) < 6a. Since {so,...,s,} from step 3 is a
(0/2)-sparse set, it suffices to verify that

WelSi1,8:) <6, i=1,...,7
The proof will be completed after we demonstrate that
|z(ty) — x(t1)| < 6 for ;1 <t <ty <s;.
Define oq and o5 by

o1 =sup{o € [t1,ta] 1 sup |x(u) —z(t1)] < 2a},

t1<u<o
o9 =inf{o € [t1,ts] : sup |z(t2) — z(u)| < 2a}.
o<u<ts

If o1 < 09, then there are 01 < s < t < 09 violating (%) due to the fact that by definition
of a, we have w(§) < a. Therefore, o5 < oy and it follows that |z(o1—) — z(t1)] < 2«
and |z(ty) — x(01)| < 2cv. Since o1 € (s;-1, 8;), we have |z(o1) — z(01—)| < 2a implying

|2 (t2) = x(t)] < [a(ts) = x(o1)| + [2(01) = z(o1=)| + |2(01 =) = 2(t)] < 6a.

6.2 Two metrics in D and the Skorokhod topology

Example 6.15 Consider z(t) = lgeje,y and y(t) = lgepayy for a,b € (0,1). If a # b,
then ||x — y|| = 1 even when a is very close to b. For the space D, the uniform metric is
not good and we need another metric.

Definition 6.16 Let A denote the class of strictly increasing continuous mappings A :
[0,1] — [0,1] with A0 = 0, A1 = 1. Denote by 1 € A the identity map 1t = ¢, and put

IA]° = sup,., | log 2=22|}. The smaller is ||A||° the closer to 1 are the slopes of A:

e_”)\”o < )\t - )\8

< e
<—— <
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Exercise 6.17 Let A\, u € A. Show that
e = A<l = 1] - €
Definition 6.18 For x,y € D define
da,y) = mE{IA = 1]V o = A}

@(a.y) = imE{X°V = 9]}

Exercise 6.19 Show that d(x,y) < ||z — y|| and d°(z,y) < ||z — y||.

Example 6.20 Consider x(t) = lyepe,1y and y(t) = Lyepy for a,b € (0,1). Clearly, if
A(a) = b, then ||z — yA|| = 0 and otherwise ||z — yA| = 1. Thus

d(z,y) =inf{||]A=1|| : A € A, A(a) = b} = |a — b,

1 —
@*(w,y) = (A : A € A, M@) = b}) AL = ([log 2| v [log 7= ) AL,

so that d(x,y) — 0 and d°(x,y) — 0 as b — a.
Exercise 6.21 Given 0 < b < a < ¢ < 1, find d(z,y) for
2(t) =2 gy, Y1) = Lpepay + Litele)y-
Does d(z,y) = 0 as b — a and ¢ — a?
Lemma 6.22 Both d and d° are metrics in D, and d < e* — 1.
Proof. Note that d(x,y) is the infimum of those € > 0 for which there exists a A € A with
sup |\t —t| = sup it — A" < e,

sup |(t) — y(M)| = sup [z(A't) —y(®)] <e.

Of course d(x,y) > 0, d(z,y) = 0 implies x = y, and d(z,y) = d(y,z). To see that d is a
metric we have to check the triangle inequality d(z, z) < d(x,y) + d(y, z). It follows from
[ArAe = 1| < [[A = 1] + [[A2 = 1],
[z = 2M ]l <l = yholl + lly — 24

Symmetry and the triangle inequality for d° follows from |[A~!||° = || A||° and the inequality
[Aadafl” < [AL + (Ao

d°

That d°(z,y) = 0 implies * = y follows from d < e* — 1 which is a consequence of

|z — yA|| < el#=vAl — 1 and

At — A0
IA—1] = sup ¢

- 1‘ < el 1,
o<t<1 | =0 -

The last inequality uses |u — 1] < el*&¥l —1 for u > 0.
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(12.14)

Example 6.23 Consider j,, the maximum jump in z € D. Clearly, [j, — j,| < € if
|z — y|| < €/2, and so j, is continuous in the uniform topology. It is also continuous in
the Skorokhod topology. Indeed, if d(z,y) < €/2, then there is a A such that |A—1|| < €/2
and ||z —yA|| < €/2. Since j, = jya, we conclude using continuity in the uniform topology

e = Jyl = ljz — il < e
Lemma 6.24 If d(x,y) = 6% and § < 1/3, then d°(z,y) < 46 + w’,(d).

Proof. We prove that if d(z,y) < 6% and § < 1/3, then d°(z,y) < 46 + w/(§). Choose
p € A such that ||u—1|| < 6% and ||zp~! —y|| < 6%. Take {t;} to be a §-sparse set satisfying
Welti—1,t;) < wl(0) + 9 for each i. Take A to agree with p at the points {t;} and to be
linear in between. Since u~'At; = t;, we have t € [t;_1,t;) if and only if u= '\t € [t;_1,1;),
and therefore

[2(t) =y < |o(t) — (" A)] + |2 (n™ M) — y(M)] < wy(0) + 6 + 67 < 40 + wy (6).

Now it is enough to verify that ||A||® < 46. Draw a picture to see that the slopes of \ are

always between ‘&27(62) =1+ 26. Since |log(1l £ 20)| < 46 for sufficiently small ¢, we get
| Al|° < 49.

Theorem 6.25 The metrics d and d° are equivalent and generate the same, so called
Skorokhod topology.

Proof. By definition d(z,,z) — 0 (d°(z,,z) — 0) if and only if there is a sequence
An € A such that ||[A, — 1] = 0 (||\.]|° — 0) and ||z, A\, — z|| — 0. If d°(zp, ) — 0, then
d(x,,7) — 0 due to d < e — 1. The reverse implication follows from Lemma 6.24.

Definition 6.26 Denote by D the Borel o-algebra formed from the open and closed
sets in (D, d), or equivalently (D, d°), using the operations of countable intersection,
countable union, and set difference.

Lemma 6.27 Skorokhod convergence x, — x in D implies z,(t) — x(t) for continuity
points t of x. Moreover, if x is continuous on [0,1], then Skorokhod convergence implies
uniform convergence.

Proof. Let A\, € A be such that ||\, — 1|| = 0 and ||z, — .|| — 0. The first assertion
follows from
20 (t) — 2(t)] < [z (t) — 2(Aat)] + [2(Ant) — 2(F)].

The second assertion is obtained from
|20 — || < |20 — 2] + wa([| A — 1))
Example 6.28 Put x,(t) = lycja—2-1} + Ligejaro—n,1y and x(t) = 2 - 1jejaayy for some

a € (0,1). We have xz,(t) — z(t) for continuity points ¢t of z, however x, does not
converge to = in the Skorokhod topology.
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Exercise 6.29 Fix § € (0,1) and consider w’,(d) as a function of x € D.
(i) The function w/(d) continuous with respect to the uniform metric since

W (6) — w(9)] < 2[|x —yl|.

Hint: show that w,[t;—1,t;) < wylti—1,t;) + 2||z — y]].
(ii) However w!’,(6) is not continuous with respect to (D, d). Verify this using z, =
1[075+2—n) and x = 1[075).

Exercise 6.30 Show that h(z) = sup, z(¢) is a continuous mapping from D to R. Hint:
show first that for any A € A,

|h(x) = h(y)| < ||z —yAll.

6.3 Separability and completeness of D

Lemma 6.31 Given 0 = sy < 1 < ... < S, =1 define a non-decreasing map
k:[0,1] — [0, 1] by setting

Kl — Sj—1 fOT’t € [ijl,Sj), ]: 1,...,]€,
1 fort=1.

If max;(s; — sj-1) < 6, then d(zk,x) < 0V w,(0) for any x € D.

Proof. Given € > 0 find a d-sparse set {¢;} satisfying w,[t;_1,t;) < w!(J) + € for each i.
Let A € A be linear between \t; = s; for t; € (s;_1,5;], 7 =1,...,k and A0 = 0. Since
|A —1|| <4, it suffices to show that |z(kt) — z(A~)| < w’,(d) + €. This holds if ¢ is 0 or
1, and it is enough to show that, for ¢ € (0,1), both st and A7'¢ lie in the same [t;_1, ;).
We prove this by showing that xt < t; is equivalent to A% < t;, i = 1,..., k. Suppose
that ¢; € (sj_1,s;]. Then

kt<t; = kKt<s; = kKt<s;1 = Kt<l

Thus st < t; is equivalent to xt < s; which in turn is equivalent to ¢t < s;. On the other
hand, A\t; = s;, and hence ¢ < s; is equivalent to t < A; or A< t;.

Example 6.32 Let x,(t) = ey toro-nyy. Since d(z,, xppq) = 27" — 27771 = 2771
the sequence (z,) is fundamental. However, it is not d-convergent. Indeed, z,(t) — 0
for all t # ty and Skorokhod convergence x,, — = in D by Lemma 6.27, should imply
x(t) = 0 for all points of continuity of x. Since x € D has at most countably many points
of discontinuities, by right continuity we conclude that x = 0. Moreover, since the limit
x = 0 is continuous, we must have ||z, — z|| — 0. But ||z,| = 1.

Theorem 6.33 The space D is separable under d and d°, and is complete under d°.

Proof. Separability for d. Put s; = j/k, j = 1,...,k. Let By be the set of functions
having a constant, rational value over each [s;_1, s;) and a rational value at t = 1. Then
B = UBy, is countable. Now it is enough to prove that given x € D and ¢ > 0 we can
find some y € B such that d(z,y) < 2¢. Choosing k such that k= < € and w/,(k™!) < €
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we can find y € By, satisfying d(zk,y) < ¢, for k defined as in Lemma 6.31. It remains to
see that d(xk, ) < € according to Lemma 6.31.

Completeness. We show that any d°-fundamental sequence x,, € D contains a subse-
quence y = T, that is d°-convergent. Choose ny in such a way that d°(yy, yx1) < 275
Then A contains gy, such that ||ug||° < 27% and ||yppue — yra || < 275

We suggest a choice of A, € A such that || Ax]|°® — 0 and ||yxAr — y|| — 0 for some
y € D. To this end put g m = fifleti - - - hotm- From

H/}[/k’m+1 — ,U/k,mH S ”,U/k+m+1 — 1” . e”/‘*k/"k+1~~~ﬂk+m”0

< (elmwemrl® 1) . gl ml

. —k —k—m I
§2 k m'€2 +...+2 <2 k m+2

we conclude that for a fixed k the sequence of functions ., is uniformly fundamental.
Thus there exists a A, such that ||px,m — Akl = 0 as m — oco. To prove that A\, € A we
use

k+1

log < lprpirrr - premll® < 27

Pkt — HemS
t—s
Letting here m — co we get || Ax]|° < 27%FL. Since || Ag]|° is finite we conclude that A is
strictly increasing and therefore A\, € A.

Finally, observe that

lusAe — Ukt ks || = vessders — veri el = e — v | < 275

It follows, that the sequence ypA\r, € D is uniformly fundamental and hence ||yx A, —y|| — 0
for some y. Observe that y must lie in D. Since [|A||° — 0, we obtain d°(yx,y) — 0.

6.4 Relative compactness in the Skorokhod topology

First comes an analogue of the Arzela-Ascoli theorem in terms of w/(d), and then a
convenient alternative in terms of w/(4).
Theorem 6.34 A set A C D is relatively compact in the Skorokhod topology iff
(1) sup[lz] < oo,
€A
(it)  limsupw,(d) = 0.
0—0z€A
Proof of sufficiency. Put oo = sup, 4 ||z||. For a given € > 0,
put H. = {o;}, where —a=ap < a; < ... < ap=aand a; —aj_1 <k,
and choose § < € so that w/,(0) < € for all z € A.
According to Lemma 6.31 for any x = ;) satisfying max;(s;_1 — s;) < §, we have
d(zk,z) < e for all v € A. Take B, be the set of y € D that assume on each [s;_1, s;)
a constant value form H, and y(1) € H.. For any z € A there is a y € B, such that
d(zk,y) < e. Thus B, forms a 2e-net for A in the sense of d and A is totally bounded in
the sense of d.
But we must show that A is totally bounded in the sense of d°, since this is the metric
under which D is complete. This is true as according Lemma 6.24, the set Bj is an
¢’-net for A, where ¢ = 46 + sup, 4 w.,(0) can be chosen arbitrary small.
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Theorem 6.35 A set A C D is relatively compact in the Skorokhod topology iff

12.5

(i) sup x| < oo,
z€A
lim6—>0 SUPgea W (5) 7
(44) limg_, o Sup,c |z(6) — z(0)] = 0,
limg_,o SUp,e 4 |I(1 ) ( - 5)‘ =0.

Proof. It is enough to show that (ii) of Theorem 6.35 is equivalent to (ii) of Theorem
6.34. This follows from Lemma 6.14.

7 Probability measures on D and random elements

7.1 Finite-dimensional distributions on D

Finite-dimensional set play in D the same role they do in C.

Definition 7.1 For T' C [0, 1], define in D the subclass D¢(T) of finite-dimensional sets
7' . (H), where k is arbitrary, ¢; belong to T, and H € R*.

-----

Theorem 7.2 Consider projection mappings m, . 4, : D — RF, then the following three
statements hold.

(a) The projections my and m are continuous, fort € (0,1), m; is continuous at x if
and only if x is continuous at t.

(b) Each 7y, 4, is a measurable map.

(¢) If T contains 1 and is dense in [0,1], then o{m; : t € T} = o{Dy(T)} = D and
D¢(T) is a separating class.

.....

Proof. (a) Since each A € A fixes 0 and 1, my and 7; are continuous: for i = 0, 1,
d(z,y) > inf [z = yAll = |z(i) —y(i)] = Imi(z) — m(y)]-
€

Suppose that 0 < ¢t < 1. If = is continuous at ¢, then by Lemma 6.27, 7; is continuous
at x. Suppose, on the other hand, that =z is discontinuous at ¢. If \,, € A carries t to
t —1/n and is linear on [0,¢] and [t,1], and if z,(s) = x(A\,s), then d(x,,z) — 0 but
xn(t) = x(t).

(b) A mapping into R* is measurable if each component mapping is. Therefore it
suffices to show that 7; is measurable. Since 7; is continuous, we may assume ¢ < 1. We
use the pointwise convergence

t+e
he(z) := el/ zsds — m(zr), €—0, ze€D.
t

If 2" — x in the Skorokhod topology, then x}' — x; for continuity points ¢ of x. The
almost sure convergence ™ — x and the uniform boundedness of (z") imply h.(z") —
he(z). Thus for each €, h. is continuous and therefore measurable, implying that its limit
7 18 also measurable.
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(c) By right-continuity and the assumption that 7" is dense, it follows that m is
measurable with respect to o{D;(T)}. So we may as well assume that 0 € T'.

Suppose sg, ..., S are points in T satisfying 0 = sg < ... < s = 1. For a =
(g, ..., a) € R*™ define Va € D by

. (0751 for t € [Sj_l,Sj), j: 1,. . .,k’,
(Va)(t) = { ap  fort=1.

Clearly, V : R¥' — D is continuous implying that x = V..., 1S measurable

o{D¢(T)}/D.

Since T is dense, for any n we can choose s?,..., s} so that max;(s? — sl ;) < n~'.
Put k" = Vg . With this choice define a map A, : D — D by A,z = zx". By
Lemma 6.31, A,xr — x for each . We conclude that the identity map is measurable
d{D¢(T)}/D and therefore D C o{D(T)}. Finally, since Df(T) is a m-system, it is a

separating class.

k

Definition 7.3 Let D, be the set of count paths: nondecreasing functions x € D with
x(t) € Z for each t, and z(t) — z(t—) = 1 at points of discontinuity.

Exercise 7.4 Find d(z,y) for x,y € D, in terms of the jump points of these two count
paths. How does a fundamental sequence (x,,) in D, look like for large n? Show that D,
is closed in the Skorokhod topology.

Lemma 7.5 Let Ty = {t1,ts,...} be a countable, dense set in [0,1], and put w(zx) =
(x(t1), x(t2), .. .).

(a) The mapping m : D — R is D/R>-measurable.

(b) If x,x, € D. are such that w(x,) — w(z), then x, — x in the Skorokhod topology.

Proof. (a) In terms of notation of Section 2.3,
e | k
T (m, H)=m, ,HeD for H € R”,

and the finite-dimensional sets 7, ' H generate R*.

(b) Convergence 7(x,) — w(x) implies x,(¢t;) — 2(t;), which in turn means that
xn(t;) = x(t;) for n > n;, for all i = 1,2,.... A function in z € D, has only finitely many
discontinuities, say 0 < s < ... < s < 1. For a given € choose points u; and v; in Tj in
such a way that u; < s; < v; < u; + € and the intervals [v;_1,w;],7 = 1,..., k are disjoint,
with v9 = 0. Then for n exceeding some ng, x, agrees with x over each [v;_1,u;] and
has a single jump in each [u;,v;]. If A, € A carries s; to the point in [u;, v;] where z,,
has a jump and is defined elsewhere by linearity, then ||\, — 1|| < e and x,(A\,t) = z(t)
implying d(z,,x) < € for n > ny.

Theorem 7.6 Let Ty be a countable, dense set in [0,1]. If P,(D.) = P(D.) =1 and
Pnﬂa’lm’tk = Pﬂa}.."tk for all k-tuples in Ty, then P, = P.

Proof. The idea is, in effect, to embed D, in R and apply Theorem 2.14. By hypothesis,
P,nlm;' = Pr~ iz ', but since in R™ weak convergence is the same thing as weak
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convergence of finite-dimensional distributions, it follows that P,7~! = Pr~! in R*.

For A C D, define A* = 7! (7 A)~. If A € D, then
limsup P,(A) < limsup P,(A*) = limsup P, (7 *(7rA4)") < P(r*(wrA)") = P(A").

Therefore, if F' € D is closed, then
limsup P, (F) = limsup P,(FND.) < P(FND.)")=P(FND.) ND,).

It remains to show that if ' € D is closed, then (FF N D.)*N D, C F. Take an
x € (FND.)*ND.. Since x € (FND,.)*, we have n(x) € (n(F N D,.))” and there is a
sequence z,, € F'N D, such that m(x,) — w(x). Because x € D,, the previous lemma
gives z, — x in the Skorokhod topology. Since x,, € F' and F' € D is closed, we conclude
that z € F.

Corollary 7.7 Suppose for each n, &1, ..., Enn are @id indicator r.v. with P(&,; = 1) =
a/n. If X' = Zignt Eni, then X™ = X in D, where X is the Poisson process with
parameter a.

Proof. The random process X} = > ._ . &, has independent increments. Its finite-
dimensional distributions weakly converge to that of the Poisson process X with

k t — k
PX,— X, =k) = %ea(t‘g) for0 <s<t<l1.

Exercise 7.8 Suppose that £ is uniformly distributed over [%, %], and consider the ran-
dom functions

Xe =2 1peeny,  Xi' = Lpele—n— + Liselern—1113-

Show that X" # X, even though (X7,...,X}') = (X,,,...,Xy,) for all (t1,...,%).
Why does Theorem 7.6 not apply?

Lemma 7.9 Let P be a probability measure on (D, D). Define Tp C [0,1] as the collec-
tion of t such that the projection m; is P-almost surely continuous. The set Tp contains
0 and 1, and its complement in [0,1] is at most countable. For t € (0,1), t € Tp is
equivalent to P{x : z(t) # x(t—)} = 0.

Proof. Recall Theorem 7.2 (a) and put J; = {x : z(t) # z(t—)} for a ¢t € (0,1). We
have to show that P(.J;) > 0 is possible for at most countably many t. Let Ji(¢) = {x :
|z(t) — xz(t—)| > €}. For fixed, positive € and J, there can be at most finitely many ¢ for
which P(Ji(€)) > 0. Indeed, if P(.J;,(€)) > ¢ for infinitely many distinct ¢, then

P(J,(€) i.0.) = P(limnsup Ji, (€)) > limsup P(J;, (€)) > 0,

n—o0

contradicting the fact that for a single x € D the jumps can exceed € at only finitely
many points, see Lemma 6.4. Thus P(J;(€)) > 0 is possible for at most countably many
t. The desired result follows from

{t: P(J;) >0} = J{t: P(J(n7")) > 0},
which in turn is a consequence of P(Ji(¢)) T P(J;) as € ] 0.
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C13

Theorem 7.10 Let P,, P be probability measures on (D, D). If the sequence (P,) is
! 1, holds whenever ti, ... t lie in Tp, then B, = P.

----------

Proof. We will show that if a subsequence (P,/) C (P,) converges weakly to some @, then
Q = P. Indeed, if ¢;,...,t; lie in Ty, then m, _, is continuous on a set of ()-measure
1, and therefore, P, = () implies by the mapping theorem that Pn’Tt_l,l,,,,
On the other hand, if ¢y, ..., lie in Tp, then Pn/ﬂ;}wtk = P7Tt_11

Therefore, if t1,...,t; lie in Tp N Tp, then Qwil t,- It remains to see that

Dy(To NTp) is a separating class by applying Lemma 7.9 and Theorem 7.2.

7.2 Tightness criteria in D

Theorem 7.11 Let P, be probability measures on (D, D). The sequence (P,) is tight if
and only if the following two conditions hold:

(¢)  lim limsup P,(x : ||z|| > a) =0,

a—o0  N—o0

(it)  limlimsup P,(x : w,(8) > €) =0, for each positive €.

6—0 m—o0
Condition (ii) is equivalent to
(it) Ve,n>0;35,n0>0: Pu(x:wl(d) >e€)<mn, forn>ng.
Proof. This theorem is proven similarly to Theorem 4.25 using Theorem 6.34. Equivalence
of (ii) and (i’) is due to monotonicity of w/,(d).
Theorem 7.12 Let P, be probability measures on (D, D). The sequence (P,) is tight if
and only if the following two conditions hold:

(1) lim limsup P,(x : ||z|| > a) =0,

a—r o0 n—oo
(17) Ve,n > 0;35,n9>0: P,(x: |z >e€) <, for n > ng.

Proof. This theorem follows from Theorem 7.11 with (i) and (4i') using Lemma 6.14.
(Recall how Theorem 6.35 was obtained from Theorem 6.34 using Lemma 6.14.)

Lemma 7.13 Turn to Theorems 7.11 and 7.12. Under (ii) condition (i) is equivalent to
the following weaker version:
(i') for each t in a set T that is dense in [0, 1] and contains 1,

lim limsup P, (z : |z(t)| > a) =0,

a—0o0 N—o0

Proof. The implication (i) = (') is trivial. Assume (ii) of Theorem 7.11 and (). For
a given § € (0,1) choose from T points 0 < s; < ... < s, = 1 such that max{sq, sy —
S1y- .-, 8k — Sk_1} < 0. By hypothesis ('), there exists an a such that

P,(z : max|z(s;)| > a) <n, n>ng (%)
J
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For a given z, take a d-sparse set (to,...,t,) such that all w,[t;_1,t;) < w,(d) + 1. Since
each [t;_1,t;) contains an s;, we have

]| < max |a(s;)] + w,,(d) + 1.
J

Using (ii’) of Theorem 7.11 and (x), we get P,(z : ||z]| > a + 2) < 2n implying (i).

7.3 A key condition on 3-dimensional distributions

The following condition plays an important role.

Definition 7.14 For a probability measure P on D, we will write P € H, g, if there
exist « > 1, f > 0, and a nondecreasing continuous H : [0, 1] — R such that for all € > 0
anda110§t1§t2§t3§1,

PW;}tQ’t3{<Zl, 29,23) ¢ |22 — 21| > €, |23 — 23] > €} < 6_2B(H(t3) — H(ty))".

For a random element X on D with probability distribution P, this condition P € H, g
means that foralle >0and all 0 <r <s<¢t<1

P(IX, = X,| > €%, — X,| > ¢) < 2 (H(t) — H(r)"

Lemma 7.15 Let a random element X on D has a probability distribution P € H,g.
Then there is a constant K, 3 depending only on o and 3 such that

p(sup (X~ X A LX)~ X,[) 2 €) < Ce (H(1) - H(O0))".

r<s<t €26

Proof. The stated estimate is obtained in four consecutive steps.
Step 1. Let Ty = {i/2%,0 <i < 2%} and

A, = max (|XS — X, A | Xy — X over the adjacent triplets r < s <t in Tk),
B, = max (|XS — Xo| A | Xy — X| over r < s <t from Tk).

We will show that By < 2(A; + ...+ Ag). To this end, for each t € T}, define a t,, € T},
by
t ift €Ty i,
th=14 t—27% ift ¢ Ty and | X; — X; o x| <Xt — Xeposl,
t4+27F if ¢ ¢ Tj.—1 and |Xt — Xt_Q—kl > |Xt — Xt+2—k|,

so that | X; — X;,| < Ag. Then for any triplet r < s <t from Ty,
‘Xs - Xr‘ < |Xs - Xsn‘ + |Xsn - Xrn’ + |XT - Xrnl < ’Xsn - Xrn‘ + 2Aka
| X — Xo| < | Xy, — X, | + 24,

Since here 7, < s, <t, lie in Ty_1, it follows that | X, — X, | A | Xy — X,| < Br_1 + 24,
and therefore,
Br < Bp1 4+ 24 <2(A1 + ...+ Ag), k>1.
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Step 2. Consider a special case when H(t) = t. Using the right continuity of the
paths we get from step 1 that

sup (| X, — X, | A |X, — X)) <2ZA,<,

r<s<t 1

This implies that for any 6 € (0, 1),

IP’( sup (|1X, — X[ A X, — X,|) >26)§ (ZA > )

< P(iAk > ¢(1 —Q)Zf)’f) < ZIP’(Ak > ¢(1 —e)ek)

oo 2F—1

< Z Z P(’Xi/% - X(i—l)/Qk’ A |X(i+1)/2k - Xz‘/2k| > 5(1 - Q)Gk)-

k=1 i=1

Applying the key condition with H(t) =t we derive from the previous relation choosing
a 0 € (0,1) satisfying #%° > 217 that the stated estimate holds in the special case

2(1 k)a

IP’( sup (| Xs — X, | A |X: — Xi) >2e> ZQk I

r<s<t

— 26104
_62B1_ 25;0 2
1

Step 3. For a strictly increasing H(t) take a so that a®* H(1)® = 1, and define a new
process Y; by Y; = aXy(), where the time change b(t) is such that H(b(t)) = tH(1). Since
P(\Ys - Y[zl =Y 2> 6) = P<|Xb(s) — X > a7t [ Xy — X > a’le>

< G_Qﬂ(t - T)av

we can apply the result of the step 2 to the new process and prove the statement of the
lemma under the assumption of step 3.

Step 4. If H(t) is not strictly increasing, put H,(t) = H(t) + vt for an arbitrary small
positive v. We have

P(1X, — X, | 2 6 [X, — X, > ¢) < P(H,(1) — Hy(r)",
and according to step 3

P( sup (X, — X A LX)~ X,J) 2 €) < S (H(1) 40— HO)"

r<s<t 626
It remains to let v go to 0. Lemma 7.15 is proven.
Lemma 7.16 If P € H, g, then given a positive e,

Pl wyi(d) > €) < 2@;’5 (H(1) — H(0))(wy(26))*",

so that P(z : wl(§) >€) — 0 as § — 0.

46



13.6

Proof. Take t; =40 for 0 <4 < |[1/6] and tiy5 = 1. If [t —r| < 6, then r and ¢ lie in
the same [t;_1,t;41] for some 1 < ¢ < [1/6] — 1. According to Lemma 7.15, for X with
distribution P,

Kap
€26

IP( sp (IXo— XA X — X)) > e) <
t

i—1Sr<s<t<t;t1

(H (ti41) — H(ti-1))",
and due to monotonicity of H,

]P’(w”(X, 5) > e) < Y P (H(t) — Hit))"
=1

>

< (s (H(E+20) — HOY™)2AH() ~ H(0))
= 20 (1) — H(0)) (o (28))"

It remains to recall that the modulus of continuity wg(260) of the uniformly continuous
function H converges to 0 as d — 0.

7.4 A criterion for existence

Theorem 7.17 There exists in D a random element with finite dimensional distributions
iy, provided the following three conditions:
(i) the finite dimensional distributions p, 4, are consistent, see Definition 2.15,
(i1) there exist o > 1, f > 0, and a nondecreasing continuous H : [0,1] — R such
that for all € > 0 and all 0 < t; <ty <t3 <1,

Lty e a:{ (21, 22, 28) ¢ |22 — 21] > €, 25 — 20| > €} < € P (H(ts) — H(ty))",
(111) piervs{(21,22) 1 |22 — 21| > €} = 0 as § L 0 for each t € [0,1).

Proof. The main idea, as in the proof of Theorem 4.15 (a), is to construct a sequence
(X™) of random elements in D such that the corresponding sequence of distributions (P,)
is tight and has the desired limit finite dimensional distributions i,

Let vector (X,0,...,Xnon) have distribution g,
define

..... t
ton, Where t; =t = 127", and

.....

o X forte 2 (4127, =020 1,
B Xpon fort=1.

The rest of the proof uses Theorem 7.12 and is divided in four steps.
Step 1. For all € > 0 and r,s,t € T,, = {to, ..., tan } we have by (ii),

P(IX7 = X7| > € | X7 = X2| > €] < e (H(t) - H(r))",
It follows that in general for 0 <r < s <t <1

P(IX = X7| > € X7 = X2| > ¢) < e (H(t) - H(r —27))",
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where H(t) = H(0) for t < 0. Slightly modifying Lemma 7.16 we obtain that given a
positive €, there is a constant K, g

Po(z:wl(0) > €) < Ko (H(1) — H(0))(wy(35)*", ford>27"

This gives the first part of (ii) in Theorem 7.12.

Step 2. If 27% < §, then

| X7 < max | X} + w"(X™,9).
teTy

Since the distributions of the first term on the right all coincide for n > k, it follows by
step 1 that condition (i) in Theorem 7.12 is satisfied.

Step 3. To take care of the second and third parts of (ii) in Theorem 7.12; we fix some
do € (0,1/2), and temporarily assume that for § € (0, dy),

pos{(z1,22) : 21 = 20} =1, pi—si{(z1,22) 1 21 = 22} = 1. (%)

In this special case, the second and third parts of (ii) in Theorem 7.12 hold and we
conclude that the sequence of distributions P, of X, is tight.

By Prokhorov’s theorem, (X™) has a subsequence weakly converging in distribution
to a random element X of D with some distribution P. We want to show that Pﬂa,l”_7tk =
fty....1,.- Because of the consistency hypothesis, this holds for dyadic rational ¢; € U, T,,.
The general case is obtained using the following facts:

-1 1
Pnﬂ-tl,...,tk = Pﬂ'tl,...t

k)

—1 .
Pyt 4 = Mgyt for some ty; € Ty, provided k < 27,
/'Ltnla“wtnk = /’l’tl,...,tk‘

The last fact is a consequence of (iii). Indeed, by Kolmogorov’s extension theorem, there
exists a stochastic process Z with vectors (Zy,, ..., Z;, ) having distributions s, . . Then

by (iii), Zi1s 5 Z,as6 | 0. Using Exercise 1.21 we derive (Zipysoo oy Zey) 5 (Ziys oo Zyy)

lmplylng Mtnl,---,tnk = IU/tl,...,tk'
Step 4. It remains to remove the restriction (x). To this end take

0 for t < dy,

At = 1t:26§0 for (50 <t<1l-— (50,

1 for t > 1 — do.

Define vy, s, as p,, 1 for s; = AM;. Then the vy, satisfy the conditions of the
theorem with a new H, as well as (x), so that there is a random element Y of D with
these finite-dimensional distributions. Finally, setting X; = Y5, 141-25,) We get a process
X with the required finite dimensional distributions PW,;}wtk = [ty t)-

Example 7.18 Construction of a Levy process. Let v, be a measure on the line for
which v4(R) = H(t) is nondecreasing and continuous, ¢ € [0,1]. Suppose for s < ¢,
vs(A) < 1y(A) for all A € R so that v — v is a measure with total mass H(t) — H(s).
Then there is an infinitely divisible distribution having mean 0, variance H(t) — H(s),
and characteristic function

Pst(u) = eXP/

—00

ez 1 — juz
——— (1 — vs)(d2).

22
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We can use Theorem 7.17 to construct a random element X of D with Xy = 0, for which
the increments are independent and

H.Z(eiulXt1 eiuZ(Xt2 —Xa) L eiUk(thithfl)) = ¢0,t1 (u1)¢t1,t2 (u2> T ¢tk—17tk (uk)

Indeed, since ¢,(u) = ¢ s(u)ps(u) for r < s < t, the implied finite-dimensional dis-
tributions p, ., are consistent. Further, by Chebyshev’s inequality and independence,
condition (ii) of Theorem 7.17 is valid with a = § = 2:

Hty) — H(ty) H(ts) — H(ts)

2 2

Loty ot { (21, 23, 23) ¢ |22 — 21| > €, |23 — 20| > €} < -

< e H(H(ts) — H(t))™

€

Another application of Chebyshev’s inequality gives
H(t+6)— H(t)

€2

—0, 010.

Priro{ (21, 22) t|za — 21| > €} <

8 Weak convergence on D

Recall that the subset T C [0, 1], introduced in Lemma 7.9, is the collection of ¢ such
that the projection m; is P-almost surely continuous.

8.1 Ciriteria for weak convergence in D

Lemma 8.1 Let P be a probability measure on (D, D) and € > 0. By right continuity of
the paths we have lims_,, P(z : |z(6) — 2(0)| > €) = 0.

Proof. Put As = {z : |z(0) —x(0)| > €}. Let 9,, — 0. It suffices to show that P(As,) — 0.
To see this observe that right continuity of the paths we have

ﬂUA5k=@>

n>1k>n

and therefore, P(As,) < P(Ug>nAs,) — 0 as n — oo.

Theorem 8.2 Let P, P be probability measures on (D, D). Suppose Pnﬂal

holds whenever ty, ...ty lie in Tp. If for every positive €

(1) (lsz% Pz :|z(l) —xz(1 —0)| > €) =0,
(it)  limlimsup P,(z : wl(d) > ¢€) =0,

0—0 n—oo B

then P, = P.

Proof. This result should be compared with Theorem 4.12 dealing with the space C.

Recall Therom 7.10. We prove tightness by checking conditions (i’) in Lemma 7.13
and (ii) in Theorem 7.12. For each t € T, the weakly convergent sequence P,m, s tight
which implies (i) with Tp in the role of T'.
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As to (ii) in Theorem 7.12 we have to verify only the second and third parts. By
hypothesis, P, ;= Pry 5 so that for § € Tp,

limsup P, (z : [x(0) — z(0)| > €) < P(z: |x(0) — z(0)| > ),

n—o0

and the second part follows from Lemma 8.1.
Turning to the third part of (ii) in Theorem 7.12, the symmetric to the last argument
brings for 1 — 0 € Tp,

limsup P, (z: |x(1) —x(1 —=6)| > €) < P(z : |z(1) —z(1 — 0)| > ¢).

n—oo
Moreover*, since |z(1) — z(1—)| < w’(J), we see that given
[2(1=) —z(1 =9)| > ¢,

we have either |z(1) —z(1 —0)| > €/2 or w)(J) > €/2 or both. The last two observations
yield

limsup P, (z: |[x(1—=) —x(1 =0)| > €) < P(z : |z(1) —z(1 — 0)| > €/2)

n—00

+ limsup P, (z : w)(§) > €/2),

n—oo
and the third part readily follows from conditions (i) and (ii).

Theorem 8.3 For X" = X on D it suffices that

(i) (X%,...,X0) = (X4,...,Xy,) for points t; € Tp, where P is the probability
distribution of X,

(ZZ) X1 —X15=0 as 0 — 0,

(i) there exist « > 1, B > 0, and a nondecreasing continuous function H : [0,1] — R
such that

]E(]XQ — XX — Xg|5) < (H(t)— H(r)® for0<r<s<t<l.
Proof. By Theorem 8.2, it is enough to show that

lim limsupP<w”(X",5) > e) =0.

6—0 mn—oo

This follows from Lemma 7.16 as (iii) implies that X,, has a distribution P,, € H, 3.

8.2 Functional CLT on D

The identity map ¢ : C — D is continuous and therefore measurable C/D. If W is
Wiener measure on (C,C), then Wc™! is Wiener measure on (D, D). We denote this new
measure by W rather than Wc™t. Clearly, W(C) = 1. Let also denote by W a random
element of D with distribution W.

*Here we use an argument suggested by Timo Hirscher.
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Theorem 8.4 Let &1,&s, ... be iid r.v. defined on (2, F,P). If & have zero mean and
variance o® and X' = % then X™ = W.

Proof. We apply Theorem 8.3. Following the proof of Theorem 4.17 (a) one gets the
convergence of the fdd (i) even for the X™ as they are defined here. Condition (ii) follows

from the fact that the Wiener process W; has no jumps. We finish the proof by showing
that (iii) holds with o = 8 = 2 and H(t) = 2¢. Indeed,

Y

E(| X! — XX — X)) =0 for0<t—r<n’'
as either X™ = X" or X' = X”. On the other hand, for ¢ — r > n~! by independence,

]E(]Xg — X"2|XT - X;‘\z) _ |ns] ; |nr| . | nt] ; |ns]

< <LntJ WJ) < (2t — )2,

Example 8.5 Define (§,) on ([0, 1], Bpj, A) using the Rademacher functions &,(w) =
2w, — 1 in terms of the dyadic representation w = wjwsy.... Then (&,) is a sequence
of independent coin tossing outcomes with values £1. Theorem 8.4 holds with o = 1:

€1+~~~+£Lntj> W
< v t€[0,1] '

Lemma 8.6 Consider a probability space (2, F,P) and let Py be a probability measure
absolutely continuous with respect to P. Let Fy C F be an algebra of events such that for
some A,, € o(Fy)

P(A,|E) = «,  forall E € Fy with P(E) > 0.
Then Po(A,) — a.

Proof. We have Py(A) = [, go(w)P(dw), where gy = dPy/dP. It suffices to prove that

/A gB(d) - o / 9(w)P(dw) (+)

if g is F-measurable and P-integrable. We prove (%) in three steps.
Step 1. Write F; = o(Fp) and denote by F; the class of events E for which

P(A, N E) — oP(E).

We show that F; C F,. To be able to apply Theorem 1.3 we have to show that F; is a
A-system. Indeed, suppose for a sequence of disjoint sets E; we have

Let £ = U;F;, then by Lemma 2.10,

P(A, N E) = ZPA N E;) —>aZIP> (E).
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Step 2. Show that (x) holds for Fj-measurable functions g. Indeed, due to step
1, relation (x) holds if ¢ is the indicator of an Fj-set. and hence if it is a simple Fi-
measurable function. If g is Fj-measurable and P-integrable function, choose simple
Fi-measurable functions g that satisfy |gx| < |g| and g — g. Now

|| s -a [ gepa| < | [ apa) - [ atp)]taE-gl

Let first n — oo and then k — oo and apply the dominated convergence theorem.
Step 3. Finally, take g to be a F-measurable and P-integrable. We use conditional
expectation g1 = E(g|F)

| 9P(@) = BlgLa,) = Blarlia,) — aElar) = [ g(w)Bdo).
Theorem 8.7 Let &1,&s, ... be iid r.v. defined on (2, F,P) having zero mean and vari-

ance 0. Put X' = 51:& If Py is a probability measure absolutely continuous with
respect to P, then X™ = W with respect to Py.

Proof. Step 1. Choose k, such that k, — 0o and k = o(n) as n — oo and put

) L
X' =—= i
t a\/ﬁi:k ¢

1
Y, =——= max [{ + ...+ &l
ONMN 1<k<ky,

By Kolmogorov’s inequality, for any a > 0,
P(Y, >a) -0, n— oo,
and therefore
d(X™, X™) < [|X" - X"|| =Y, =0 with respect to P.

Applying Theorem 8.4 and Corollary 1.23 we conclude that X™ = W with respect to P.
Step 2: show using Lemma 8.6, that X" = W with respect to Py. If A € D is a
W-continuity set, then P(A,) — « for A, = {X" € A} and a = W(A). Let Fy be the
algebra of the cylinder sets {(&1,...,&) € H}. If E € Fy, then A,, are independent of £
for large n and by Lemma 8.6, Po(X" € A) — W(A).
Step 3. Since 1y, >q1 — 0 almost surely with respect to IP, the dominated convergence
theorem gives

PO(Yn Z CL) = /g()(CU)l{Yn>a}P(dW) — 0.

Arguing as in step 1 we conclude that d(X", X™) = 0 with respect to P.
Step 4. Applying once again Corollary 1.23 we conclude that X" = W with respect
to PQ.
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Figure 5: An example of the empirical distribution function with n = 10 for the uniform
distribution (left panel) and the corresponding empirical process (right panel).

Example 8.8 Define &, on ([0, 1], B, Ap) with

Mp(du) = au ' du,

a = —logy(1 —p),

p€(0,1)

again, as in Example 8.5, using the Rademacher functions. If p =
Example 8.5. With p # %, this corresponds to dependent p-coin tossings with

[ wian=a-pr

being the probability of having n successes in n tossings, and

1
[t =1- e
1-2—n

1
29

we are back to

being the probability of having n failures in n tossings. By Theorem 8.7, even in this

§1t. €| ne) >
case | ————"= = W.
( vn t€[0,1]

8.3 Empirical distribution functions

Definition 8.9 Let & (w
corresponding empirical process is defined by Y,”

),

,&n(w) be iid with a distribution function F' over [0, 1]. The

Fn(t) = nil(l{glgt} + ...+ 1{§n§t}>

is the empirical distribution function.

Lemma 8.10 Let (Z7, ..

the normalized vector <

-, Z") have the multinomial distribution Mn(n, py, . ..

Z1'—np1

Zy' —npr

NG

PARIRER

ToVn

23

JA(F,(t) — F(t)), where

,Dr). Then

) converges in distribution to the multivariate
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normal distribution with zero means and the covariance matrix

m(l—p1) —pip2 —pip3 ... —DiDr

—pop1 pa(l—p2)  —paps ... —papy

V = —P3P1 —P3P2 Ps(l - p3) ce —P3DPr
—DPrp1 —DrD2 —pps .. pr(1—py)

Proof. To apply the continuity property of the multivariate characteristic functions con-

sider
VA
E exp (iGllTnnpl—l— +29 > (Zp et Aﬁ)

where 6; = 6, — (01p1 + ... + 6,p,). Similarly to the classical case we have

! Y1 n 1 ! ~ 1 T r
E S5/ __§ 02 *1 LS b7 _ Or 1 P03 - pif5)?)
< ':119]6 ] ) B (1 2n j:1p3‘9j+0(n ) = TR = i T

It remains to see that the right hand side equals e~29V0" which follows from the repre-
sentation
P 0 P1
V= | <p1,~-7pr>-
0 pr Pr

Theorem 8.11 If &,&,... are #d [0,1]-valued r.v. with a distribution function F,
then the empirical process weakly converges Y™ =Y to a random element (Y3)icjo1) =
(Wlfi( ))tG[Ol where W° s the standard Brownian bridge. The limit Y s a Gaussian

process specified by E(Y;) = 0 and E(Y:Y;) = F(s)(1 — F(t)) for s <t.

Proof. We start with the uniform case, F'(t) =t for t € [0,1], by showing Y" = W°,
where W° is the Brownian bridge with E(W?W?) = s(1 —t) for s < t. Let

Ul =nE,(t) = 1<y + o+ Lig, <y

be the number of &y, . . ., §, falling inside [0, ¢]. Since the increments of U} are described by
multinomial joint distributions, by the previous lemma, the fdd of Y;* = UtT converge

to those of W°.
By Theorem 8.3 it suffices to prove for t; <t <ty that

(7" = Y2200 = Y2) S (t=h)(ta — ) < (62 — )2

In terms of o; = lyge, gy + 11—t and B; = Ly +t — t2 the first inequality is

equivalent to
(}j 23@ ) < nl(t =) (t2 — ).
i=1
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As we show next, this follows from E(«;) = E(f;) = 0, independence («;, 5;) AL (¢, ;) for
1 # 7, and the following formulae for the second order moments. Let us write p; =t —t1,
and py =ty — t. Since

_ 1—p1 w.p. pp, o 1—py w.p. po,
o = Bi =

-1 w.p. 1—p, —p2 w.p. 1 —po,

and
—(1 - pl)p2 W.p. P1,
;B = —p1(1 - pz) W.D. P2,
D1P2 w.p. 1 —p; —po,

we have

E(O%'Q) = p1(1 — 1), E(ﬂ?) = p2(1 — p2), E(%‘Bz’) = —P1P2,
E(O‘?@Q) =pi(1 - p1)2p§ +p2p%(1 - p2)2 +(1=p1— pz)lﬁpg = p1p2(p1 + p2 — 3p1p2)

and
E((Y e’ (D 8)°) = nE(a282) + nn — DE(DE(S) + 2n(n — 1)(E(a:,))?
i=1 i=1
< nPpipa(pr + pa — 3pip2 + 1 — p1 — pa + 3pip2)
= n2p1p2 = n2(t — t1)<t2 - t)

This proves the theorem for the uniform case. For a general continuous and strictly
increasing F'(t) we use the transformation n; = F(§;) into uniformly distributed r.v. If
Gn(t) = G,(t,w) is the empirical distribution function of (n;(w),...,n,(w)) and Z}* =
VR(Gy(t) —t), then Z™ = W°.

Observe that

) = Lm<roy + -+ Y<rey _ Wreosroy + -+ Yreo<rey

F(t
Gnl 1 n n

Fo(t).

Define ¢ : D — D by (¢z)(t) = x(F(¢)). If x, — z in the Skorokhod topology and
x € C, then the convergence is uniform, so that ¥z, — ¥z uniformly and hence in the
Skorokhod topology. By the mapping theorem ¢ (Z™) = (W?°). Therefore,

Y"= (Ytn)te[OJ] = (Z?(t))te[o,ll =Y(Z") = p(W°) = (Wﬁ(t))te[&l] =Y.

Finally, for F(¢) with jumps and constant parts (see Figure 6) the previous argument
works provided there exists an iid sequence 7y, 7, . . . of uniformly distributed r.v. as well
as iid &1, &), ... with distribution function F', such that

(m<F@)}y={¢<t}, tel0,1],i>1.

This is achieved by starting with uniform 7, 1s, ... on possibly another probability space
and putting & = ¢(n;), where ¢(u) = inf{t : u < F(t)} is the quantile function satisfying

{o(u) <t} ={u < F(t)}.
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Figure 6: The time transformation ¢ : D — D. Along the y-axis an original path
x(t) is depicted, along the z-axis the time transformed path (¢x)(t) = z(F(t)) is given.
The jumps of F' translate into path jumps, the constant parts of F' translate into the
horizontal pieces of the transformed path.

Example 8.12 Kolmogorov-Smirnov test. Let F' be continuous. By the mapping theo-
rem we obtain

\/ﬁsgp [Fa(t) — F(t)] = sup Yy = sup (Wl = sup (Wl

where the limit distribution is given by Theorem 5.11.

9 The space D, = D|0,00)

9.1 Two metrics on D,

To extend the Skorokhod theory to the space Do, = D]0,00) of the cadlag functions
on [0,00), consider for each ¢t > 0 the space D; = DIJ0,t] of the same cadlag func-
tions restricted on [0,t]. All definitions for D = DJ0,1] have obvious analogues for
D,: for example we denote by d;(z,y) the analogue of di(z,y) := d(z,y). Denote

[l = supyepo,q [2(w)]-

Example 9.1 One might try to define Skorokhod convergence x,, — x on D, by requir-
ing that dy(z,, ) — 0 for each finite ¢ > 0. This does not work: if z,,() = Lyecpi1-n-1),
the natural limit would be x(t) = Lgcp,1)y but di(2y,2) = 1 for all n. The problem here
is that x is discontinuous at ¢t = 1, and the definition must accommodate discontinuities.

Lemma 9.2 Let 0 < u < t < oo. If di(x,,x) — 0 and x is continuous at u, then
dy(Tpn, ) — 0.

Proof. By hypothesis, there are time transforms A, € A; such that ||\, — 1|y — 0
and ||z, — xA,]lt — 0 as n — oo. Given €, choose d so that |[v —u| < 26 implies

26



\o

u-1/n -

Figure 7: A detail of the proof of Lemma 9.2 and Theorem 9.8.

|z(v) — x(u)| < €/2. Now choose ng so that, if n > ng and v < ¢, then |\,v —v| < § and

|z, (v) — (xA,)(v)] < €/2. Then, if n > ny and |v — u| < §, we have

A —u| < |Apv —v| + v —u| <26
and hence

20 (v) = 2(u)| < fzn(v) = (@A) (V)] + [(2A0) (v) — 2(u)] <e.
Thus
sup |z(v) —z(u)| <€,  sup |x,(v) —z(uw)| <e for n > ny.
lv—u|<d [v—u|<d
Let
u—nt if \u > u,
Up =< U if \,u = u,

N u—n"1) if Au <,

so that u,, < u. Since
[un —ul <[\ (uw—n"") = (w—n"")]+n7,
we have u,, — u, and since
|Antin, — u| < [Aptln, — Up| + |y — ul,

we also have \,u,, — u.

Define p,, € A, so that p,v = A\,v for v € [0,u,] and interpolate linearly on (u,, u]
aiming at the diagonal point u,u = u, see Figure 7. By linearity, |u,v — v| < [ Aty — uy|
for v € [u,, u] and we have ||u, — 1|, — 0.

o7



.1

It remains to show that ||z, — zy,|l. — 0. To do this we choose n; so that
Up >u—0 and ANu, >u—09 forn>n;.
If v < u,, then
20 (V) = (@) (V)] = [20(v) = (@A) (V)] < (20 = 2 A

On the other hand, if v € [u,,u] and n > ny, then v € [u — §,u] and p,v € [u — 9§, ul
implying for n > ny V ng

|20 (0) = (@) (V)] < |20 (v) — 2(w)] + [2(u) = (2pn) (V)] < 2.
The proof is finished.
Definition 9.3 For any natural 7, define a map ¢; : Do, — D; by
(Vix)(t) = () Lg<i1y + (0 — () i1z
making the transformed function (¢;x)(t) continuous at ¢t = i.

Definition 9.4 Two topologically equivalent metrics dy(z,y) and d2 (x,y) are defined
on D, in terms of d(z,y) and d°(z,y) by

1A di (Wi, o 1A S (Y, g
doo(,y) =Y 4 (Zix ¢y), A (z,y) = 4 (Zix vit)
i1 i1

The metric properties of doo(x,y) and d2 (x,y) follow from those of d;(x,y) and
d?(x,y). In particular, if do(z,y) = 0, then d;(¢;z,v;y) = 0 and Y,z = ;y for all
1, and this implies z = y.

Lemma 9.5 The map ; : Dy, — D; is continuous.

Proof. It follows from the fact that d(z,,z) — 0 implies d;(¢;z,, ;x) — 0.

9.2 Characterization of Skorokhod convergence on D

Let A be the set of continuous, strictly increasing maps A : [0,00) — [0, 00) such that
A0 =0 and At — 00 as t — 0o. Denote |7l = Sup,ep o) [7(1)].

Exercise 9.6 Let A\ € A; where ¢ € (0, 00]. Show that the inverse transformation A\™! €
Ay is such that |A™! = 1], = ||A — 1]}:.

Example 9.7 Consider the sequence z,,(t) = 1>n) of elements of D. Its natural limit
isx=0as |z, — x| =0 for all n >t > 0. However, ||z, A\, — Z||oc = ||ZnAn|lcc = 1 for
any choice of A\, € A.

Theorem 9.8 Convergence doo(x,,x) — 0 takes place if and only if there is a sequence
A € Ao such that

1A — 1l|oc = 0 and ||z N\, — || — O for each i.
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Proof. Necessity. Suppose doo(x,,z) — 0. Then d;(1;x,,¥;x) — 0 and there exist
/\,(f) € A; such that

eSf) = ||)\§f) —1; v ]\(%mn))\(i) —x|l; -0, n— oo foreach i.

n
Choose n; > 1 such that n > n; implies eff) < it Arrange that n; < n;,, and let

7;1:...22'”1,1:1, inl—---:in271:27 7;7L2—...:Z'n3,1:3,
so that i, — oco. Define \, € A by

Ay e <y,
At = : .
t if t > 1,.

Then ‘ '
An = 1o = [IA™) = 1|5, < ) <t — 0.

Now fix ¢. If n is large enough, then ¢« < ¢, — 1 and

[2nAn — [ = [[(i,20) A — i, |3

Sufficiency. Suppose that there is a sequence \,, € A such that, firstly, ||\, — 1]|cc —
0, and secondly, ||z,\, — z||; — 0 for each i. Observe that for some C;,

|z||; < C; and ||x,||; < C; for all (n,i).

Indeed, by the first assumption, for large n we have A, (2¢) > 7 implying ||z, ||; < ||znAnl]2s,
where by the second assumption, ||z, A,||2i — ||z ]]2:-
Fix an i. It is enough to show that d;(v;z,,¥;x) — 0. As in the proof of Lemma 9.2
define
i—n! it A2 <1,
u, = 4 i i \i =1,
A —nl) if Agi >,
and u, € A; so that p,v = A\ for v € [0,u,] interpolating linearly on (u,, ] towards
tnt = 1i. As before, ||p, — 1]|; — 0 and it suffices to check that

|(Vixn) i, — iz||i = 0, n — oo.

To see that the last relation holds suppose j := A 1(i — 1) < i — 1 (the other case
j > 11— 11is treated similarly) and observe that

i) An = vl = (leaha = 2ll) Vv (sup 1= Mt)za(Ant) = (1))

j<t<i—1

v (sup |66 = Aat)zaOnt) — (i - a(0)])

1—1<t<i

g(umn—xuﬁa sup \(i—1—Ant)\)

j<t<i—1

v( sup i — Ant| - [zn(Ant) — ()] +  sup |()\nt—t)x(t)|>

i—1<t<i i—1<t<i

< Nzndn — i + Cill A — 1]Js — .
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16.2

It follows that for ¢ < wu,,,

|(Wiwn) (pnt) = (hiz) (8)] < [[(iwn) A — Pi]l; = 0.

Turning to the case u,, < t < i, given an € € (0,1) choose ny such that for n > nyg, u,
and pu,u, both lie in [i — €,4]. Then

|(Wien) (pnt) — (i) (B)] < sup (7 = pnt)xn(pnt) — (0 = D)z (t)] < 2Cie.

Up <t<i

Theorem 9.9 Convergence doo(zn,x) — 0 takes place if and only if di(x,,x) — 0 for
each continuity point t of x.

Proof. Necessity. If doo(x,, x) — 0, then d;(1;x,,, ¥;x) — 0 for each i. Given a continuity
point t of x, take an integer i for which ¢t < ¢ — 1. According to Lemma 9.2, d;(x,,z) =
Sufficiency. Choose continuity points t; of x in such a way that t; T oo as « — oo. By
hypothesis,
di,(Tp,z) =0, n—o00, >1

Choose A € A, so that

€D = |IAD — 1|, V |lznAD — 2], =0, n— oo for each i.

n n

Using the argument from the first part of the proof of Theorem 9.8, define integers i,, in

such a way that i, — oo and €™ < i1 Put

At if <t
Anl = : "
t it >t

so that A, € Ay. We have |\, — 1]|oo <i,', and for any given i, if n is sufficiently large
so that © < ¢;_, then

b, < el <t 0.

ZoAn — 2l = [|2a Al — 2; < [lz, A — 2

Applying Theorem 9.8 we get do (2, ) — 0.

Exercise 9.10 Show that the mapping h(x) = sup,> (t) is not continuous on D.

9.3 Separability and completeness of D

Lemma 9.11 Suppose (S;, p;) are metric spaces and consider S = S1 x Sy X ... together
with the metric of coordinate-wise convergence

1A pilzi, y;)
p(z,y) = Z 9
i1

If each S; is separable, then S is separable. If each S; is complete, then S is complete.
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16.3

Proof. Separability. For each 7, let B; be a countable dense subset in S; and z{ € S; be
a fixed point. We will show that the countable set B = B(z3, 3, ...) defined by

B={xeS :x=(x1,..., 0,2, %0, ...), 01 € By,...0p € B,k € N}

is dense in S. Given an € and a point y € S, choose k so that .., 27" < e and then
choose points z; € B; so that p;(z;,y;) < e. With this choice the corresponding point
x € B satisfies p(x,y) < 2e.

Completeness. Suppose that " = (27,2}, ...) are points of S forming a fundamental
") is fundamental in S; and hence p;(z?,z;) — 0 for

sequence. Then each sequence (z}
some x; € S;. By the M-test, Lemma 2.10, p(z", x) — 0, where x = (x1, 22, ...).

Definition 9.12 Consider the product space D = Dy x D, x ... with the coordinate-
wise convergence metric (cf Definition 9.4)

o0

o LA d; (T3, 9 _ _ _ _ =
p(z,7) :Z+), T = (T1,%2,...), Y= (Y1,%2,...) € D.
i=1

Put ¢x = (Y12, vz, ...) for € Dy,. Then vz € D and d°_(x,y) = p(vx,vy) so that ¢

is an isometry of (D4, d2,) into (D, p).
Lemma 9.13 The image D, =D, is closed in D.

Proof. Suppose that z, € D., T = (Z1,Z2,...) € D, and p(¢x,,z) — 0, then
d;(Vizy, ;) — 0 for each i. We must find an x € D, such that & = ¢z.

The sequence of functions z; € D;, i = 1,2, ... has at most countably many points of
discontinuity. Therefore, there is a dense set T' € [0,00) such that for every i >t € T
the function z;(-) is continuous at ¢. Since d;(¢;x,,Z;) — 0, we have ¥z, (t) — z;(t) for
all t € T'N[0,4]. This means that for every ¢t € T there exists the limit z(¢) = lim,, x,(t),
since ;x,(t) = x,(t) for i >t + 1.

Now v;x(t) = Z;(t) on T'N[0,4]. Hence x(t) = Z;(t) on TN [0,7 — 1], so that x can be
extended to a cadlag function on each [0,7 — 1] and then to a cadlag function on [0, c0).
We conclude, using right continuity, that ¢;z(t) = z;(t) for all ¢ € [0, 1].

Theorem 9.14 The metric space (Do, d2) is separable and complete.

Proof. Acg)rding Lemma 9.11 the space D is separable and complete, so are the closed
subspace D, and its isometric copy D .

9.4 Weak convergence on D

Definition 9.15 For any natural ¢ and any s > 4, define a map ,,; : D; — D, by
(Vs2)(t) = x(t) L p<io1y + (1 — ) 2(t) Li—1<e<i}-
Exercise 9.16 Show that the mapping v, ; is continuous.

Lemma 9.17 A necessary and sufficient condition for P, = P on D, is that ink_l =
Pyt on Dy, for every k € N.
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Proof. Since v is continuous, the necessity follows from the mapping theorem.
For the sufficiency we need the isometry 1 from Definition 9.12 and the inverse isom-

etry ¢
1 Y - v
D, = Dy, D, — D, D, — D..

Define two more mappings

DX D x..xDy, D.,%D, x...xD,

Ge(Z) = (Z1, ..., Tk), Xk(®) = (Yraz, ..., Yppe).

Consider the Borel g-algebra D for (D, p) and let D; C D be the class of sets of the
form (k’lH where k > 1 and H € D; X ... x Dy, see Definition 2.5. The remainder of the
proof is split into four steps.

Step 1. Applying Theorem 2.4 show that A = I_Df is a convergence-determining class.
Given a ball B(Z,¢) C D, take k so that 27% < ¢/2 and consider the cylinder sets

Ay ={g €D :d&(x,4) <ni=1,....k} for0<n<e/2.

Then 7 € A} = A, C B(Z,¢) implies 4, € A, .. It remains to see that the boundaries of
A, for different 1 are disjoint.

Step 2. For probability measures @, and Q on D show that if QnCy T Q¢ ! for
every k, then @, = Q.

This follows from the equality O(¢, ' H) = ¢, 'OH for H € Dy x ... x Dy, see the proof
of Theorem 2.14.

Step 3. Assume that P, ' = P, " on Dy, for every k and show that P,i)~! = P!
on D.

The map xj, is continuous: if x,, = x in Dy, then ¢y ;x,, = ¥y ,;x in D;, @ < k. By the
mapping theorem, Pn@/)k_lx,;l = Pl/),glxlzl, and since xxUr = (x¥, we get Pn@D*le_l =
Py~1( ! Referring to step 2 we conclude P,y = Pyt

Step 4. Show that P,i)~' = P¢~! on D implies P, = P on D..

Extend the isometry ! to a map n : D — D, by putting 1(Z) = 7o € Dy, for all
T ¢ D.. Then 7 is continuous when restricted to D, and since D, supports Py~
and the P, it follows that

Py=Py = PyiyTt =P

Definition 9.18 For a probability measure P on D, define Tp C [0,00) as the set of ¢
for which P(J;) = 0, where J; = {z : x is discontinuous at t}. (See Lemma 7.9.)

Exercise 9.19 Let P be the probability measure on D, generated by the Poisson pro-
cess with parameter X. Show that Tp = [0, 00).

Lemma 9.20 For x € D, let ryx be the restriction of x on [0,t]. The function r; :
D, — D, is measurable. The set of points at which ry is discontinuous belongs to J;.
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16.7

Proof. Denote &, = t/k. Define the function rfx € D; as having the value z(id;) on
10k, (1 + 1)6) for 0 < i < k — 1 and the value z(t) at t. Since the m;;, are measurable
D.o/Ry, it follows as in the proof of Theorem 7.2 (b) that r¥ is measurable D, /D;. By
Lemma 6.31,

dy(r¥x, rix) < 6, v w)(z,0;) — 0 as k — oo for each € Dy

Now, to show that 7, is measurable take a closed F' € D,. We have F = N F?¢, where
the intersection is over positive rational €. From

r;'F C liminf( Tt )LRe = U ﬂ Tt LR

K Jj=1k=j

we deduce that r; ' F' = N, liminf, (r¥)~' F€ is measurable. Thus 7, is measurable.
To prove the second assertion take an x € D, which is continuous at ¢. If do (2, z) —
0, then by Theorem 9.9,
di(rixp, rix) = di(z,, ) — 0.

In other words, if = ¢ J;, then 7, is continuous at .

Theorem 9.21 A necessary and sufficient condition for P, = P on Dy is that P,r; ' =
Pr;! for each t € Tp.

Proof. If P, = P on D, then Pnrt’l = Pr;l for each t € Tp due to the mapping
theorem and Lemma 9.20.

For the reverse implication, it is enough, by Lemma 9.17, to show that P,; " = Pi; !
on D; for every . Given an ¢ choose a t € Tp so that t > 4. Since ¢; = 1y, o 1, the
mapping theorem gives

P ! = (Pury )w{f = (Prtil)wtjil = Pzﬁ;l'

Exercise 9.22 Let W° be the standard Brownian bridge. For ¢ € [0,00) put W, =
(1 +¢)W°, . Show that such defined random element W of D, is a Gaussian process

1+t
with zero means and covariance function E(W,W;) = s for 0 < s <t < oco. This is a

Wiener process W = (W;,0 < t < 00). Clearly, (W) is a Wiener process which is a
random element of Dy.

Corollary 9.23 Let &,&, ... be @id r.v. defined on (0, F,P). If & have zero mean and

variance o* and X' = % then X" = W on D

Proof. By Theorem 8.4, X™ = W on D;. The same proof gives X" = W on D, for
each t € [0,00). In other words, r;(X") = (W) for each ¢t € [0,00), and it remains to
apply Theorem 9.21.

Corollary 9.24 Suppose for each n, &1, - . ., Enn are 4id indicator r.v. with P(§,; = 1) =
a/n. If X' = Zignt &niy then X™ = X on D, where X is the Poisson process with
parameter o.

Proof. Combine Corollary 7.7 and Theorem 9.21.
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