WEAK CONVERGENCE
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MICHAEL BJORKLUND

1. BOREL MEASURES ON METRIC SPACES
1.1. Borel sets versus closed sets
Let (X, d) be a metric space. Given a subset A C X, we define d(-,A) : X — [0, 00) by
d(x,A) = ylg/f_\ d(x,y), forxe X. (1.1)

The triangle inequality for d shows that
|d(x,A) — d(y,A)’ < d(x,y), forallx,ye€X,
so in particular, x — d(x, A) is continuous, whence
A={xeXl|d(x,A) =0},
and the set A, C X defined by

Ar={xeX|dxA) <1} (1.2)
is open for every r > 0. Hence,
A=) Ayn. (1.3)
neN

Let us fix a Borel probability measure p on X. Our aim here is to show that p is completely
determined by its values on closed sets. More specifically:

Lemma 1.1. For every Borel set B C X,
n(B) = sup{u(C)|C C Bisclosed}
= inf{p(U)| U > Bisopen}.
Proof. Let A,, denote the set of all Borel sets B C X for which
n(B) = sup{u(C)|C C Bis closed}
= inf{p(U) | U D Bis open}.

We claim that A, is a o-algebra, containing all closed sets, whence must be equal to the Borel
o-algebra of X. To prove that A, is a o-algebra, first note that ), X € A,, trivially, and that A, is
closed under complements. Hence it suffices to show that if By, By, ... belong to A, then so does
B := UxBk. Fix ¢ > 0 and a sequence (&) such that ) , & < /2. Since By € A, for every k, we
can find closet sets Cy, C X and open sets Uy C X such that

Ck CBrCcUr and p(Ug\Cyg)<eg, forallk.
Set U = Uy Uy and note that U is an open set with B C U and
n(U\ B) < Zuuk\sk)q

1
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Set F = Uy Cx. We stress that F might no longer be closed, but since p is o-additive, there exists
N > 1 such that

N
w(F\ U Cy) < €/2.
k=1

Set C = UE:1 Cy and note that C is a closed subset of B with
wWB\C) < uB\F)+uF\C)<e/2+¢/2=c¢.

Since ¢ > 0 is arbitrary, we conclude that B € A,,.

It remains to show that every closed subset C C X belongs to A,,, which amounts to showing
that

u(C) =inf {u(U) | U > Cis open}.
By (1.3),
C=1{) Cin
n>1
where each C; /,, is open, whence u(C) = lim,, u(Cy /,), and we are done.

1.2. Narrow convergence and the Portmanteau Lemma

A sequence (i ) of bounded and positive Borel measures on X converges narrowly to abounded
and positive Borel measure p on X if

J fdun%J fdu, forallfe Cy(X).
X X

Our aim here is to show that narrow convergence can be characterized in terms of the values of
tn on closed subsets of X (the equivalence (i) <= (ii) below).

Lemma 1.2 (Portmanteau Lemma). Let W, py, 1y, . .. be Borel probability measures on X. TFAE,

(i) pn(f) — p(f) for every f € Cyp(X).

(ii) limp wn (C) < w(C) for every closed set C C X.

(iii) limpy, un (f) < w(f) for every upper semicontinuous function f : X — R which is bounded from
above.

(iv) lim,, pn (U) > u(U) for every open set U C X.

(v) im,, pun(f) > w(f) for every lower semicontinuous function f : X — R which is bounded from
below.

Proof. The implications
(il) < (iv) and (iil) <= v)

are trivial. Furthermore, if C C X is a closed set, then f = x ¢ is an upper semicontinuous function
(which is clearly bounded from above), and if U C X is an open set, then f = xy is a lower
semicontinuous function (which is clearly bounded from below). In view of this,

(iil) = (i1) and (v) = (iv)

are immediate. Since every f € Cy(X) is both lower and upper semicontinuous, (iii) and (v)
together imply (i). It remains to prove

i) = (ii) and (Wv) = (v).
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We begin with (i) = (ii). Fix a closed set C C X and define

d(x,C) \~
_— N >1.
T d(x,C)) , for 1

Note that {n is continuous for every N and 1 < Pn(x) N\ xc(x) as N — oo for all x € X. In
particular,

bn(x) =1 (

W(C) = hmj W di = hmhmj Wn din > nrnj xe din = Tim un (C),

which finishes the proof.

To prove (iv) = (v), let us fix a lower semicontinuous function f : X — R which is bounded
from below by some constant M. Then f — M > 0, and thus

(o0}
J fdun—M:J un({f—M>t})dt.
X 0
Since f, and thus f — M, is lower semicontinuous, the set Uy = {f — M > t} is open. By our
assumption (iv), we know that

lim pn (Uy) > p(Uy), forallt,
n
whence, by Fatou’s Lemma,

hmJ fdun—M2J limun({f—M>t})dt>J u({f—M>t})dt:J fdu— M.
X 0 X

n 0 n
O
1.3. Tightness
A subset M C P(X) is tight if for every € > 0, there exists a compact set K. C X such that

inf u(Ke)>1—c¢.
ngMu( e) €

Theorem 1.3. Suppose that (X, d) is separable. Then every tight subset M C P(X) is sequentially pre-
compact.

Towards the proof, let us fix a countable dense sequence (x,,) in X once and for all.

Step I: Embedding X into [0, 1]
Set Z := [0, 11" and define the map ¢ : X — Z by

d(x,xn)

= 7" f X.
1+d(x,xn)’ orx €

@ (x)n

It is easy to see that ¢ is continuous. We claim that ¢ is also injective. Indeed, if ¢(x) = ¢(y), then
d(x, xn) _ d(y, xn)
1+d(x,xn) 1+d(y,xn)

whence d(x,xn) = d(y,yn) for all n. Fix ¢ > 0 and pick x,, such that d(x,x,) < ¢/2. Then, by the
triangle inequality,

, foralln,

d(X,U) < d(X’IX’T‘L) + d(XmU) = 2d(X/Xn) <E&.

Since ¢ is arbitrary, we conclude that d(x,y) = 0, and thus x = vy.
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Step II: The closure of M in P([0, 1]V)
Let (un ) be a sequence in P(X), and define v,, € P(Z) by

vn(C) = un(@~1(C)), for C C Z Borel.
Since Z is compact and metrizable, P(Z) is sequentially compact, and hence we can extract a
subsequence (v, ) which converges narrowly to a Borel probability measure v on Z.
Step III: Pulling back from P([0, 1]")
Since M is tight, there exists for every integer N > 1 a compact set Ky C X such that
un(Kn)>1—1/N and forall n.

In particular, the set Y := [ Kn is o-compact and satisfies 1, (Y) =1 for alln. Since ¢ : Y — Z is
continuous and injective, Exercise 8 shows that ¢(Y) is a Borel set in Z. We claim that v(¢(Y)) = 1.
Indeed, since ¢ (Kn ) is compact (and hence closed) in Z for every N, it follows from Lemma (1.2)

that
V(O(Y) 2 V(o(Kn)) > Tim v, (0(Kn)) = T pn, (Kn) > 1

k N
for every N, whence v(@(Y)) = 1. Set
wB) =v(e(BNY)), forB C X Borel.

By Exercise 8, i defines a Borel probability measure on X. It remains to show that the sequence
Hn, narrowly converges to p. By Lemma 1.2 it suffices to show that

@pnk(C) < u(C), forevery closed set C C X.

Pick a closed set C C X. Then, for every N,

1

Since vy, — v narrowly and ¢(CNKy) C Z is compact, and hence closed, we know from Lemma
1.2 that limy v, (@(C N KN)) < v(@(CNKyn)) = 1(CNKy), and thus

h{n tn, (C) S w(CNKN) + N S u(C) + N

Since N > 1 is arbitrary, we are done.

2. TIGHTNESS THROUGH FOURIER TRANSFORMS

Let i be a Borel measure on R¢ with finite measure. The Fourier transform {i of w is defined by
B(E) = | e dutx), fore e RY,
R
It is easy to see that & — 1i(&) is uniformly continuous. Furthermore, by Cauchy-Schwarz,

e -mel < (] e - 1Pan)”

= (JR2(1 — cos(éx)) du(x))l/2

< (201 —Refi(&)"* < (201 - [@(&)))"?
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2.1. Levy’s Continuity Theorem and Bochner’s Theorem
2.2. Infinitely divisible probability measures and Levy-Khinchin’s representation
3. DECORRELATION OF WIENER SEQUENCES AND HELLINGER DISTANCES

Let (X, d) be a metric space. Let 1 and v be bounded and positive Borel measures on X and fix a
bounded and positive Borel measure on X such that p < A and v < A; for instance, A = pu+ v. Set

du=udA and dv =vdA,

for some non-negative Borel functions u,v : X — [0,00]. The Hellinger distance disty(, V) is
defined as

distifin ) = 5 | (ViI— VB)*dh = 3 (uX) +¥(X)) —Hiw,v), (3.)

N[ =

where
H(w,v) :J vuv dA.
X

You are encouraged to check that this definition is independent of the choice of A (Exercise 1).

Our aim here is to show:

Theorem 3.1. The Hellinger distance is (sequentially) lower semicontinuous with respect to narrow con-
vergence, i.e. if wand v are bounded and positive Borel measures on X, and (W ) and (vy) are two sequences
of bounded and positive Borel measures on X such that p, — wand vy — v in the narrow topology, then

lim disty (pn, vn) = disty(w, v),
n
or equivalently,
im H(pn, vn) < H(w, v).
n
The key to Theorem 3.1 is the following lemma.
Lemma 3.2. Let wand v be bounded and positive Borel measures on X. There exists a function
v:[0,1) = [0,1), with limvy(t) =0,
t—0

such that for every x > 0 and for every ¢ > 0, which is small enough, there are N = N ¢ and (Lipschitz)
continuous functions fo,f1,...,fn : X — [0, 1] with

N
Y filx) =1, forallx€X,
k=0

such that
1 ¢ } :
> - — K.
M) > i 3 (], meaw)* (] neav)’ —vier—x
3.0.1. Proof of Theorem 3.1 assuming Lemma 3.2

Let u and v be bounded and positive Borel measures on X, and let () and (vn) be two se-
quences of bounded and positive Borel measures on X such that u,, — p and v, — v in the
narrow topology. We want to show that

H(w, v) = lim H(pn, v ).
mn
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By Lemma 3.2 we can find a function y : [0,1) — [0, 1) with lim_,oy(t) = 0, such that for every
k > 0 and for all small enough ¢ > 0, there are N = N, and continuous functions fo, fy,...,fn
with

N
Z fr(x) =1, forallx € X
k=0

such that

1 o } }
H(u,v)}l_HZ(Jkadu) (fokdv> —v(e) — k.

k=0
Let 1 be positive and bounded Borel measure on X such that p, < nand v,, < n for all n. For
instance,n =} |5, mun will do. We write

dun =unpdn and dvy =vndn, foralln,

where u,,vn : X — [0,00] are Borel measurable functions. Since u, — p and v, — v in the
narrow topology, and each fy is continuous, we see that

J fkdun—>J frdp and J fden—>J frdv, forallk=0,1,...,N,
X X X X

and thus

1 o } }
Hiv ) > 1 Y (] fean) (] neav)’ —vier—«

k=0
N 1 1
1 2 2
= 11Trln1+£kO(J fkdp.n> (fokdvn) —v(e) —k
1 < } :
= hTrlnl+£];)<Jkaundn) (fokvndn> —v(e) —«
1 XN
= llT{n1+€kZ_Ofokvunvndn_Y(&)_K
— 1
= lim J VUunpvn dn—vy(e) —
n 14e¢Jx

1 —
= 1+£ hTI;nH(I"LTLI‘VTL)_‘Y(S)_K/

where we in the second inequality used Cauchy-Schwarz inequality. Since ¢ > 0 and k > 0 are
arbitrary and y(¢) — 0 when ¢ — 0, we are done.

3.0.2. Proof of Lemma 3.2

Fix ¢ > 0 and a bounded and positive Borel measure A on X such that u < A and v < A. We
write
du=udA and dv=vdA,

and set
C={xeX|v(x)=0} and D ={xe X\ C|u(x)=0}

We define
Ar={xeX\C|(1+ek< LVL((;‘)) <(1+e) !}, forkez,
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and note that X = C U D U ( Ukez Ax). In particular, ), v(Ay) < v(X) < oo, so for any § > 0 we
can find M > 1 such that
> V(AW <.

[k|=Ms
Given b, we set
B, =CU (I_l‘k‘>M§ Ak) and B;=D and By = Ak—l—My
fork =2,...,2Ms, so that By, By, ..., Bonm, is a partition of X into Borel sets, and
v(Bo) <& and u(By) =0. (3.2)
By Exercise 3 we can find a function 3 : [0,1) — [0,1) with lim;_,o 3(t) = 0 and continuous
functions fo, f1, ..., fam, : X — [0,1] such that

2M;
Z fi(x) =1 forallx € X,

and with the following properties:
(i) If u(By) =0, then [y fi du < e.
(ii) If v(By) =0, then [ fi dv < e.
(iii) If u(By)v(By) > 0, then

Ble) < L fedi < (14 ) u(Bi) + Ble), (3.3)
and
Ble) < JX fiedv < (14 e)bv(Bi) + Ble). (3.4)

We further note that for k > 2,

w(By) = J udA = J Evd?\ < (1+ s)kaf’v(Bk),
By Bx vV

J \/Evd?\
By VV

> (14 ) 1"Ms)/2y(By)
> (1+¢€) 2u(By)? v(By)2.

and thus

J v uv dA
By

By (3.3), we can now conclude that if u(By)v(Bx) > 0, then

J vuvdh > (1+¢)” J fidu— B¢
By X
fk dLL

> e ([ )’ - Vo mwdvy D)

> (1+e)” fokdu) Jfkdv)i—z B(e),

N=
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if € is small enough. Hence,

2Ms
H(wv) > ZJ Vaw dA
k=2 Y Bx
2M; 1 1
> (1+€)_1]; fokdu>2(JkadV>2—4Ms B(e)
2M;s 1 1
= (1+4¢) 1];0 fokdu)z(Jkadv)2—4Ms B(e)
- v (([ e (] o) (] naw)! ([ nw))
> (1+€)_12§5(J fkduf(J fkdv)%éﬂ\/{é B(e)
k=0 X

— Cmax(ve, V9),

for some constant C. Fix k > 0 and choose 6 = 0 > 0 so that the last term is less than k. By
setting

N =2M;,. and vy(e)=4M;s+/B(e),

we are done.

3.1. An application to decorrelation of Wiener sequences

Let (an) be a bounded sequence of complex numbers and assume that the limit
1 N\t
’Ya(n) = h]{In N ZO A Qm4n
m=

exists for all n > 0. If this is the case, then we say that (an) is a Wiener sequence and we refer to
Yo as its autocorrelation. If we extend v, to a function y4 : Z — C by setting yq(—n) = vq(n) for
n < 0, then vy is a positive definite function (Definition A.1) on Z (Exercise 2). Let 6, denote the
spectral measure associated to y, (Definition (A.3). By Exercise 2, the sequence (Gl(wa)) of bounded

positive Borel measure measures on T defined by

? dA(x), forfe C(T), (3.5)

@ 1 Nt

a) —27T

JdeGN —er(x)‘N E ane X
n=0

converges in the narrow topology to 6., where A denotes the Lebesgue probability measure on T.

Let us now fix two Wiener sequences (an ) and (b, ) with autocorrelations (y4) and vy respec-

tively, with associated spectral measures 6., and 6,,,. Let (6,(\?)) and (6](\]13 ') be the sequences of
bounded positive Borel measures on T defined in (3.5), which narrowly converge to 0, and 0.,

respectively. Note that both 6](\?) and 9](\11j ) are absolutely continuous with respect to the Lebesgue
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probability measure A on T, whence
(@) (o) 1 Nt N-—1
a b - 2 —27ti E —27ti

N—1
1 _ .
> N) JT Z ambne27u(n—m)x d)\(x)‘

m,n=0
1Nt
= N ) Z anbn ‘ .
n=0
By Theorem 3.1, we now have the following result, due to Coquet, Kamae and Mendes France.

Theorem 3.3. For any two Wiener sequences (ar ) and (br,), we have
N\
li{]n ‘N ZO a“b“‘ < H(eVal eVb)l
n=

where 0+, and 0., denote the spectral measures associated to the autocorrelations y o and yy, of (an) and
(bn ) respectively.

4. A CRASH COURSE IN ERGODIC THEORY
4.1. Measurable aspects

Let (X, u) be a Borel probability measure space. A measurable map T : X — Xis said to preserve
the measure p if

w(T'B) = u(B), for every Borel set B C X.

If T preserves u, we say that (X, p, T) is a probability measure preserving system. In this case, T
induces (for every p > 1) an isometric linear map T : LP(X,u) — LP(X,pn) by f — fo T (see
exercises below). We say that (X, p, T) is ergodic if there is no Borel set B C X with 0 < p(B) <1
such that T~!(B) = B. It is not hard to show (exercise below) that (X, u, T) is ergodic if and only if
Ut : LP(X, u) — LP(X, u) (for some p) does not have a non-constant fixed point. Let us consider
two examples.

Example 4.1. Let X = R/Z and Tx = x + o (mod 1) for some irrational «. It is plain to see that T
preserves the Lebesgue probability measure p on X (we can think of X as the interval [0, 1] with
the end points identified). We claim that (X, i, T) is ergodic. Indeed, suppose that f € L2(X, u)
satisfies Utf = f. We wish to show that f is essentially constant. To do this, expand f in a Fourier

series,
f= Z CneZWin-’
nez
where the convergence of the series is taken in the Hilbert space sense. The equation Utf = f now

translates to
E Cn627rn04627nn~ — 2 Cn627nn~’
n n

whence cnpe?™"* = ¢, for all n. We conclude that for every n, we either have ¢, = 0 or
e?™n® — 1. Since « is irrational, the second case only happens for n = 0, and thus f = c,,
i.e. fis (essentially) a constant.
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Example 4.2. Let X = R/Z and Tx = 2x (mod 1). We leave it is an exercise (see below) to show that
T preserves the Lebesgue measure p on X. We claim that (X, p, T) is ergodic, and we will argue
as in the previous example: Pick f € L2(X, ) such that Utf = f, and expand in a Fourier series
as above. Then cyn, = ¢y, for all n, whence cyx,, = cn, for all n and k > 1. In particular, for every
n # 0, by Parseval’s Theorem,

00> | ifdu=Y lemP > 3 lennP = Y lenf
T m k>1 k>1

which forces ¢, = 0. Hence f = ¢, and we are done.
Our aim is to show the following classical theorem of George Birkhoff.

Theorem 4.1 (The Pointwise Ergodic Theorem). Let (X, T, n) be an ergodic probability measure pre-
serving system. Then, for every y-integrable f : X — R,

1n71
lim— ) f(T")=| fdy, -almost €X.
1T{r1n]; (T*x) J;( W, for u-almost every x

The proof will be broken down into two lemmas. We will use the notations,

n—1

1 K
(Anf)(x) = — ];f(T x)
and
(MnT)(x) = sup (Anf)(x) and (Mf)(x) = sup(Anf)(x),
I<n<KN n
forx € X.

Lemma 4.2 (Maximal inequality). For every A > 0and f € L}(X, n),
1
u({x e X | IMf(x)| > )\}) < X Jx [f| du.

Lemma 4.3 (Approximation). Set C =span{g—goT|g € L'(X, u)}. Then,
LYX,u) =Rl1aC.
Proof of Theorem 4.1 assuming Lemma 4.2 and Lemma 4.3. The theorem is trivial for f € R @ C. In-
deed, it is trivial for constants, if f = g — g o g, then by telescoping,
g—goTm™

Anf=2"92"
n

which clearly goes to zero as n — oo (for the second term, use Borel-Cantelli). Set
P={fel'(X,pn)|Anf(:) = J fdp, p-almost everywhere}.
X

We wish to prove that P = L}(X, ). The argument above shows that P is dense (since it contains
R® C, which is dense by Lemma 4.3), so it suffices to show that P is closed in the L!-norm topology.
Let (i) be a sequence in P which converges to f in the L'-norm. Set

A(x) = lim ‘Anf(x) — J f dp}.
n X
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We wish to prove that A = 0 p-almost everywhere. Note that for all m,
AK) < T (Anfm(0) = | fm Qa4 [ = fls + MO~ i) ()
X

< = Ffmlln + IM(f — ) (X)],

since f, € P, whence, forallA > 0 and m,

d
w({AG) > A} < u(M(f—fim)(x) > A= 8m }) < }\_ng /
m
where 61, = ||f — fim /1, and where we in the last inequality used Lemma 4.2. Since 4, — 0, we
conclude that A = 0 p-almost everywhere. O

4.1.1. Proof of Lemma 4.2
By replacing f with f — A, it suffices to show that

J fdu > 0.
Mf>0

Since Mf(x) > 0, if and only if Qnf(Xx) = maxicngN ZE;& f(T™x) > 0 for large enough N, it is
enough to show
J fdu >0, forlarge enough N.
QnTf>0
Since
Onf(x) < QOna1f(x) = max(0, f(x) + QnTf(Tx)), forall N,

we see that

J Qnf(x) du(X)<J fdu+J Qnf(Tx) du(x),
X X

QnTf>0
and thus fQN ¢~0 f dusince T preserves p.
4.1.2. Proof of Lemma 4.3
If R1 @ C is not dense in L!(X, ), then by Hahn-Banach’s Theorem, there exists a non-zero
h e L®(X, n) = LY(X, u)* such that
J hdu=0 and J (g—goT)hdpu=0, forallge L'(X, ).
X X

The second set of inequalities is clearly equivalent to saying UTh = h, where U} : L*(X, n) —
L>(X, u) denotes the transpose of Ut. By Exercise 13, we conclude that h is constant, hence iden-
tically zero (since its integral is zero).

4.2. Topological aspects

Let us now consider the case when X is a compact metrizable space. Suppose that T : X — X
is a continuous map which preserves a Borel probability measure p. Let us further assume that
(X, u, T) is ergodic. By the Pointwise Ergodic Theorem, there exists for every f € C(X), a conull set
X¢ C X such that

1 n—1
lim — Z f(Tkx) = J fdu, forallx e Xg.
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In one of the exercises below you are asked to prove that C(X) is separable. Assuming this for
now, we can pick a countable dense set (f;) in C(X), and define the p-conull subset Xgen of -
generic points by
Xgen = [ | X¢; € X.
J

Lemma 4.4. For every f € C(X), we have

‘ 1 n—1 N
1111111 o ];] f(T%) = Jx fdu, forallx € Xgep.

Proof. Fix f € C(X) and ¢ > 0. Pick fj such that ||f — fj||oc < &/2. Then, if x € Xgen,
1 n—1 1 n—1
] k . k
fim ’E k}_of(T x) — JX fdu‘ < 2||f = fj]oo + Tim )E k}_o £ (Tkx) — JX f du‘ <.

Since ¢ > 0 is arbitrary, we are done. O

Corollary 4.5. Suppose that wand v are two different ergodic and T-invariant Borel probability measures
on X. Then w L v. In fact, if X, denotes the set of u-generic points in X, then u(X,.) = 1, while v(X,) = 0.

Proof. Let X, and X denote the set of p-generic points and the set of v-generic points respectively,
so that u(Xy) =1 and v(Xy) = 1. We claim that X,, N Xy = (), whence p L v. Since p # v, there
exists f € C(X) such that u(f) # v(f). For this f, we have for every x € X, N Xy,

n—1

X n nk:O X

which is clearly impossible. O

We say that a continuous map T : X — Xis uniquely ergodic if there exists exactly one T-invariant
Borel probability measure on X.

Lemma 4.6. Suppose that T : X — X is uniquely ergodic, and let u denote the unique T-invariant Borel
probability measure on X. Then, for every f € X,

1n71
lim =) f(T*x) =| fdu, formly in x.
1Trlnn1; (T*x) Jx W, uniformly in x

Proof. Let (xn) be a sequence in X such that x,, — x. Consider the sequence of probability mea-
sures,

n—1
1
Vnpn = — E 6Tan‘
n
k=0

By weak*-compactness, we can extract a convergent sub-sequence (nn). We claim that the limit
measure v = limy vn,, is T-invariant, whence equal to p, which would finish the proof. To prove
invariance, note that

nN —1

1 1
T, VN —UN = a ];] (5Tk+1x — 5TkX) = E(éTnNX — 6X) — 0,

in the weak*-topology. O
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The fact that the limit measure v is T-invariant does not assume unique ergodicity, and the same
argument as in the proof above can be applied to prove the following classical fact.

Scholium 4.7 (Krylov-Bogliouboff). For every continuous map T : X — X, there exists at least one
T-invariant probability measure on X.

Example 4.3. Let (X, T) be as in Example 4.1. We claim that T is uniquely ergodic (Lebesgue
measure u is the unique T-invariant probability measure) To prove this, suppose that v is a T-
invariant probability measure on R/Z. We shall prove that its Fourier transform satisfies v(n) = 0
for all n > 0, which means that v = p. Since T,u = u, we have

27mino

v(n)e =9v(n), foralln.

If ¥(n) # 0, we must have e>™ine

done. As a corollary, we get that

= 1, which clearly forces n = 0 since « is irrational. We are

n—1
limlzf(x—&-ka):J fdu, forallx e Xand f e C(X).
L g X

4.3. Existence of ergodic measures

Let X be a compact metrizable space and let T : X — X be a continuous map. By the Scholium
above, there exists at least one T-invariant probability measure on X. In this subsection, we shall
prove that there exists in fact always at least one ergodic T-invariant probability measure. We begin
by formulating another characterization of ergodic measures.

Lemma 4.8. A T-invariant Borel probability measure w on X is ergodic if and only if it cannot be written
on the form
p=op + (1 — oy,

for some 0 < « < 1 and two different T-invariant Borel probability measures yy and yp on X.

Proof. If p is not ergodic, we can find a T-invariant Borel set B ¢ X with 0 < u(B) < 1, and thus
u(-NB) u(-NBC)
u=pnB)—7m— e mey
n(B) n(Be)

where both measures on the right hand side are T-invariant (and clearly different). Conversely,
suppose that p can be written as

+ (1 —u(B))

w=opy + (1 — o),
for some 0 < o« < 1, where py and py are T-invariant. Then p; and py are absolutely continuous
with respect to . Their Radon-Nikodym derivatives 3% and %—Tf are clearly T-invariant, and

dp
define non-constant T-invariant Borel functions on X, whence u is not ergodic. O

Proposition 4.9. For every continuous map T : X — X, there exists at least one ergodic T-invariant Borel
probability measure.

Proof. We shall show that there exists a T-invariant Borel probability measure on X which cannot
be written on the form
r=oap + (1 —ajuy, (4.1)

for some 0 < o < 1 and two different T-invariant Borel probability measures p; and p. To do this,
let us fix a countable dense subset (f;) of C(X) (which exists by one of the exercises below). By
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another exercise, the set P1(X) of T-invariant Borel probability measures on X is weak*-compact.
Set

Mo ={vePr(X)| sup u(fo)=v(fo)}.
pePr(X)

Since p +— u(f) is weak*-continuous for every f € C(X) and Pt(X) is weak*-compact and non-
empty, M, is non-empty. Now inductively define forj > 1,

1
M; ={vePr(X)| sup ulfj)=v(fj)}.
peM;

By the same argument, M; is non-empty, so by weak*-compactness,
Moo =[M;,
j

is non-empty as well. We claim that no p € M, can be written on the form (4.1), and is thus
ergodic. Indeed, suppose that i € M, can be written on this form. Then,

w(fo) = apy(fo) + (1 — Ju2(fo) = sup  v(fo),
vePT(X)

whence w(fy) = 1 (fo) = Ua(fo), 80 11, 2 € M, as well. Also,

w(f) = oy (f1) + (1 — o)ua(fy) = sup v(f1),
vEM,

whence u(f1) = wi(f1) = wo(fz), and thus pi, u, € M; as well. We can continue like this, and
thus p (f;) = pa(f;) for all j. Since (f;) is dense, we conclude that p; = pp, which contradicts our
assumption that p; and p, are different. O

4.4. Skew products

Given an ergodic probability measure preserving system (X, u, T) and a measurable map c :
X — R/Z, we can form a new probability measure preserving system (X, p ® A, T) by

X=XxR/Z and T(xt)=(Tx,t+c(x)), for(xt)cX,

where A denotes the Lebesgue measure on R/Z. One readily checks that p ® A is T-invariant. In
what follows, we shall assume that X is compact, whence X, and that T: X =+ Xand c: X — R/Z
are continuous, whence T. Note that foralln > 1,

Th(x,t) = (T, t+c(x) +... +c(T" X)), for (x,t) € X.

Proposition 4.10 (Furstenberg). If T is uniquely ergodic and (X, u®@A,T)is ergodic, then Tis uniquely
ergodic.

Proof. Since ()A(, LR A, T) is ergodic, there exists by Lemma 4.4 a p ® A-conull subset X\gen such that

n—1
lim 1 Z f(?k(x,t)) = J fdu, forall (x,t)e )A(gen and f € C()A().
gy X

We claim that if (x,t) € )A(gen, then (x,s) € )A(gen forall s € R/Z. Indeed, for all n,

n—1 n—1
% Z f(fk(x, S)) = % Z fsft(?k(xlt))l
k=0 k=0
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where f, (x,t) = f(x,t + u). Since f,, € C(X ) X)and (x,t) € Xgen, we must have
lim — Z fo_t(TH(x, 1)) J st dpdr = JAfdud)\,

since A is invariant under translations, whence (x,s) € X\gen. We conclude that
Xgen = Xy X R/Z,

for some p-conull Borel set X,, C X. In particular, if we denote by 7 the projection from X to X,
then Xgen = nfl(XH) for some p-conull subset X, C X.

By Proposition 4.9, it suffices to show that u @ A is the unique T-invariant Borel probability
measure on X. So, for the sake of argument, let us assume that there exists an ergodic T-invariant
Borel probability measure v different from pu ® A. Then, by Corollary 4.5, we know that

0= v(Xgen) = V(1 (X)) = mv(Xy) = (X)) =1,

where the second to last identity follows from unique ergodicity of T, and the fact that 7, v is a
T-invariant probability measure on X, whence equal to p. O

4.5. Autocorrelations revisited and a theorem of Weyl

Recall that a sequence (a,,) of complex numbers is Wiener if its autocorrelation

04 = hm Z Ak Qn ik

exists for every n > 0. Let us now consider a sequence of the form a}y = f(T™x), where (X, u, T) is
an ergodic probability measure preserving system and f : X — C is p-integrable (or X is compact
and T : X — X is uniquely ergodic, with the unique T-invariant probability measure p, and
f: X — Cis continuous). In either of these two cases, we ask whether the limits

N-—1

hrn— Z £(TRx)F(Tn+kx) = hm— Z gn(T*x),

where gn(x) = f(x)f(T"x), exist for all n. By either applying Birkhoff’s ergodic theorem, or
Lemma 4.6, we can conclude that

Oax(n) = J ffoTndp, for p-almostevery x,
X

in the first case, and
Oax(n) = J ffoTndu, forallxeX,
X
in the second case.

When we introduced autocorrelations in class, we discussed the ("linear phase")-case when
an = €™ for some o € [0,1). In this case the corresponding spectral measure equals . We
shall now address the (superficially similar) case

an = ezmnz“, with o € Q. (4.2)

The theory that we have developed above will give that the spectral measure in this case is the
Lebesgue measure, so radically different from the "linear phase"-setting. This was first observed
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by Hermann Weyl.

To get the machine we have constructed going, we need to represent the sequence in (4.2) on
a "dynamical" form. In what follows, let X = R/Z and Tx = x + o« (mod 1), where « ¢ Q. Set
c:X—=R/Z
c(x) =2x+a« mod 1,

and define T and X as above. It is pretty straightforward to check that
T“(0,0) = (na,n’a), formn>1,
so if we set f(x,t) = 2™, then f € C(X) and
#(T(0,0)) = e2mine,

More generally,
T (x,t) = (x + ne, t + dnx + n?«), for some dn > 1.

Hence, if we can show that Tis uniquely ergodic, then it follows from above that

0a(n) = JA f(x, t)f(x + no, t + dnx + nZocdp(x) dA(t) =0,
X

foralln > 1, and 04(0) = 1; in other words, the corresponding spectral measure is the Lebesgue
measure.

It thus remains to show that T is uniquely ergodic; or (since T is uniquely ergodic) - by Fursten-
berg’s observation above, that (X, u®@A,T)is ergodic. You are encouraged to prove this - it will be
useful to write T in a slightly different form. Note that X = (R/Z)?, and

Tlx, t) = G 2) <’t‘> + (2) A (’E) + by 4.3)

APPENDIX A. FOURIER ANALYSIS ON T

Definition A.1. A functiony : Z — C is called positive definite if for every N > 1 and for every
ni, ...,y € Zand ¢y,...,cn € C we have

N
D dlnk —m)exer = 0.
K1=1

If pis a bounded Borel measure on T, we define its Fourier transform {1 by
umn) = J e ™ du(x), forn e Z.
X
Theorem A.2 (Herglotz’s Theorem). If ¢ : Z — C is positive definite, then there exists a unique bounded
positive measure 0, on T such that ¢ = 0.

Definition A.3. We refer to the measure 04, in Theorem A.2 as the spectral measure associated to
the positive definite function ¢.

Proof. Since ¢ is positive definite, the function Fy : T — C

N
1 .
PN = D blm—mjermimom,

mmn=1
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is non-negative for every N > 1, whence the Borel measure d0n = Fn(x) dA(x), where A denotes
the Lebesgue probability measure on T, is bounded and positive. Furthermore,

N
on (T) :% > $(0)=¢(0), forallN,
m=1

so by narrow sequential compactness, we can extract a subsequence (Ny) such that O, — 0 for
some bounded positive Borel measure 6 on T in the narrow topology. In particular, for every
nez,

limJ g 2minx don, (x) = J e 2TMNX 4o (x).

kT T

Itis not hard to check that the left hand side always converges to ¢(n), whence fT e 2mnx 4g(x) =
¢(n) for all n. Since trigonometric polynomials are dense in C(T), we see that if 0’ is any other

bounded positive measure on T such that ¢p(n) = [ e 2™nx 49/(x) for all n, then 8’ = 6, whence
the notation 04, makes sense. O

A.1. Properties of spectral measures

Lemma A.4 (Wiener’s Lemma). If w is a bounded and positive Borel measure on T, then

limocts YRR = Y )P

[n|<N xeT

In particular, if limy ﬁ ZlnlgN [i(n)|> = 0, then w is non-atomic.

Proof. Let A ={(x,x) | x € T} C T x T and note that

1
N Z e?mix—y) xa(x,y), forall (x,y) e T xT,
n|<N

whence

SE RmE =[S e aut) auty

nI<N [n|<N
= neuA) =) [P
xeT
O

Lemma A.5 (Riemann-Lebesgue’s Lemma). If w is a bounded Borel measure on T, which is absolutely
continuous with respect to the Lebesgue measure A, then fi(n) — 0as n — oo.

Proof. Write i = wdA with u € L'(A). If u € L?()), then the assertion is trivial by Parseval’s
Theorem. Since L?(A) is dense in L'(A), we are done. O

APPENDIX B. AROUND THE THEOREM OF ARZELA AND ASCOLI

Let (X, dx) and (Y, dy) be metric spaces. Denote by C(X, Y) the space of continuous maps from
X to Y, equipped with the topology of uniform convergence on compact sets. This topology can
be described as follows. Fix f € C(X,Y) and a compact set K C X. We say that a sequence (f,,) in
C(X,Y) converge compactly to f if

limsup dy(f(x), fn(x)) =0, for every compactset K C X.
M xek
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Furthermore, we define the (f, K)-modulus of continuity ws x : [0oo) — [0, 00) by
wex(t) :sup{dy(f(x), (x)) | x,x" € X and dx(x,x’) t} fort > 0.

Note that w¢k(t) = 0ast — 0. More generally, if A C C(X,Y), we define the (A, K)-modulus of
continity wa x by

WA k(t) =sup wek(t).
feA

We say that A is totally bounded if for every x € X, the set
Yy ={f(x) | T€eA} CY
is sequentially pre-compact, and equicontinuous if lim¢_,o wa x (t) — 0.

Theorem B.1 (Arzela-Ascoli). Suppose that (X, dx) is separable and (Y, dy) is complete. If A C C(X,Y)
is totally bounded and equicontinuous, then it is sequentially pre-compact.

Proof. In class. Ol
The proofs of the following corollaries are left as exercises (see below).

Corollary B.2. Let 3 > 0, and fix Q > 0 and a function y : (0,00) — (0,00). Then the set Aq, C
C([0,00), RN) defined by

AQY—{fE C([0, 00), RN | [£(0) < Qand forevery T >0, sup M
o<s<t<T 15— tIP

<y(M}

is sequentially pre-compact.
Corollary B.3. Suppose that M. C P(C([0, c0), RN)) satisfies

Jiminf n({f € C([0,00), RN) [ [f(0)| < Q}) =1

and, for every T > 0,

lim inf p({f € C([0,00),R RN) | sup [f(s) — f(1)]

<R;)=1.
R—oo neM 0<s<t<T |S—t\f3 = })

Then M is sequentially pre-compact in in the narrow topology.

B.1. Besov saves the day

Let @ : [0,00) — (0,00) and w : (0,00) — (0, 00) be strictly increasing functions, and suppose
that lim;_,o+ w(t) = 0. Fix T > 0 and define for g € C([0, T],RN), the Besov norm

B+(g) = JT JT @(W) ds dt.

0 Jo w(|s —1l)

Proposition B.4. If Bt(g) < oo, then

t—s
lg(s) —g(t) <8J @—1(4‘%2(9)> dw(u), forall0<s<t<T,
0

where dw denotes the Stiltjes measures associated to w.

The proof of the following corollary is left as an exercise.
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Corollary B.5. Suppose that M C P(C([0,00), RN)) satisfies

. . N —
Jim_inf u({f € C(10,00), R™) |If(0)] < Q} =0

and, for some «,r > 0, there exist, for every T > 0 a constant Ct such that
Jlf(s) —f(t)[" du(f) < Cyls — t|1+e, forall 0 <s<t<T.

Then M is sequentially pre-compact.

Let us now turn to the proof of Proposition B.4. We begin by showing that it suffices to consider
the case when T =t =1and s = 0. Given f € C([0, 1], RN), we set

Ot If(s) — f(t)]
A(s) = L @(m> dt, for0<s<1,

and

1
Bf = J Af(S) ds.
0

Lemma B.6. For every f € C([0,1], RN),

(1) — £(0)] < SE qu(%) dav (u).
Proof of Proposition B.4 assuming Lemma B.6. Given g € C([0, T,RN)and 0 < s < t < T, define
f(t)=g(s+1(t—s)) and @u)=w((t—s)u), for0<t<landu > 0.
Apply Lemma B.6 to f and @, and note that f(1) = g(t) and f(0) = g(s). O
B.1.1. Proof of Lemma B.6
Fix f € C([0,1],RN) such that B < co. We shall prove the following lemma.

Lemma B.7. For every s, € (0,1) such that A¢(so) < By, we have

1
_1/4B
f(s0) — F(0)] < 4J o 1(2}) dwlw).
0 w
To see how Lemma B.6 follows from this lemma, write f(s) = f(1 — s), and note that Ag(s) =
A¢(1—s)and By = By. If A¢(so) < By, then A¢(1 —s,) < Bf, whence, by the lemma above,

< . v /4B
(1) — tls6)| = (1 — 50) ~ F0) < 4| @1 (7F) deolu.
0 w
We conclude that

1
1) = 00 < IF(1) = fs0)| + Ils0) — (011 < 8 | @71(3) i)

which finishes the proof of Lemma B.6.
Let us now turn to the proof of Lemma B.7. We shall need:

Lemma B.8. Forevery o, 3 € (0,1), there exists u € (0, ) such that

2B¢ F(B) —flwl _ - 1 /2A¢(B)
Af(u)<7 and m<® ( o )
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Assuming this lemma, let us see how Lemma B.7 follows. Fix s, € (0,1) such that A¢(s,) < By,

and define t, € (0,1) such that w(ty) = % Since w(to) < w(se) and w is strictly increasing,

we see that t, < so. Apply Lemma B.8 with o = t, and 3 = s, to find 0 < s < t, such that
o 2B¢ [f(s1) — f(so)l < ®7l<2Af(50)>.

A < d R
tls1) to an w([s1 —sol) to

Now define 0 < t; < s1 by w(ty) = wésl, and use Lemma B.8 with « = t; and B = s; to find

0 < sp < t1 such that

2B f(sp) — f(s 2A¢(s
Ac(ss) < 22 and [f(s2) —f(s1)l _ q)q( i1 1)>‘
Y w([s2 — s1l) t
We can continue this construction to find a sequence s, > t, > s; > t; > s > ..., where

w(tn) = w such that

N

Ag(Sny1) <

2Br 4 |f(5n+1)_f(sn)|<®f1<2Af(Sn)>'

th w(|5n+1 - Sn|) th
Since w(ty) < wz(,ic’), we see that t,, — 0, and thus s,, — 0. Furthermore,
1
W(lsn —sny1l) < wlsn) =2w(tn) =4(w(tn) — Ew(tn)) <4 (w(tn) —w(tni1))

Since f is continuous, we conclude that
f(s0) — f(0)] = | Z (f(sn) — f(sn41))]

[f(sn) — f(5n+1)|
w([sn —sni1l)

VAN
M
— °

) @llsn = sn 11

(D_l(ZAf(sn)

/AN
I
M2

) (@(tn) = w(tn 1))

tnh

n=0
<4§;r(¥f:)mmg—maﬂn

— __1(4B¢
< 4) 07 (5 (@ltn) — wltns))

n=0 n

2 [t 4B
< 4 =
s TLZ—OJthrl (D ( u2 ) d (u)

1 _1/4B¢

which finishes the proof.

It remains to prove Lemma B.8. Set

I={uel01]]Aru) <=L}

and

FB) )] _ o1 (2AclB)Y)

J=lue 01|~ s
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By Markov’s inequality,
A(D) >1—% and A()) >1—%,
where A denotes the Lebesgue measure on [0, 1], whence
AMINT) >1—¢,

and thus I N ] intersects the interval (0, «), which finishes the proof.

EXERCISES

Exercise 1 (3 points). Let (X, d) be a metric space and let p and v be bounded positive Borel
measures on X. Fix a bounded positive Borel measure A on X such that p < A and v < A, and
write du = udA and dv = v dA. Define the Hellinger affinity H(u, v) by

H(w, v) = J vuv dA.
X
Show that H(, v) is independent of the choice of A, and that
uwlv = H(wv)=0.

Exercise 2 (3 points). Suppose that (a, ) is a Wiener sequence and v, : N, — Cits auto-correlation.
Show that

o Ya(m) ifmn>=0
Yaln) = { Ya(-m) ifn<0

is a positive definite function on Z, and that the sequence of probability measures (9](\?)) on T

defined by

2
dx, forfe C(T), (B.1)

(@) 1 N—-1
a) z —27i
J'T f deN == N J"]T f(X) ’ — ane mnx

converges narrowly to the spectral measure 6, associated to v,.

Exercise 3 (5 points). Let (X, d) be a metric space and let By, ..., By be a partition of X into Borel
sets. Let pand v be positive and bounded tight Borel measures on X. Construct a function

f:[0,1) — [0,1), with {irr(l) B(t) =0,

such that for all small enough ¢ > 0, there are continuous functions fo, f1,...,fn : X — [0,1] such
that

N
Z fr(x) =1, forallx € X,
k=0

with the following properties:
(i) If u(By) =0, then [y fi du < e.
(ii) If v(By) =0, then [y fi dv < e.
(iii) If u(By)v(By) > 0, then

Ble) < L fdp < (14 )3 u(By) + Ble),

and

Ble) < L fedv < (14 e)3v(By) + Ble).
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Exercise 4 (10 points). Given a non-negative integer n, let S;; denote the sum of the digits in the
binary expansion of n. For instance,
So=0, S1=1, So =1, S3=2, S4=1, Ss5=2....
The Thue-Morse sequence is defined as an = (—1)5n.
a) Show that S,,, = S, and Sy, 1 = Sn + 1 for all n, whence
an =an, and ayni1 =—an, foralln. (B.2)

b) Show that the autocorrelation v : Ny — R,

N
. 1 .
v(m) = hlzln Nt1 EO anQnim existsforallm >0,
and satisfies
1
v(2m) =y(m) and y(2m+1) = —E(y(m) +vy(m+1)), forallm>0. (B.3)

c) Let 0, denote the spectral measure associated to y. Show that 0, is both non-atomic and
singular with respect to the Lebesgue measure on T.

d) Let & € C with |£] = 1 and let (e ) be a sequence of real-valued i.i.d random variables
with zero means and finite variances. Show that

N
1
lim ——— n =
NG N+ 1 )_an&" =0
n=0
and

. 1
]\}13100 N+l ZO anén =0, almost surely.

Exercise 5 (3 points). Let p be a Borel probability measure on on a metric space (X, d). Show that
for every x € X there exists a countable set Sx C (0, co) such that B (x) is p-Jordan measurable for
all r ¢ Sy, where B, (x) denotes the closed ball around x of radius r.

Exercise 6 (4 points). Let (X, d) be a metric space. Recall that the variation metric dy,, between two
Borel probability measure n and v on X is defined by
dvar(p, v) = sup {|n(B) — v(B)| | B C Xis Borel}.

Is (1, v) — dvar(p, v) sequentially lower semi-continuous with respect to narrow convergence?

Exercise 7 (5 points). Let (X;,d;) and (Xp, d2) be separable metric spaces, and let (X, d) denote
the metric space (X1 x X,d; + d2). Given Borel probability measures p; and p, on X; and Xp
respectively, a coupling p of 1y and p; is a Borel probability measure on X such that

Hi(B1) = u(Br x Xp) and pp(Ba) = u(Xy x Bo)

for all Borel sets By C X; and By C X».

Let C(uy, n2) denote the set of all couplings of 1y and py. Show that C(py, p2) is sequentially
compact in the narrow topology, and deduce the following fundamental principle in the field of
optimal transport: If ¢ : X; x X, — R is lower semicontinuous and bounded from below, then the
map

H'—>J J c(x1,%x2) du(x1,x2)
X; 4%,

attains a minimum in C(uq, Ho).
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Exercise 8 (5 points). Let Y and Z be metrizable spaces with Y o-compact (meaning that Y can be
exhausted by an increasing union of countably many compact sets). Suppose that ¢ : Y — Zis an
injective and continuous map. Show that:
(i) @(Y) C Zis o-compact, hence Borel measurable.

(ii) A :={B C Y| ¢(B) is Borel} is a o-algebra.

(iii) Every closed subset of Y is contained in A.
Deduce from (i)-(iii) that the @-image of every Borel set in Y is Borel measurable in Z, and show
that if v is a Borel probability measure on Z, then u(B) = v(¢@(B)), for B C Y Borel, is a Borel
probability measure on Y.

Remark B.9. Henri Lebesgue, in his original expose of integration theory, claimed that images of
Borel sets under continuous maps are always Borel measurable. Later, Mikhail Suslin showed that
this is not true without the hypothesis that the map is injective.

Exercise 9 (3 points). Let m denote the Lebesgue probability measure on [0, 1]. Define the sequence
(vn) of Borel probability measures on [0, 1] by

1 ¢ . k
v (f) = ““kz_of(“)' for £ € C([0,1).

a) Prove the fundamental theorem in Riemann integration, namely that v, narrowly con-
verges to m.

b) For every ¢ > 0, there exists an open set U C [0, 1] such that m(U) < € and v, (U) =1 for
all n. In particular, v, (U) - m(U).

Exercise 10 (15 points). Prove Corollaries B.2, B.3 and B.5.

Exercise 11 (5 points). Let €1, €, ... be centered i.i.d. random variables with finite fourth moments
on some probability measure space (Q,P), and set S,, = €1 +. ..+ & (With the convention S, = 0).
Define the sequence 7, : Q — C([0,1],R) by

n’n

Tin (-, t) = \}ﬁ Z (Sifl(’) +Tl(t - i_nl)ei(-))X(i] 5] (t), forte[0,1],
i1

and set g, = (7 )«P (the push-forward of P to a probability measure on C([0,1],R). Show that
(1n ) is tight.

Exercise 12 (3 points). Let p be a Borel probability measure on R. Show that for every positive

integer N, we have
[(g) — 1] < NV2[(g/N) — 1|, forall &

Exercise 13 (7 points). Let T : X — X be a measurable map which preserves a Borel probability
measure p. Fix p > 1. Show that the map Uy : LP (X, u) — LP(X, u), f — fo T is well-defined, and
satisfies ||[Utf||, = |||, for all f € LP(X, u). Also show that (X, p, T) is ergodic if and only if there
is no non-constant f € LP (X, u) such that Utf = f, if and only if there is no non-constant solution
to U3g = g, where U} : L9(X, u) — L9(X, n) denotes the transpose map ( where % + % =1) [for
the last equivalence, you can use the next exercise].

Exercise 14 (3 points). Let (X, T, 1) be an ergodic probability measure preserving system. Show
thatif f € LP(X, u) for some 1 < p < oo,

N-—1

1

N Z foT™ — J fdu, in the weak-topology.
n=0 X
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Exercise 15 (4 points). Show that the map T : R/Z — R/Z preserves the Lebesgue measure p on
R/Z. Possible approach: Show first that w(T~1(B)) = w(B) for every interval B C T, then use magic from
your integration theory course.

Exercise 16 (5 points). Prove Rajchman’s Lemma: Let (f) be a sequence of bounded measurable
functions on a probability measure space (X, p) with

sup [[fxllc <00 and (fj, fx)r2(x ) =0, forallj, k.
K

Then % > 1 fk(x) = 0 p-almost everywhere. Hint: Show that

18 e
> [ Xl <o
n>1 k=1
use Borel-Cantelli’s Lemma, and use a "sandwich”-argument.

Exercise 17 (5 points). A real number x € [0, 1) is called 2-normal if the limits

dilx) — li]in {ne [1,N]\]J | X = 1}|’
where x,, denotes the n’th digit in the binary expansion of x exists and equals 1/2 for i = 1,2.
Show that Lebesgue almost every number in [0,1) is 2-normal. Hint: Show that x,, = i depending
on whether 2™x mod 1 ends up in [0,1/2) or [1/2,1), and use the ergodicity of the map x — 2x (mod 1),
together with Birkhoff’s Ergodic Theorem.

i=0,1,

Exercise 18 (3 points). Show that if X is compact and metrizable, and T : X — X is continuous,
then the set P1(X) of T-invariant Borel probability measures on X is weak*-compact.

Exercise 19 (4 points). Show that the system ()?, LA, ?) defined in (4.3) is ergodic.

Exercise 20 (4 points). Show that if X is a compact metrizable space, then C(X) is separable in the
uniform norm (Is the same true if the assumption that X is compact is dropped?).
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