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Abstract

The purpose of this thesis is to contribute to the understanding of yeast growth.
It builds upon a dataset consisting of growth curves of 576 Saccharomyces cerevisiae
mutants in eight different environments. The data will be a part of a publicly availab-
le phenotypic library, PROPHECY, containing growth curves and characteristics of
viable S. cerevisiae mutants in a wide variety of growth conditions.

We compare the fits of modifications of logistic, Gompertz, and Chapman-Richards
models for the growth curves. The comparisons indicate that the modified Chapman-
Richards model describes our growth data best. Relevant information about the be-
havior of the mutants is obtained by estimating the physiologically important growth
parameters: the lag time (time to adapt to the environmental change), the maxi-
mum relative growth rate, and the efficiency of growth. We introduce an alternative
parameterization of the modified Chapman-Richards model that uses these growth
parameters and investigate its uniqueness and parameter restrictions. We also show
convexity of its logarithmic parameter space.

One of our findings is that the lag time and the growth rate depend strongly
on the initial population size. However, in large-scale experiments with hundreds of
strains, it is difficult to have the same constant initial population size. To address
this problem and to enable easy visualization of the data, we develop a method to
standardize growth curves with respect to the initial population size. The idea is to
use a modified Chapman-Richards curve to predict what the behavior of a growth
curve would have been, had the population had a fixed standard initial size. As a
result, the initial population size correlation with lag time and growth rate reduces
remarkably. We also introduce two ways to construct a summary curve from several
standardized growth curves.

We suggest a set of filtering methods, based on the standardized and summary
curves, in order to detect experiments and individual curves that are atypical or
spurious. Finally, we compare the variability of wild type normalized mutant growth
parameters from the modified Chapman-Richards, standardized, and summary curves.
The variances are typically slightly smaller with the standardizing and summarizing
methods than with the direct Chapman-Richards approach.

Keywords: Bioscreen, Chapman-Richards model, growth curve, growth rate, lag
time, optical density (OD), Saccharomyces cerevisiae, standardized curve, stationary
phase OD increment, summary curve
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Chapter 1

Introduction

Saccharomyces cerevisiae, better known as baker’s yeast, has been domesticated thou-
sands of years ago. It is used in baking, brewing and wine making. S. cerevisiae is also
an important model system in modern biology and medicine. It reproduces quickly,
and large numbers of cells can be grown in culture in a very small space, in the same
way as bacteria can be grown. However, S. cerevisiae has the advantage of being a
eukaryotic organism, and thus the results from genetic studies with S. cerevisiae are
more easily applicable to human biology. The collaboration of more than 600 scien-
tists from over 100 laboratories in Europe, USA, Canada, and Japan resulted in a
publication of the complete genomic sequence of the S. cerevisiae in 1996 [10]. It was
the first completely sequenced eukaryote.

To complete the characterization of the S. cerevisiae genome, the functions of the
novel genes need to be determined. The S. cerevisiae genome has roughly six thou-
sand genes of which approximately seventy percent have a known function [14]. One
important approach for characterizing a novel gene is to produce a knock-out mutant!
lacking the gene, the logic being that the behavior of the mutant, its phenotype, will
give important information about the function of the gene. Mutant strains of yeast
are produced in several international consortia. During the past few years hundreds
of papers on large-scale functional genomics have been published, where these mutant
strains play a key role.

Recently large-scale phenotypic characterizations have received a lot of attention.
As a result, a few laboratories have specialized in the large-scale phenotypic analyses
of qualitative phenotypes, such as growth or non-growth on agar plates containing a
number of different compounds. Although automated to some extent, these methods
require a substantial amount of manual work, and may suffer from relying on sub-
jective judgment in the assessment of growth. Besides, these methods do not allow

' A mutant: a strain that differs from the wild type because it carries one or more genetic changes
in its DNA. A wild type: reference strain within a specific strain background.



to distinguish the three physiologically relevant growth parameters: lag time (time
to adapt to the environmental change), maximum relative growth rate (kinetics of
growth), and stationary phase OD increment (related to the efficiency of growth).

Winzeler et al [28] showed that large numbers of deletion strains can be pooled,
grown together and analyzed in parallel by using DNA bar-codes to uniquely mark
each strain that misses a gene. In the next step, microarrays are used to follow the
abundance of the different bar-codes as cells proliferate. Although being a powerful
approach, this methodology has some drawbacks. One of the most serious concerns
might be the positive and negative interactions between mixed strains that are an
inherent consequence of this experimental setup [25].

In an alternative approach, Warringer and Blomberg 25| designed a system for
large-scale quantitative phenotypic analysis of S. cerevisiae based on a commercially
available Bioscreen C Analyzer?. In this system it is possible to screen automatically
for phenotypic effects for hundreds of different mutants. The analysis of the growth
curves is automatic and provides estimates for growth parameters. The purpose of the
system is to build a publicly available phenotypic library, PROPHECY?, containing
growth curves and characteristics of viable S. cerevisiae mutants in a wide variety of
growth conditions, and to use the library for studying gene functions. PROPHECY
is publicly accessible at http://prophecy.lundberg.gu.se and it is continuously updated
with growth data [7].

Warringer et al [27] used the system for phenotypic analysis of a set of 14 deletion
strains in S. cerevisiae. Applying 96 conditions and analyzing 3000 growth curves,
statistically significant phenotypes for nearly all strains in the screen were detected.
These quantitative phenotypes portray aberrant growth behavior considering all three
growth parameters, thus capturing defects in multiple, independent aspects of growth.
Ericson et al [6] applied the system on quantitative phenotypic analysis of 576 S.
cerevisiae mutants in eight different environments. Statistically significant phenotypes
were revealed for over sixty percent of the analyzed genes. A functional role for the
majority of the genes had not been reported earlier [14].

These developments are important initial steps towards large-scale analysis of mu-
tants based on rigorous statistical grounds. However, more analytical tools need to be
put in place before the methodology becomes fully operational. It is the aim of this
thesis to address several issues related to growth curve modeling and growth para-
meter estimation. We hope that the results we obtain will contribute to establishing of
a rigorous modeling basis that will facilitate the phenotypic analysis of large numbers
of mutants.

In Chapter 2 we introduce the data that motivated the thesis and briefly discuss
the issues of calibration and blank correction related to the yeast growth data from the

?Labsystems Oy, Finland
3PROfiling of PHEnotypic Characteristics in Yeast



Bioscreen. In Chapter 3 we compare the fits of modifications of logistic, Gompertz,
and Chapman-Richards models for S. cerevisiae growth curves. The comparisons
show that of these the modified Chapman-Richards model describes our growth data
best. In Chapter 4 we give an alternative biological parameterization to the modi-
fied Chapman-Richards model, and investigate the basic theoretical properties of this
parameterization.

The lag time and the growth rate depend strongly on the initial population size.
However, in large-scale experiments with hundreds of mutants, it is difficult to keep
the initial population size constant. To address this problem and to enable easy
visualization of the data, we introduce a method to standardize growth curves with
respect to the initial population size in Chapter 5. The idea is to predict what the
behavior of a growth curve would have been, had the population had a standard initial
population size. In Chapter 6 we present two ways to construct a summary curve from
curves from parallel experiments.

In Chapter 7 we suggest a set of methods based on the standardized and summary
curves to filter out curves or whole experiments that are atypical or spurious. Finally,
in Chapter 8 we compare the variability of wild type normalized mutant growth para-
meters from the modified Chapman-Richards, standardized, and summary curves.






Chapter 2

Background

2.1 How does S. cerevisiae grow?

! The cell cycle begins with a single, unbudded cell.

S. cerevisiae divides by budding.
This cell buds, the bud grows to nearly the size of the parent cell, the nucleus divides,
and the two cells separate into two unbudded cells. The cycle then starts over for
both of the cells. The result is an exponential increase in the number of cells. The
doubling time varies with the strain, the growth medium, and the temperature. For
more details, cf. [20].

When cells are inoculated (seeded), they require a period of preparation before they
start dividing. Following this lag phase, which may be up to several hours or days
long, they enter the exponential phase during which their number and mass double
at equal time intervals. After a period of growth at a relatively constant rate per
cell, some environmental condition, such as lack of nutrient, becomes growth limiting
so that the rate of growth diminishes and growth eventually stops. The number of
cells and the cell mass become constant. In the stationary phase cells do not divide
anymore, but they usually remain viable for several days. An example of a typical
logarithmic growth curve is displayed in Figure 2.1.2

2.2 Optical density

Optical density (absorbance), OD, is a widely used concept in the estimation of the
total number of cells present in a culture. It is a measure of the turbidity of the culture.
A cell suspension looks cloudy (turbid) to the eye because cells scatter the light passing

"We work with haploid cells.
>This is an ideal growth curve. In growth inhibiting environments growth curves can have different
shapes.
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Figure 2.1: A typical logarithmic growth curve, where Ny is the number of cells at time
t.

through the suspension. The more cell material is present, the more the suspension
scatters the light and the more turbid it will be. Optical density can be measured
with a spectrophotometer, a device that passes light through a cell suspension and
detects the amount of unscattered light that goes through. For unicellular organisms,
optical density is proportional (within certain limits) to the number of cells as well as
to the cell mass. Optical density measurements are quick and easy to perform, and
they do not disturb or destroy the sample. They are used widely to monitor the rate
of growth of cultures, since the same sample can be checked repeatedly |2].
Optical density is defined as

I
OD = log (7[]) ;

where Ij is the intensity of the incident light and I is the intensity of the transmitted
light [17]. The exact optical density of a culture depends on the concentration of the
cells present, the species and strain of the microbe present, the growth conditions used,
and the wavelength of the light being transmitted. Optical density measurements
sense all cells present in a solution, irrespectively of their viability.

Since the cell sizes affect the absorption capacity, the OD measurements are never
perfectly proportional to the number of cells or to the cell mass. This error affects
even the measurements done in the exponential phase since the cell size distribution
in a culture depends on the age distribution which in turn depends on the rate of
growth. For the sake of simplicity in the sequel, we choose to ignore this problem,
both in the calibration (Section 2.4.1) and in the interpretation of the data.



2.3 Bioscreen C Analyzer

Bioscreen C Analyzer is an instrument developed to perform a wide range of micro-
biology experimentation automatically [1|. It is simultaneously a dispenser/diluter,
incubator and optical density measurement unit, integrated with a computer.

A heating/cooling system provides a wide range of incubation temperatures (from
1°C to 60°C). Different shaking intensities and intervals can be chosen (the plates
are shaken to provide homogeneous dispersion of cells). Optical density is measured
by a wide band (450-580 nm) filter which is rather insensitive to color changes in the
sample.

There are two 100-well (10 x 10) disposable Honeycomb multiwell plates in each
Bioscreen C instrument. The volume of each well is 400 pl. Each well can be re-
garded as an individual test vessel. The Bioscreen microbiology reader monitors opti-
cal density of the 200 wells simultaneously. The test duration may vary from a single
measurement to seven weeks of measurements, and the maximum number of measure-
ments per well is 400. This design strongly reduces the time and work needed for doing
experiments compared with traditional manual techniques. In addition, the precision
of the Bioscreen measurements is higher than the precision of manual measurements.

2.4 Motivating dataset

Altogether 577 strains of S. cerevisiae 576 mutants and one wild type  were run
in synthetically defined (SD) medium?, which is the reference condition, and in seven
different environments where either some chemical was added to the SD medium, or
another temperature than the standard 30°C was used. The different environments
and their abbreviations are given in Table 2.1. Optical density was recorded using
a Bioscreen C Analyzer. Measurements were taken every 20 minutes during a 48
hour period, i.e. at 145 time points. Strains were run in quadruplicates (reference
condition) or in duplicates (environments), in the same well location and in the same
Bioscreen C Analyzer instrument during different days. The wild type positions on
the plates were randomized once, with one per quadrant. The positioning of the wild
types and mutants on the plates and in the Bioscreen instruments is shown in Figure
A.1 in Appendix A. In the sequel, by run we refer to each 48 hour period of OD
measurements of 192 mutants and 8 wild types in a specific Bioscreen instrument.
All data are smoothened so that each OD value lower than the previous value (i.e.
the OD value at the previous time point) is set the previous value. This is biologically
reasonable since the measured OD values tend to be too small rather than too large,
mostly due to air bubbles. For more information about the data, see [6]. When we

3The SD medium contains yeast nitrogen base (YNB), ammonium, sulphate, succinic acid and
the necessary amino acids.



Table 2.1: The environments of the motivating dataset and their abbreviations.

Environment Abbreviation
Temperature 39°C 39°C
Temperature 41°C 41°C
Dinitrophenol DN

Caffeine CA

Natrium chloride NA
Methylviologen MV
Methylmethanesulfonate MM
Reference condition NO

refer to a specific run, we write the environment abbreviation (for 39°C and 41°C only
the numbers are written), then the Bioscreen instrument (C, D or E), and then the
date, e.g. 39D0307 stands for the run in environment 39°C, in Bioscreen instrument
D, on March 7.

2.4.1 Calibration

A technical challenge in automated recording of yeast growth by optical density mea-
surement is the non-linear relation between measured OD value and number of cells
at higher cell densities. The yeast cultures should ideally be diluted at higher OD
values, but this is not possible in the current high throughput setup. Therefore a
calibration curve function is needed to transform the non-linear relation to a linear,
so that the calibrated OD values would be proportional to the number of cells. Also, a
blank representing the background absorption of the plate has to be subtracted from
the measured OD values.

Calibration data

A 100-well plate and five different Bioscreen instruments were used. First the wells
were filled with 350ul sterile water, and the OD was measured once in each Bioscreen.
This gave us the well and Bioscreen specific blanks. Then, the water was poured off the
plate and the plate was placed in a 37°C chamber to make all the water evaporate.
Stationary phase wild type cells (that had been growing on a shaker in 30°C over
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Figure 2.2: Calibration curve and the data that were used to fit the calibration curve
function. The well specific blank values are subtracted and the resulting OD values for
the diluted samples are multiplied by ten.

night) were spun down, washed, and suspended in water. From this cell suspension
different volumes were taken into tubes. These undiluted samples were each diluted
ten times in another tube to obtain the diluted samples. Then, 45 wells were filled
with diluted and another 45 wells with undiluted samples, and the plate was measured
once in each Bioscreen.

Since the OD values were measured in five Bioscreens, there are 225 pairwise OD
measurements of diluted and undiluted samples. The well and Bioscreen specific blank
was subtracted from each of the measured OD values and the blank corrected diluted
values were multiplied by the dilution factor (Table B.1 in Appendix B). Then, in
order to get more robust measurements of the OD, the well specific averages over
all Bioscreen instruments were taken so that there were 45 average OD values of the
diluted and 45 average OD values of the undiluted samples (Table B.2 in Appendix
B). After these steps, the well specific averages of the diluted values were regarded
as perfect size proportional measurements (for the higher values this is somewhat
inconsistent with the resulting calibration curve).

Curve fitting

Using regression, a curve was fitted with the well specific average of the blank corrected
undiluted OD (z) as independent and the well specific average of the blank corrected
diluted OD multiplied by ten (y) as dependent variable (Figure 2.2). Therefore, we
assume that due to the blank subtraction and multiplication by ten, the amount of
variation in gy is much larger than the amount of variation in z.



We assume that the blank corrected diluted OD values and the blank corrected
undiluted OD values are almost equal approximately up to 0.3. A cubic function

y =+ cz®

was fitted.* Using least squares estimation, we obtained the curve °

y =z +0.832". (2.1)

Having a second degree term in the polynomial would make the curve too steep in
the right end, so that when extrapolating for high values of z, the values of y would
be too high.

We measured the same plate in each Bioscreen and plotted the results correspond-
ing to all pairs of Bioscreens against each other. Since the differences between the
OD values from the different Bioscreens were rather small, and the lines were close
to the 45° degree line, we decided to use the same calibration curve function for all
Bioscreens. All data in this thesis are calibrated using the function (2.1) where now x
is the blank corrected OD value from the Bioscreen and y is the resulting calibrated
blank corrected OD value (more about the blank correction in the next section).

2.4.2 Blank correction

In the 576 mutants experiment a blank equal to 0.067 was used for all wells in all
Bioscreens. This blank is the average blank of all wells in all five Bioscreens in two
experiments where the OD values of wells containing only sterile water were measured.
In these experiments there were altogether 1500 observations which varied between
0.060 and 0.112. The histogram of the blank values is shown in Figure 2.3.

Variances within Bioscreens were rather small (the average of all the within Bio-
screen variances was less than 0.00005). There were differences between Bioscreens,
the lowest Bioscreen average being 0.063 and the highest being 0.072.

The same blank value was used in all Bioscreens and in all wells because in practice
it is not possible to measure Bioscreen and well specific blanks for each run. Neither
can the Bioscreen averages from the blank experiments be used as Bioscreen specific
blanks, because the blank depends also on the disposable plates. In the calibration
data it is however important to use the well and Bioscreen specific blanks because the
errors are multiplied by ten.

4Since & and y are assumed to be almost equal approximately up to 0.3, the coefficient of z was
set to one.

5The value of ¢ was 0.8324057, but here it is rounded to 0.83 for simplicity. In all calculations
¢ = 0.8324057 was used.

10
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Figure 2.3: Histogram of the blank values from two experiments where the OD wal-
ues of wells containing only sterile water were measured. There are in total 1500
observations.

2.4.3 Discussion

It would have been possible to fit a calibration curve function assuming that there is
measurement error in both z and y, but then the error structures should have been
modeled more carefully. The calibration curve fitting could alternatively have been
done in two steps. First, to fit the function as we did. Second, to replace the small
y values (e.g. values corresponding to z < 0.35) by the values from the first step
calibration curve function and fit the curve again. This approach could be motivated
by the observation that the measurement precision of x is much higher than the
measurement precision of y, and that the small x values are rather accurate.

We do not really know how well the calibration curve function works for high OD
values. In the dataset that it is based upon, the highest undiluted OD value is 1.22,
but in the motivating dataset (and in most of the data collected in PROPHECY) there
are OD values up to 1.7. Also, we are aware that the use of the same blank value in
all Bioscreens and in all wells is questionable. The effect of a false blank value was
found to be alarmingly large, although some of it may disappear in the later analysis
of the growth parameters due to our experimental setup [12]. The few really extreme
blank measurements are hopefully measurement errors, rather than true blanks.

11
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Chapter 3

Growth models

An adequate growth model is useful for describing growth curves and for concentrating
the information in measured data into a number of meaningful parameters. Also, a
parametric model will be needed when standardizing growth curves with respect to
the initial OD, as we will see in Chapter 5.

In this chapter we compare the following commonly used functions as models for
yeast growth: logistic [30], Gompertz [9], Richards [13]|, and Chapman-Richards [11].
All of them model the relative population size log(Ny/Ny), where Ny is the initial size
of the population and Ny is the size of the population at time ¢. Modeling log(N;y/Ny)
can be a problem because the curves cannot pass through 0 at ¢ = 0. Therefore we
adopt the ideas of Garthright [8] and modify the functions in order to model log(Ny)
instead.

3.1 Traditional growth models and their suggested bio-
logical parameterizations

Most of the commonly used functions for describing a sigmoidal' growth curve utilize
parameters that do not have a clear biological interpretation and it can be difficult
to give initial values for the parameters in the model fitting algorithms. To address
this problem Zwietering et al |30| re-parameterized the logistic, Gompertz, Richards,
Schnute [16], and Stannard [19] growth curve functions. They showed that the modi-
fied functions of Richards, Schnute, and Stannard are basically the same. The new
parameters in the re-parameterized functions are: A, the asymptote, the maximum
value of the growth reached (on the logarithmic scale); p the maximum relative popu-
lation growth rate, the slope of the tangent of the logarithmic growth curve at the

1 . . . . . .
A sigmoidal growth curve is an increasing curve which first has a convex shape and then a concave
shape.

13



inflection point; and A, the lag time, the time axis intercept of the tangent at the
inflection point on the logarithmic growth curve. We use the notations A, and A, for
the growth parameters in the Zwietering’s re-parameterized functions to distinguish
them from the modified growth parameters that we will actually use and estimate
(Section 3.2.2).

For easy reference we give the growth curve functions together with their re-
parameterized forms here. Note that we always assume that measurements start at
time zero, so that ¢t > 0.

Logistic: The logistic growth function is

TN T T Bre B
et

where B, B2, Ay, pu, Ay > 0, and [ < —1.

Gompertz: The Gompertz function is

N, _8:
v = log <Ft> = 16067317 Bat
0

pe oy _
76E(AZ t)+1

= A,e ,
where Bﬂa baﬂ?aAznua >‘z > 0.

Richards: The Richards function is
_ < Ny ) _ Bo
n=log| —] =

Ny 1+ Vek(’rft)]%
A
= - T, (3.1)
[1 + VBAMZ(]+U)(1+F)()‘Zt)+(]+’/):| ”
where fg, k, A,, u, A\, > 0, and v # 0.
Chapman-Richards: The Chapman-Richards function [11] is
N, 1/(1-B3)
v, = log (_t) — B, [1 _ 51e*ﬁ2t} v (3.2)
No

where

14



Bo,B2>0, 0<Bz3<1l,and 1-33<pB; <1,

or

Bo,B2 >0, f3>1,and p <1 - fs.

The restrictions 1 — 3 < 1 < 1 and 1 < 1 — B3 are made in order to have
the inflection time point of the curve later than at time zero. Re-parameterizing the
Chapman-Richards function so that it contains biological parameters as in Zwietering
et al [30] (the re-parameterizing is done in the same way as the re-parameterization of
the modified Chapman-Richards function, which will be presented in detail in Section
3.2.1), gives

_1
T-33

B3
BoT
N, B Foy
vy = log <F;> =A,|1-(1-p3)e (A4 , (3.3)
where
Az = 507
B3
1—
po= BobaBy

tog (25, ) — By
B

Substituting v by f3 — 1 in the re-parameterized Richards function (3.1) would result
in the re-parameterized Chapman-Richards function (3.3). In fact, the Chapman-
Richards model is also known as the Richards model.

When 5 = 2/3, the function (3.2) results in the von Bertalanffy function [22].
Richards [13] showed that the function is also equivalent to the logistic model when
B3 = 2. The restriction that we have adopted, that the inflection time point should
be positive, restricts the values of 51 and B3 so that the otherwise possible B3 = 0
is not allowed. However, with 3 = 0 and 0 < £; < 1, the function corresponds
to the monomolecular growth model [21]. The limiting form of the function when
B3 tends to 1 and 51 tends to 0 in a subordinated rate, is the Gompertz (for more
details, cf. Appendix C). We will not discuss the details of the von Bertalanffy and
monomonecular models.

The Chapman-Richards model is very flexible. It can be fitted to both expo-
nential and sigmoidal growth patterns. This high flexibility is, however, combined

Ay =

15



with disadvantages as well. The parameters ([, 82, 03) affect the growth curve in a
highly collinear manner which can cause convergence problems in the curve fitting
algorithms.

3.2 Modified growth models

All models described above have a problem at ¢ = 0 because v; > 0 for all ¢ (although
vo is close to 0). Therefore we modify them in the spirit of Garthright [8], 7.e. instead
of modeling log (N;/Ny), we model log(N;). That is, we introduce a new parameter
D < 0, and set

g; = log(Ny) =y + D, (3.4)

where D is log(Ng) — yo. We then have for the logistic curve,
Bo

Y= T8 R Bt (3.5)
for the Gompertz curve,
i = Boe ", (3.6)
and for the Chapman-Richards curve,
1/(1—83)
yt = Po [1 - 51676%} e (3.7)

By adding the parameter D, fitting problems that would occur whenever yq is notice-
ably above zero, are avoided.

Convention 1 In the sequel, when we write logistic, Gompertz or Chapman-Richards,
we refer to their modified versions as presented in this section.

3.2.1 Growth parameters

To obtain information about the growth behavior of the cells, we estimate the following
physiologically important growth parameters: the lag (or adaptation) time A, the
(maximum relative) growth rate p, and the stationary phase OD increment Y.

The lag time is traditionally defined as the time required to adjust cell metabolism
to conditions permissive for reproduction [23]. For instance, a longer lag time in
certain chemical environment may indicate that it takes a longer time for the cells
to produce a defense against the chemical, and thus a longer time to be able to
start growing. The (maximum relative) growth rate is the maximum derivative of
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the logarithmic growth curve g;. From the growth rate the doubling time, the time
required for the population to double, can easily be calculated as log(2)/u.2 A smaller
growth rate in some environment may for example indicate that the DNA replication
takes a longer time in that environment, or that the rate of cell death is larger than
in the reference condition. The amount of time required for a population to reach a
specific size is, for a range of relatively large sizes, approximately determined by the
initial population size, the lag time, and the doubling time. Therefore both lag time
and growth are important in safety related food microbiology, for example.

The cell density in the stationary phase reflects the achieved biomass increase,
given a limited amount of energy, i.e. the efficiency of growth. We estimate the
efficiency of growth by the stationary phase OD increment, the difference between the
final OD and the initial OD. For example, a smaller stationary phase OD increment in
some environment may indicate that in that particular environment the cells cannot
use the existing energy as effectively as in the reference condition.

3.2.2 Derivation of the growth parameters of the Chapman-Richards
model

Next, the growth parameters of the Chapman-Richards model

} 1/(1—B83)

g9 = log(Ny) = Bo [1 — Bre P! +D (3.8)

are derived. Because of modeling log(N;) instead of log(N;/Ny) and adding the pa-
rameter D, the growth parameters A, and A, that Zwietering et al use are not the
parameters we want to estimate. In addition, the stationary phase OD increment we
estimate differs from the parameter A, of Zwietering et al in that it is the increment
on the non-logarithmic scale. The growth parameter derivation is illustrated in Figure
3.1.

The stationary phase OD increment: The stationary phase OD increment, the
final OD minus the initial OD, is

Y = PP _ g9
1
— gbotD _ eﬂo(]*ﬂl)l’ﬁ-2 +D
(We have idealized slightly in that we think of the final OD to be not that at the
end of experiment but the value after infinite time.) The stationary phase OD incre-

ment should only be estimated for curves that have reached, or almost reached, the
stationary phase at the last time point.

2Note that in the fitted Chapman-Richards curve there is no exact exponential phase, but if there
was one with the relative growth rate p, the doubling time would be log(2)/u.
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Figure 3.1: An illustration of the growth parameter calculation in the Chapman-
Richards model. Here Ny is the population size at time t, t; is the inflection time
point, yo is given by (3.7) (at t =0), D =log(Ny) — yo, and X is the lag time.

The growth rate: The (maximum relative) growth rate, p, is defined as the slope
of the tangent of the logarithmic growth curve g; at its inflection point. The inflection
time point ¢; is obtained by calculating the second derivative of the function (3.8) with
respect to t, setting this to zero and solving with respect to ¢. The first derivative is

1
dgr  BoPifBre ! (1 - 5lefﬁzt)mf]

dt 1 -3

while the second derivative is given by

g, BobiF3 (1*]53 - 1) e 201 — ﬁ1e*52t)ﬁf2
dt? e
BoBiBae P2t (1 — 5le*ﬁ2t)ﬁfl
1 - fs :
Equating this to zero gives the solution
165
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The growth rate parameter p is finally derived by calculating the first derivative at
this inflection time point #;:

d Ly
= (ﬂ) = BoBafs .
tr

dt
Since we work on the logarithmic size scale, u corresponds to the maximum relative
growth rate on the absolute scale.

The lag time: The tangent line through the inflection point is

_1
m = pt+ BBy * — utr + D.

The lag time ), is the time axis value at the intercept of this tangent line with the
base line yg + D, so that

1
Yo+ D = pl+BofBy ** — ut;+ D. (3.9)

Solving (3.9) with respect to A yields:

1

Yo — BoBs * 4 utr
U

1 = log(y2L)
Bo(l — B1) P — BB 72 +M752 2

W

We were not able to rewrite the function (3.8) so that it would only contain the
growth parameters and D and 3. However, if needed, the initial values for the
parameters (in the model fitting algorithms) can be estimated using the estimates
from the least squares fit of the model for log(N;/Ny), function (3.3). Furthermore,
in Chapter 4 we will see that the Chapman-Richards model can be expressed as a
function of the initial OD denoted by s, the derivative dy at time zero, A, u, and B3,
even if we cannot write down the function explicitly.

The growth parameters of the logistic and Gompertz models are derived analo-
gously. The growth parameters are

g —log(—3) —2

1-B1
A = ,
B2
_ bBoBe
2 1
Bo
Y = EPotD it




for the logistic model, and

—_ e
A= A ,
e
_ Bop
woo= 3
e
Yy = e50+Dieﬂ08’Eb+D

3

for the Gompertz model.

3.2.3 Comparing the fits of the modified growth models

We compare the fits of the modified growth models on the smoothened, blank cor-
rected, and calibrated data described in Section 2.4, i.e. hundreds of growth curves
from different environments. Nonlinear regression models were fitted via least squares
in the 145 measurement points, using the large-scale algorithm in the Ilsqnonlin-
function in Matlab.® It is a subspace trust region method based on the interior-
reflective Newton method described in [3], [4]. Our experience shows that the solu-
tions are not sensitive to the choice of the start values. For the sake of reproducibility,
we give the exact start values that we used for the parameters in the model fitting
algorithms: By = 4.5, 1 = =50, By = 0.3, D = —3 for the logistic; By = 4.5, b = 3.2,
B2 = 0.3, D = —3 for the Gompertz; and By = 4.5, 51 = —50, By = 0.3, B3 = 3,
D = —3 for the Chapman-Richards.

The fits are compared visually and by looking at the coefficient of determination,

145 2
) SSE > 21lgh, — mt,)
=l e =1 - (3.10)
T S (a1, — )
where g;‘p is the fitted curve value at time point #,, x;, is the observed? value at time
145
o
point t,, and 7 = Lﬁ; p

Figures 3.2-3.5 show typical curves fitted by the three models compared. As
expected, the Chapman-Richards method nearly always gives the best fit, since it
encompasses both the logistic and the Gompertz models. The Gompertz model over-
estimates the slope, and moreover, it does not give a sufficiently good fit at any part
of the curve. The logistic model gives a better fit than the Gompertz. However, the
residual plots imply that there is a small systematic error in the Chapman-Richards

3The Matlab functions are available upon request.
4Smoothened, blank corrected, and calibrated OD value.
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model as well. The minor systematic deviations of the data from the theoretical model
are in the beginning of the curve and in the transition from the exponential phase to
the stationary phase.

We are primarily interested in modeling typical growth curves rather than prob-
lematic growth curves. Hence, the discussion above considers typical growth curves.
However, we would like to say a few words about fitting atypical growth curves, three
examples are given in Figure 3.6. The Chapman-Richards model gives clearly the
best fit also for atypical curves although it cannot be considered sufficient to describe
them. The top curve in Figure 3.6 is an example of an outcome of technical artifacts.
The middle curve is a typical example of a curve in the Methylmethanesulfonate en-
vironment. The Chapman-Richards model should not be used for the curves in this
environment. The bottom curve shows occasionally observed atypical behavior in the
very beginning of an experiment. Given the diversity of forms atypical curves assume,
it is very difficult to find a model that fits sufficiently well to all types of growth
curves. However, even if the model cannot be considered sufficient to describe atypi-
cal curves, it could be possible to use the information of the fit, e.g. the coefficient of
determination, to filter out bad curves. We will do this in Chapter 7.

It is natural that the Chapman-Richards model gives the best fit of the data since
it encompasses the other two models and it has more parameters than the other two
models. This does not necessarily mean that the model fits well to the data, the
model could be overfitting. As the number of parameters in a model increases, the
model curve can bend in more complicated ways. If the number of parameters in
our model is larger than necessary to catch the main characteristics of the "true"
growth curve, the risk of overfitting increases. Similarly, if we use models with less
parameters than necessary, the risk of underfitting increases; the models may not be
flexible enough to match the actual growth curve well enough. However, since there
are so many measurements for each curve, we do not have reason to believe that we
have any overfitting problem here.

3.3 A three part model

From the residual plots of the fit of hundreds of growth curves, we see that the fit in
the beginning of the curve and in the transition from the exponential phase to the
stationary phase, is often not good. Even the fit of the Chapman-Richards model
is sometimes rather poor in these parts of the curve. In addition, since the models
are sigmoidal, the linear part of the curve may be poorly estimated. This is the case
especially with the Gompertz model.

The desire to overcome the problems mentioned above was one of the reasons why
we wanted to fit a model which divides the growth curve into three parts. The other
reason was to try to neutralize correlation between the initial OD and the lag time,
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and between the initial OD and the growth rate.

It has been reported that the initial OD may influence the rate of growth [5]. This
is a natural phenomenon, because in a sample with more cells in the beginning, there
are less nutrients per cell, and thus the population can grow for a shorter time (than
a population with less cells in the beginning) before it runs out of nutrients. It may
not even reach the maximum growth rate. The growth in the beginning, when there
are still enough nutrients for all the cells, does not tend to be affected by the initial
OD.

We investigated the correlation between initial OD (the calibrated and blank cor-
rected OD value at the time zero) and growth parameters on a dataset containing
99 wild types in the reference condition. The initial OD values vary between 0.015
and 0.106 (Figure 3.7). The dataset comes from an experiment where the effect of
the initial OD was studied, and thus the range of the initial OD values is wide on
purpose. The growth parameters are calculated as given in Section 3.2.2 (using the
Chapman-Richards model). There is a strong negative correlation between the lag
time and initial OD, and between the growth rate and initial OD (Figure 3.8). How-
ever, there is hardly any correlation between the initial OD and the stationary phase
OD increment. Figures 3.9-3.11 show the histograms of the initial OD values in each
environment and over all environments in the motivating dataset. The averages and
coefficient of variations of the initial OD values in each run are given in Table 3.1.

We construct a model consisting of three parts: the beginning of the curve until
the inflection point, the linear part following the inflection point, and the rest after
the linear part.> One of the functions, the logistic, the Gompertz, or the Chapman-
Richards, is used but with the exception that the linear part in the middle is modeled
as a straight line. That is, we have

r.gta tStla

. Tult—tr), tr <t<tr+A,

g =4 9t + 1 0, tr<t<tr (3.11)
gi—A + HAa t 2 tl + Aa
L

where A is the time span of the linear part (A > 0) and g¢; is the logistic, the
Gompertz, or the Chapman-Richards function as given in (3.4). The three part model
is illustrated in Figure 3.12.

"We still call the cut point inflection point.
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3.3.1 Fitting the three part model to the data

We fitted the three part model as a nonlinear regression model via least squares as
in Section 3.2.3, to the same data.® The start values for the parameters in the model
fitting algorithms were the same as in Section 3.2.3 and the start value for A was 0.
Atypical growth curves are excluded from the comparisons. Examples of curve fits
with the three part model are given in Figures 3.13-3.16. Figures 3.2-3.5 show the
same data fitted by the ordinary models.

The Gompertz model gains the most from adding the linear part in the middle.
For almost all curves the estimate of A is larger than one hour, and the fit of the
model improves remarkably compared to the ordinary Gompertz model. With the
logistic growth function as g, the estimate of A is zero for more than 50% of the
curves. For the rest of the curves the fit is in general improved by adding a linear part
in the middle. However, the ordinary Chapman-Richards model (3.8) gives a better
fit than the three part model with logistic or Gompertz function.

The estimate of A is smallest when using the Chapman-Richards function in the
three part model. For over 90% of the curves it is zero, and for over 95% less than
one hour. Even for the curves with the estimate of A larger than one hour, the fit of
the the three part model is often similar to the fit of the ordinary Chapman-Richards
model. Although in some cases the fit of the three part model is clearly better, it does
not neutralize the correlation between the initial OD and lag time and the correlation
between the initial OD and growth rate (Figure 3.17). In Chapter 5 we will introduce
another method to neutralize the effect of the initial OD.

3.4 Discussion

With rather typical "normal" growth curves, the Chapman-Richards model always
gives a reasonably good fit. However, the residual plots imply that there is a systematic
error in the model, and that the Chapman-Richards model is not ideal for our data.
On the other hand, since the small deviations of the data from the theoretical model
are mostly in the transition from the exponential phase to the stationary phase, the
growth parameter estimation should not suffer from the model not being exact.

The three part model with logistic and Gompertz functions was clearly better
than the logistic and Gompertz models themselves, but not better than the ordinary
Chapman-Richards model. When compared to the Chapman-Richards model, the
three part model with the Chapman-Richards function gave a better fit in few cases,
and in the rest of the cases the fit was equal to that of the Chapman-Richards model.
Since the tree part model is more complicated than the Chapman-Richards model,

5The Matlab functions are available upon request.
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adding a linear part in the middle may not be relevant here. However, in Chapter 5
we will see that it is essential in the standardization of curves.
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Figure 3.2: The logistic, Gompertz and Chapman-Richards models are fitted to the
data NODO0305, well 3. The corresponding residual plots are on the right.
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Figure 3.3: The logistic, Gompertz and Chapman-Richards models are fitted to the
data NOC0426, well 7. The corresponding residual plots are on the right.
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Figure 3.4: The logistic, Gompertz and Chapman-Richards models are fitted to the
data NOD0326, well 3. The corresponding residual plots are on the right.
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Figure 3.5: The logistic, Gompertz and Chapman-Richards models are fitted to the
data NODO0406, well 1. The corresponding residual plots are on the right.
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Figure 3.8: The initial OD wvalues of the 99 wild types in reference condition plotted
against lag time and growth rate estimates from the Chapman-Richards method.

30



39°C

300}

2501

Frequency

100}

507

200}

150}

300}

N
a
o

Frequency
=
o
o

[6)]
o

o

Mean =0.10
CV(%)=15

0.1

0.2 0.3 0.4 0.5
Initial OD

DN

N
o
o

[EnN
al
o

-

0.1

Mean =0.28
CV(%)=18

0.2 0.3 0.4 0.5

Initial OD

41°C

300}

2501

200}

150

Frequency

100}

50t

0.1

Mean =0.10
CV(%)=16

0.2 0.3 0.4
Initial OD

CA

0.5

300}

N
a1
o

Frequency
=
o
o

[
o

N
o
o

=
a1
o

o

Mo,

0.1

Mean =0.10
CV(%)=47

0.2 0.3 0.4
Initial OD

0.5

Figure 3.9: The initial OD wvalues of all mutants and wild types in each environment.
The values are blank corrected and calibrated.

31



NA

300}

250}

200}

150

Frequency

1001

501

Mean =0.11
CV(%)=26

B

0.1

0.2 0.3
Initial OD
MM

0.4

0.5

300}

N
a1
o

Frequency
=
o
o

n
o

N
o
o

=
a1
o

o

Mean =0.06
CV(%)=32

0.1

0.2 0.3
Initial OD

0.4

0.5

MV

300}

250}

Frequency

1001

501

200}

150

300}

N
al
o

Frequency
=
a1 o
o o

o

N
o
o

=
a1
o

Mean =0.06
CV(%)=26
01 02 03 04 05
Initial OD
NO
Mean =0.08
CV(%)=46
01 02 03 04 05

Initial OD

Figure 3.10: The initial OD values of all mutants and wild types in each environment.
The values are blank corrected and calibrated.

32



All environments

1500
-, 1000
(8]
C
(]
>
o
i
LL
500 Mean =0.11
CV/(%)=66

0.1 0.2 0.3 0.4 0.5
Initial OD

Figure 3.11: The initial OD values of all mutants and wild types in oll environments.

The values are blank corrected and calibrated.

Log(N)
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Table 3.1: The mean, minimum, mazimum and coefficient of variation (%) of the
initial OD wvalues of all mutants and wild types in each run. The values are blank
corrected and calibrated.

Run Mean Min Max CV (%) Run Mean Min Max CV (%)

39C0307 0.10 0.05 0.15 14 MVC0413 0.06 0.03 0.21 34
39D0307 0.10 0.04 0.15 14 MVD0413 0.07 0.02 0.11 22
39E0307 0.10 0.03 0.14 15 MVE(0413 0.07 0.04 0.14 22
39C0309 0.10 0.07 0.16 15 MVC0417  0.06 0.03 0.09 21
39D0309 0.10 0.05 0.16 13 MVD0417  0.06 0.02 0.10 23
39E0309 0.10 0.04 0.15 16 MVEO417  0.06 0.03 0.08 19

41C0312 0.10 0.05 0.14 12 MMC0408 0.07 0.03 0.36 42
41D0312 0.10 0.04 0.15 15 MMD0408 0.08 0.03 0.15 30
41E0312 0.10 0.04 0.13 13 MMEQ408 0.06 0.03 0.12 33
41C0314 0.10 0.06 0.19 14 MMC0411  0.06 0.02 0.10 24
41D0314 0.10 0.05 0.15 21 MMDO0411  0.06 0.02 0.09 22
41E0314 0.09 0.04 0.12 14 MMEQO411 0.06 0.03 0.11 20

DNCO0316 0.25 0.19 0.35 11 NOC0305 0.08 0.04 0.16 23
DNDO0316 0.30 0.22 0.44 12 NODO0305 0.11  0.03 0.35 47
DNEO0316 0.29 0.19 0.48 13 NOE0305 0.12 0.04 0.36 51
DNC0319 0.22 0.16 0.31 13 NOC0326 0.08 0.04 0.11 17
DND0319 0.32 0.21 0.46 13 NODO0326  0.08 0.04 0.20 28
DNE(0319 0.30 0.18 0.40 13 NOEO0326 0.09 0.04 0.23 26

CAC0328 0.15 0.06 0.29 24 NOC0406 0.06 0.03 0.08 20
CADO0328 0.13 0.06 0.27 33 NODO0406  0.06 0.03 0.09 23
CAE0328 0.13 0.06 0.21 24 NOE0406  0.06 0.03 0.09 18
CACO0330 0.09 0.03 0.20 36 NOC0426  0.07 0.01 0.15 48
CADO0330 0.07 0.01 0.19 40 NODo0426  0.07 0.02 0.17 40
CAE0330 0.05 0.01 0.15 39 NOE0426 0.06 0.02 0.18 40

NAC0321 0.10 0.06 0.16 15
NADO0321 0.10 0.05 0.16 16
NAE0321 0.12 0.03 0.30 34
NAC0323 0.11 0.05 0.18 22
NADO0323 0.11 0.03 0.19 24
NAE(0323 0.10 0.01 0.23 30
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Figure 3.13: The three part model with logistic, Gompertz and Chapman-Richards
functions fitted to the data NOD0305, well 3. The estimates of A are 8.37 (Gompertz),
4.86 (Logistic) and 1.57 (Chapman-Richards).
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Figure 3.14: The three part model with logistic, Gompertz and Chapman-Richards
functions fitted to the data NOC0426, well 7. The estimates of A are 6.98 (Gompertz),

3.75 (Logistic) and 3.38 (Chapman-Richards).
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Figure 3.15: The three part model with logistic, Gompertz and Chapman-Richards
functions fitted to the data NODO0326, well 3. The estimates of A are 8.22 (Gompertz),

4.78 (Logistic) and 2.28 (Chapman-Richards).
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Figure 3.16: The three part model with logistic, Gompertz and Chapman-Richards
functions fitted to the data NODO0406, well 7. The estimates of A are 3.53 (Gompertz),

0 (Logistic) and 0 (Chapman-Richards).
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Figure 3.17: The initial OD wvalues of the 99 wild types in reference condition plotted

against lag time and growth rate estimates from the three part model.
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Chapter 4

An alternative parameterization of
the Chapman-Richards model

In this chapter we will see that the Chapman-Richards model growth curves presented
in Chapter 3 can be expressed as a function of the initial population size s (on the
non-logarithmic scale), the growth parameters A, u, and Y, and the derivative at time
zero (on the logarithmic scale), denoted by dy. This last parameter is a natural
complement to A, g, and Y in the phenotypic analysis of the mutants: if the fits of
the models were perfect, dy would nicely reflect the initial adaptation behavior.

Although we cannot state the Chapman-Richards function explicitly in terms of
the parameters s, dg, A, p, and Y, it is still important to investigate the basic prop-
erties of this parameterization. It will, for example, be used in the construction of
summary curves in Chapter 6.

Recall that the Chapman-Richards model is given by

1/(1—8:
}/( ”—)—D

gt = Bo [1 — Bre P!
where either £y, 82 > 0, 0 < B3 < 1,1 =83 < By < 1or By,B2 > 0, B3 > 1,
B1 < 1—B3. The parameter D is always negative. The Chapman-Richards curves are
not defined at B3 = 1, but the limiting forms when (3 tends to 1 and 3; tends to 0 in
a subordinated rate, are members of the Gompertz family.
The model we will study in this section is the Gompertz augmented Chapman-
Richards model which is obtained from the above equation by writing 8; = e?(1 — f33)
b>0,

, 120,

Y

] /(1)

g = Bol|l—e(1—Bse + D, for B3# 1, and

_eb—Bat

g = poe + D, for B3=1.
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For more details, cf. Appendix C.

The parameterization properties of the model will be studied in Section 4.1. The
parameter space (augmented with the parameters corresponding to the Gompertz
curves) is also given explicitly. Section 4.2 investigates certain convexity properties of
the parameter space.

4.1 Uniqueness

In this section we show that a hybrid parameterization (between the original and the
new parameterization) with s, dy, A, u, and B3 as parameters is unique. We then
address the question of the uniqueness of the representation by the parameters s, dy,
A, i, and Y. We formally check all but one of the steps of the proof. While no formal
proof of the monotonicity of a certain implicit function stated in Conjecture 1 (on
page 45) is available, we show through an extensive numerical investigation that the
conjecture is likely to hold. Theorem 1 is the main result of the section.
We will need the following basic property of the Chapman-Richards model:

Proposition 1 The (B, b1, B2, B3, D)-parameterization is unique.

Proof. This uniqueness is probably well-known, but for completeness we give a proof
in Appendix E.

The parameters of the new parameterization (in the case 83 # 1) can be written
as

_1
s — eBo(1=B1)'"Fa4D (4.1)

BoB1P2(1 *ﬁl)‘%3

dy = = (4.2)
(1= B0) 75 — By + By b log(12)
A = o : (4.3)
Bafi3 158
_Ba
o= PoPafsz P (4.4)
1
Y = ePotD _ ofo(1-p) =P 4D (4.5)
eﬂnJrD — s,
= et - S,
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where A = By + D is the asymptote of the curve (on the logarithmic scale).
We start with a lemma concerning the Gompertz model in the hybrid parameteri-
zation:

Lemma 1 The Gompertz curve corresponding to any hybrid parameter combination

s>0,0<dy <pu, A>0, >0, and B3 = 1 is unique. The parameter b is the

solution of the equation b+1—eb = log(%"), and the three other parameters are given
,Pb+1 1 b

by By = b+ S, B2 = %, and D = log(s) — Qi‘fﬁ% Furthermore, the

statwnary phase OD increment is

Proof. See Appendix C.

We will next state a series of technical lemmas and propositions formulated for a
special Chapman-Richards sub-model, restricted by the assumptions s =1, 0 < dy <
1, A=1, p = 1. We will refer to this as the unit-scaled model.

In the unit-scaled model, the equations (4.1-4.4) are equivalent to the equations
(4.6-4.9) below

_Bs3
Br(1 — pr)1-7s

g = BOZBITT (46)
(1 B3)B;
Bo = B3 ! . (47)
, [log( )—53}—1—(1—51)m
/62 - #a (48)
BoBs b
D = —Byl-B) (4.9)

Recall that £y, 82 > 0,0 < B3 < 1,1 =83 < pr <lorfy,fe>0,063>1, 61 <1—p;.
The asymptote A = g + D can be written as

A= —5 1-(1-p)" , (4.10)

37 flog (25) 5] + (1 - )T
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The following lemma addresses the hybrid parameterization in the unit-scaled case:

Lemma 2 The (dy, B3 )-parameterization is unique in the unit-scaled model, i.e. there
is exactly one curve in the Chapman-Richards (Gompertz augmented) model for each
combination of 0 < dog <1 and B3>0, ands=1, =1, p=1.

Proof. The parameterization is unique if the equation (4.6) has at most one solution
B1 < 1— B3 for fixed B3 > 1, 0or 1 — B3 < B1 < 1 for fixed B3 such that 0 < B3 < 1.
Rewrite the equation (4.6) as

B

FB) = Bi(1— B) 05 — do(1 — o)™t = 0.

Differentiate f with respect to 1 to obtain

B153 (1*51)167%3
(1-8) (1-p51)

g (4 183
= (=A)r (1 (1—53)(1—51))

e = a-pyh -

For B3 > 1 and B < 1 — (33,

f'(p) = (1751)157%3 <1 (1_£ ﬂ13—51)>

)(
e (e R

and for0 < 3 <land 1 -3 < <1,

F(B) = (1_51)1"—%3(1_( B1Bs )

1—B3)(1 - pB)
a0 (L= B3)Bs _
< A=A (1 (153)53>_0'

The above monotonicity properties, the continuity and appropriate sign changes of f
in the allowed f; intervals, prove the required existence and uniqueness of 3y in both
cases O3 < 1 and 83 > 1. (The uniqueness of the Gompertz curve when 3 = 1 follows
directly from Lemma 1). O

It is time for a second result about the Gompertz augmented model:

Lemma 3 Fiz 0 < dy < 1. In the unit-scaled model, the function A defined in (4.10)
with the constraint (4.6) is continuous at 3 =1 as a function of B3 > 0.
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Proof. See Appendix C.

The following lemma is used in the proof of Lemma 5(b).

Lemma 4 Fiz B3 > 0. In the unit-scaled model, the function A defined in (4.10) with
the constraint (4.6) is strictly increasing as a function of dy, 0 < dy < 1.

Proof. See Appendix E.

Lemma 5 Fiz 0 < dy < 1. In the unit-scaled model, the function A defined in (4.10)
with the constraint (4.6) satisfies

(a) limg, _,0 A = o0

. . 1—d,
(b) llmﬁg%OOA - m.

Proof. See Appendix E.

Now, we are prepared to discuss the main alternative parameterization. As indi-
cated earlier, we need the following monotonicity assumption:

Conjecture 1 Fiz 0 < dy < 1. In the unit-scaled model, the function A defined in
(4.10) with the constraint (4.6) is strictly decreasing as a function of B3 > 0.

Note that the conjecture is purely technical. Recall that the following restrictions
also apply: 1 — 3 < 1 <1lfor0< 3 <1lorf <1-—0;3for B3 >1. The conjecture
is further discussed and numerically motivated in Appendix D.

In the sequel we assume that Conjecture 1 holds.

Proposition 2 Provided that Conjecture 1 holds, the (dy, A)-parameterization is uni-
que in the unit-scaled model, and the Chapman-Richards (Gompertz augmented) curves

s - 1-dy
exist if and only if A > To—Tog(do) =T

Proof. Consider a model curve from the hybrid parameterization with s = 1, A = 1,
pw=1 and 0 < dy < 1 and B3 fixed. The asymptote of this curve is given by (4.10),
where (7 solves (4.6). Now consider A a function of 3. This function is obviously
continuous at any f3 # 1 and Lemma 3 states that it is also continuous at 83 = 1.
Conjecture 1 states that A is strictly decreasing and hence (4.10) has at most one
solution fs, for f; and A fixed. Combining this with the two limits in Lemma 5
finally completes the proof.

Proposition 3 Provided that Conjecture 1 holds, the (dy,Y )-parameterization is uni-

que in the unit-scaled model, and the Chapman-Richards (Gompertz augmented) curves
_1-dg
exist only for Y > edo-Tos(do)=1 — 1,
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Proof. Follows from Proposition 2 and equation (4.5).

For any Chapman-Richards (Gompertz augmented) model curve we can arbitrarily
time scale, scale and translate the log-size dimension, and the resulting curve is still
a Chapman-Richards (Gompertz augmented) model curve. This model invariance
together with Lemma 2 and Proposition 3 will be used to prove:

Theorem 1 Consider the Chapman-Richards Gompertz augmented model.

(a) Any model curve is uniquely determined by the parameters s, dy, A, p, and
Bs. The parameters are constrained by the inequalities s > 0, 0 < dy < g, A > 0,
w >0, and B3 > 0. Curves with B3 =1 correspond to the Gompertz curves.

(b) Provided that Conjecture 1 holds, any model curve is uniquely determined
by the parameters s, dy, X\, pu, and Y. The parameters are constrained by the
imequalities s > 0, 0 < dy < pu, A >0, u >0, and

1-da

(dn )AIJ‘HOg(S)
Y>Y, Y:i=e\n "8

.

20y

w) ! —s.

(¢) The unique Gompertz curve for each allowed parameter combination s, dy, A,
and | corresponds to the stationary phase OD increment parameter

— *eb
e | Autlog(s)
Y =e\ e t°

— s,

where b is the solution of the equation

b—l—leb:log(@).
I

Proof.
(a) Take a Chapman-Richards model growth curve

}U(Pﬁs)

gt(ﬁ0a51a627ﬁ3aD) :,60 [1*5167621‘/ + D

and transform it by multiplying ¢ by some constant ¢ > 0, by multiplying the whole
curve by some constant £ > 0, and by moving the curve (upwards or downwards) by
some constant m. Then,

]1/(1753)

kget(Bo, B1, B2, B3, D) +m =k (50 [1 — Bre + D) +m (4.11)

]1/(1*ﬂ3)

— kB [1 _ BrePect Y kD+m

= gt(k,BOa Bla 6261 B3a kD + m)a
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so that the result is still a Chapman-Richards model curve.
Take a growth curve g; with fixed (8o, 1, B2, B3, D) corresponding to the hybrid

parameters (s,dg, A, i, 83). Then using (4.11) with k& = /\]_u’ c=A\m= *}gﬁ), we
get
log(s . d
_gt/\(507/813527/637D) - g( ) :gt(la_oalalaﬂi)’)a (412)
Ap Ap p

where the g; refers to the unique curve with hybrid parameters known to exist in this
case by Lemma 2. Inverting the relation (4.12) gives that

. d
gt(50716135271637D) = AHQ%(L ;07 13 17/63) + lOg(S),

forany s > 0,0 <dg < p, A >0, p >0, and B3 > 0, so that g; must also be uniquely
determined by s, dg, A, u, and B3. Starting with an arbitrary combination of s > 0,
0<dy<p, A>0,u>0,and B3 > 0,

do

>

is always a model curve with parameters s, dg, A, u, and 3. This motivates the
parameter space restrictions.

(b) We may show the statements by showing that for s,dg, A, and p fixed, B3 is
determined by Y, if Conjecture 1 holds. Using (4.12) we obtain

A 1
A2 1,y - Ao A Po)Jogls)
I Ap Ap
and hence .
Y by
Y(L@,l,l,ﬁa) = ( (5,do. 2, . Bs) + 1) ) (4.13)
7] S

Now, suppose that several f3-choices yielded the same Y on the right side of (4.13).
Then the same (3-choices would result in the same Y also on the left side, which would
contradict Proposition 3, if the Conjecture 1 was true. Finally, by inverting (4.13),
we also get the parameter space constraints from the restriction of Y in Proposition
3.

(c) Follows directly from Lemma 1. O
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4.2 Convexity properties

In this section we work under the assumption that Conjecture 1 is true and use the
parameterization with s,dy, A\, u, and Y. The results in this section will be needed in
Chapter 6 where two methods for constructing summary curves are discussed. More
concretely, the existence of summary curves is equivalent to the convexity of the new
parameter space (for all fixed s) or that of its logarithmic version (for all fixed log(s)).
As discussed in detail in Chapter 6, the method I summary curves do not always exist
whereas the method Il summary curves always exist.

Recall the notation Y for the lower bound of Y (stated in Theorem 1),

dg

1,1(1
(d E )Au
_ do _1og(d0)—1 _
Y(s,do, \,u) = s |e\ " o 1

The key to the proof is the following lemma:

Lemma 6 The log(Y) is convex as a function of log(dy), log(A), and log(u) for any
fized log(s), where s >0, 0 < dy < u, A >0, and p > 0.

Proof. The proof is rather technical and we have therefore chosen to give it in Ap-
pendix E.

Theorem 2 Consider the parameter space (s,dg, A\, 1, YY), where s > 0 is fized, 0 <
do < p, A>0, u>0, andY > Y. Then the following holds

(a) The parameter space is not convex for any fized s.

(b) The component-wise logarithmic version of the parameter space is convex for

all fized log(s).

Proof.
(a) Fix two parameter combinations with the same s:

(85 do(1ys Arys (1), Y(ry) and (s, dogay, A)s (2), Y(2))-

48



Take a convex combination of the parameters and let

dog = Odgy+ (1 —0)dya),
A = 9)\(1) +(1 - 9))\(2),

po = Opay+(1—0)u@),

Yo = 60+ (1-6)Yy),

for some 0 < 8 < 1. The parameter space is convex if and only if Ay > 0, ug > 0,
0 < dog < pg, and Yy > Y (s, dog, Ag, ptg). Since it is obvious that A\g > 0, pg > 0,
0 < dgg < pg, the convexity of the parameter space is equivalent to proving that

Yo > Yy (s,dog, Ao 1) - (4.14)
We next construct a set of parameters for which the previous inequality is violated.

For s =1, take 8 = 0.5, dO(l) = 0.1, d[](Q) = 0.0001, )\(1) = )\(2) =1, (1) = H(2) = 1,
Yy =091 (> X(]) ~~ 0.8997), and Yoy =0.25 (> X(Q) ~ 0.1295). Then

Y

0.25 + 0.91
A LT
5
and 0.1+ 0.0001
Y, (1, =200 1y & 0.5913,

2
which contradicts (4.14). For an arbitrary fixed s, multiply Y1) and Y(y) by s and
leave the other parameters unchanged.

(b) Fix again two parameter combinations with the same s:

(85 do(1ys Aays (1) Yiry) and (s, dogay, A)s H(2)s Y(2))-

Take a convex combination of the parameters on the logarithmic level and denote the
corresponding non-logarithmic parameters by

0 1-0

dop = dﬂ(l)d0(2)’

_ [ 1-6
Moo= XA

Mo = N(])H(g)a



for some 0 < 0 < 1. Since Ag > 0, pg > 0, 0 < dgg < pg, proving that

log(Yy) = 0log(Yy)) + (1 —0)log(Y(y))

(4.15)
> log[Y, (log(s),log(dog), log(Ag), log(ue))] ,

will imply the convexity of the component-wise logarithmic version of the parame-

ter space for all fixed log(s). The inequality (4.15) follows from Lemma 6 and the
observation that

log(Y(;)) > log [Y (log(s),log(dyi)), log( X)), log(p))] » i =1,2.

)
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Chapter 5

Standardizing curves

As was seen in Section 3.3, the lag time and growth rate depend strongly on the
initial OD. However, in large-scale experiments with analysis of hundreds of mutants,
it is hard to keep the initial OD constant between different experiments. Hence,
it would be desirable to reduce the correlation and to make the curves more easily
comparable by developing a method for standardizing growth curves with respect
to the initial OD. Our approach has as a starting point the simultaneous fitting of
a three part model curve (introduced in Chapter 3) in [12] (for more details, cf.
Appendix F). In the optimal fit of the simultaneous model, one of the curves will
typically be a Chapman-Richards curve while the other will be a three part model
curve. However, this approach is not fully satisfactory as it does not neutralize the
initial OD correlation with the lag time and growth rate.

The philosophy of the new approach we introduce in this chapter is as follows.
Assume that the idealized model of a logarithmic growth curve consisting of a lag
phase, an exponential phase and a stationary phase, is true. What difference should we
expect between the curves starting from different population sizes, but with similar cell
phase compositions? In the first phase, when there are plenty of nutrients available,
we expect the same relative growth behavior. In the second phase, the time of the
exponential growth will be shorter for a larger initial population. And finally, when
the nutrient concentrations are "low enough", the entry into the stationary phase will
take place with populations of approximately the same sizes and similar compositions,
so that the logarithmic curves will have a similar shape also in this part.

In the type of data we have, a large proportion of the variability in the fitted
curves comes from the initial population size. Can we predict what the behavior of a
growth curve would have been, had the population had a standard initial OD? Can we
reduce the sensitivity of the growth parameter estimates to initial OD? Essentially, the
idealized model tells us to cut away a linear piece in the middle of one of the logarithmic
growth curves in order to get the other. Moreover, it is natural to expect roughly the
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same stationary phase OD increment. The total growth of the population has to
do with how effectively the available energy is used. We do not know exactly what
happens, but it is likely that some of the energy consumption in the beginning goes to
initiating the growth process which would imply a slightly smaller stationary phase OD
increment for larger populations, but we will ignore this. In the exponential phase the
populations grow and consume nutrients similarly except that the population with
a smaller initial OD grows for a longer time because there is more energy per cell
available. The small difference in the population sizes when the lack of nutrients
begins to slow down the growth, possibly also affects the relative growth rate slightly
(the larger the population is, the faster it will consume the resources). However,
this effect is probably quite small and therefore we will ignore it. Altogether these
approximations motivate the assumption that the stationary phase OD increments
should be approximately equal irrespective of the size of the initial OD (within certain
limits of initial OD).

The idea behind the standardization is that we fix a standard initial OD and
predict what would have happened, had we done the experiment with the standard
initial OD and fitted the Chapman-Richards curve on these measurements. We hope
that with the standardization, the curves from different runs and environments become
more easily comparable. The standardization will also be useful for visualizing the
data.

We first present a method for standardizing growth curves upwards, i.e. when the
standard initial OD is larger than the observed initial OD. We begin by describing the
method for standardizing one curve and then generalize it to obtain a standardized
growth curve of two or more curves. Second, we present a method for standardizing
growth curves downwards. The curves are standardized upwards or downwards de-
pending on the relation between the chosen standard initial OD and their observed
initial OD based on the ordinary Chapman-Richards curve fit.'

5.1 Standardizing upwards

Here, we try to predict what would have happened had the initial OD been fixed to be
larger than the observed initial OD. We use the three part model presented in Section
3.3 to fit the observed curve so that a standardized curve can be obtained by ’lifting’
the fitted curve to start from log(sg) and removing the linear piece from the middle
(Figure 5.1). The growth parameters, i.e. A (lag time), p (maximum relative growth
rate), and Y (stationary phase OD increment), are to be the same for the three part
model curve and for the standardized curve. Since the time span of the linear part in

the three part model is not modeled freely, the parameter values (and thus the fitted

'The observed initial OD is defined as the value of the Chapman-Richards curve fit to the observed
OD values at time zero.
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Log(N,)

Log(sy) T~

Three part model curve

~ ~  Standardized curve

Figure 5.1: An illustration of standardizing one curve when the standard initial OD
sg 18 higher than the observed initial OD. Here Ny is the population size at time t and
tr is the inflection time point.

curve) are not the same as they would be if the three part model was fitted without
any constraints (in which case the time span of the linear part would be zero for most
of the curves, as was concluded in Section 3.3).

Recall that a curve from the three part model is given by

( gt tSti,
- <t< A
gt = gy, +p(t—tr), tr<t<tr+A4A, (5.1)
gt—A + ,U,A, t 2 tf + Aa

where

1/(1-8
}/( 3)+D

g = Po [1 — Bre P2t

is the Chapman-Richards function,

log(+2)

o

is the inflection time point (the time axis value where the linear part starts), and

t; =

Ba

po= PobafBy
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is the (maximum relative) growth rate, and A is the time span of the linear part. We
fit the three part model to the observed data with the constraint that by removing the
linear piece in the middle and lifting the curve by 7 > 0, we obtain the standardized
curve, which will be denoted by g;:

1/(1=p:
" b

9 = Bo [1 — Pre !

Let sp denote the standard initial OD (a fixed value). The logarithm of the initial
OD of the standardized curve has to equal log(sg), i.e.

1
50(1 —,61)17(33 +D—|—T:10g(80). (52)
Solving the equation (5.2) for 7 gives

7 = log(so) — fo(1 — B1) ™% — D.

The time span of the linear part, A, is adjusted so that the stationary phase OD
increment of the three part model curve

V= fotDbud _ fo(1-51)TFF 4D
equals the stationary phase OD increment of the standardized curve
y® = PfotD+7 _ 650(1*ﬂ1)ﬁ+D+7_
This yields

1 _1_
_ —Bo-D+ log[eﬂn+D+T — eBo(1=p1) P8 D47 | Bo(1-P1) " P +D]

W

A (5.3)

Model fitting procedure

We first fix a standard initial OD sy. The curves which initial OD according to the
Chapman-Richards model fit is smaller than or equal to sg, will be standardized using
this procedure:

1. An initial value of A is chosen.

2. The model (5.1) is fitted using a nonlinear least squares method, keeping A
fixed.

3. The stationary phase OD increments, Y and Y*, are calculated. If |Y —Y*| > ¢,
then a new value of A is calculated as given in (5.3). The constant ¢ is the
maximum allowed difference between Y and Y* (¢ is usually a very small real
number).

The steps 2 and 3 are repeated until |Y — Y*| < ¢.
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5.1.1 Standardizing two or more curves simultaneously

The method presented in the previous section can easily be generalized to obtain
a single standardized curve for n curves. The three part models are fitted to the
observed curves with a constraint that the standardized curve can be obtained by
removing the linear pieces and lifting the curves to start at log(sg). The lag time and
growth rate are kept the same in all three part model curves and in the standardized
curve. The stationary phase OD increment of the standardized curve is set to be the
same as the average of the stationary phase OD increments of the three part model
curves.

In the sequel, we discuss a standardization method for two curves. The generali-
zation to n curves can be done analogously. The three part models with the Chapman-
Richards function can be written as

(g, t<tr,
k
(k) _ gt(,)—i‘,u(t—ti), tr <t <tr+ Ay,

k
g)gf)Ak + ,U,Ak, t>tr+ Aku

where V/(1—B8)
—P3
gt(k) = bo [1 — 51676”} + Dy,
and k = 1,2. The standardized curve is
1/(1-B3)
9; = Po [1—51(&”} Y+ D+,

where 17, > 0.
The logarithm of the initial OD of the standardized curve is set to equal log(sg)
i.e.

Y

o o
Bo(1 = p1)1=Ps + Dy + 71 = Bo(l — B1)1=F8 + Dy + 79 = log(so)- (5.5)
Solving the equation (5.5) for 7 and 79, gives
1
1 = log(so) = Bo(1 —B1)"" 7 — Dy,
1
o = log(so) — Bo(1 —p1)""% — Ds.

The stationary phase OD increments of the three part model curves are

_1

Y, = eﬁ0+D1+uA17eﬁ0(1*,31)1733+171’
1

Y, = eﬁ0+D2+uA27eﬁ0(1*51)1753+172.
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The time spans of the linear parts, Ay and As, are adjusted so that the stationary
phase OD increment of the standardized curve equals the average of the stationary
phase OD increments of the three part model curves, i.e. Y*® = #
for Ay and Ay become

. The expressions

By — Dy — 1
Ay = Bo 2 —To+ T+ Og[w]’ (5.6)
v

where

w = eP2tm2980 _ 2630(1*51)1/(17%) + 630(1*31)1/(17%)*7’1 + eﬁo(]*ﬁ1)1/(17ﬂ3)*‘r2 _ 630+A2u*‘r27

and

A, — —Bo — D; + 1013;[19]7 (5.7)

where

9 = eP2tm29080 28,80(1*,31)1/(17‘93) + 6,,6‘0(1*,6‘1)]/(1733)*‘rl + 8,80(1*,31)1/(]7‘93)*@ _ PotAip—T1

One possible variant of this standardization method would be to require that
log(Y*) = w (instead of Y* = #) yielding a methodology closely
related to the method Il summary curves that will be presented in Chapter 6.

Model fitting procedure

The models are fitted using a nonlinear least squares method. First a standard initial
OD sq is fixed. As in the standardization of a single curve, this procedure will be
used only for curves which initial OD according to the Chapman-Richards model fit
is smaller than or equal to sg:

1. Initial values for A; and Ay are obtained by first standardizing each of the
curves separately 7.e. using the method presented in Section 5.1.

2. The Model (5.4) is fitted keeping A and Ay fixed.

3. The stationary phase OD increments, Y;, Ys, and Y'°, are calculated. If |w —

Y*| > ¢, a new value for A; is calculated using equation (5.6) and the model is
fitted again keeping A; and Ag fixed. The constant ¢ is the maximum allowed

difference between Ylgyz and Y°.

4. The stationary phase OD increments, Y7, Yo, and Y*, are calculated. If |w —
Y*| > ¢, a new value for Ay is calculated using equation (5.7) and the model is

fitted again keeping Ay and Ay fixed.

The steps 3 and 4 are repeated until |w —Y*| < ¢. The model fitting procedure
is illustrated in Figure 5.2.
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Step 1

Step 2
Step 3
AN
Step 4
Stop «—

Figure 5.2: An illustration of the model fitting procedure for standardizing two curves
stmultaneously.

5.2 Standardizing downwards

When the standard initial OD is less than the observed initial OD, we cannot apply
the same standardization method as before. It would be possible to fit a Chapman-
Richards model to the observed data and then obtain a standardized curve by inserting
a linear part in the inflection point of the curve fitted to the observed data and moving
the curve to start at log(sg). However, this method would have at least two problems.
First, the model of the standardized curve would not be the Chapman-Richards model.
Second, when standardizing downwards, we do not always know if the observed curve
has reached the optimal growth rate. Only adding a linear part to the observed curve
model might underestimate the slope.

For these reasons we will proceed differently. A Chapman-Richards model curve
that lacks a part in the middle is fitted to the observed data. The standardized curve
is then the Chapman-Richards model curve, including the part in the middle (that is
missing in the curve fitted to the observed data). The stationary phase OD increment
of the standardized curve is to be the same as of the observed curve, but the lag time
and growth rate do not need to be the same.

The model of the observed curve can be written as
i, t S tLa

i 5.8
gt gt+A — (gtU - gtL) , t=>1tr, ( )
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Log(N,)

, ~— Chapman-Richards model curve
’ that lacks a part in the middle

— — - Standardized curve

Log(sy) T°

Figure 5.3: An illustration of standardizing one curve when the standard initial OD
sq 1s lower than the observed initial OD. Here Ny is the population size at time t, tp,
1s the inflection time point of the curve fitted to the observed data, and the inflection
time point of the standardized curve is somewhere between ty, and ty .

where

1/(1—-B3)
g = Bo [1 - 516%2'5} +D

is the Chapman-Richards function and
A=ty —1t.

The derivatives of the curve at t = t;, and ¢ = tyy have to be the same. The downwards
standardization is illustrated in Figure 5.3.

The inflection time point of the standardized curve is somewhere between ¢;, and
ty, and the inflection time point of the curve fitted to the observed data is t;,. The
tr, is obtained by setting the derivative of g,

dgi _ BobiPae ™' [1 - Brepat] /(1P
dt - :

at t = t;, equal to the derivative at t = t;; (—t; + A), and solving the equation with
respect to t7,. Therefore,

ABy(1-83)
516’7ﬁZA <eﬂ2A+ B3 — 1)

ABy(1-B3)
e B3 -1

f_ll
b, = —1lo
L By g

o8



The model of the standardized curve is written as

]1/(1*/33)

95250[1*51€7ﬂ2t + D+,

where 7 (< 0) is obtained by setting the initial log(OD) value of the standardized

curve to log(sg)
Bo(1— B1)Y =B 4 D 4 7 = log(sp) (5.9)

and solving equation (5.9) with respect to 7 which yields
1
T =log(so) — Bo(1 — B1)" 7% — D.

The stationary phase OD increment of the standardized curve
1
y* — BotDHr  Bo(1-B1)' P 4D
has to equal the stationary phase OD increment of the observed curve

1
Y = 660+D*(gt,,7gtL)7eﬂ0(1,ﬂ1)m§+n

1

1
Bo+D—Po|(1-Bre B2ltL+A))T=F3 (1B~ Batr ) T-F3 +D
€

1
o151 T

This gives

1
A = —tL—l-ﬁ—log b

1 — . (5.10)
S P e )

where
1 1
Bo + D — log [650(151)1B3+D + ot DT eﬂ0(151)153+’7+7]

v Bo

Model fitting procedure

First the standard initial OD sq is fixed. The curves which initial OD according to
the Chapman-Richards model fit is larger than or equal to sy will be standardized
using this procedure:

1. An initial value of A is chosen.

2. The model (5.8) is fitted using a nonlinear least squares method, keeping A
fixed.
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3. The stationary phase OD increments, Y and Y'*® are calculated. If |Y —Y*| > ¢,
then a new value of A is calculated as given in (5.10). The constant ¢ is the
maximum allowed difference between Y and Y*.

The steps 2 and 3 are repeated until |Y —Y*| < c.

Generalizing this method to two or more curves is not as trivial as in the case of
standardizing upwards. The algorithms for simultaneous standardizations of curves
downwards, or for simultaneous standardizations where some curves would be stan-
dardized upwards and some downwards, would become complicated but certainly not
impossible. However, a standardized curve for two or more curves can easily be ob-
tained by standardizing first each curve separately and then making a summary curve
of them. The summarizing method will be presented in Chapter 6.

5.3 Fitting the standardization models to the data

We fitted the standardization models to hundreds of growth curves of the data de-
scribed in Section 2.4.2 The initial OD values vary between 0.01 and 0.48, and the
average is 0.107. There are large differences in initial OD between different environ-
ments (Figures 3.9-3.10). A nonlinear regression model was fitted via least squares
in the same way as in Section 3.2.3. The maximum allowed difference in the sta-
tionary phase OD increment between fitted and standardized curves was 0.001 (i.e.
¢ = 0.001). The parameter estimates from the Chapman-Richards model fit were
used as start values in the model fitting algorithms for By, 81, B2, B3, and D. The
start value for A was 20|s — sg|, where s is the initial OD according to the Chapman-
Richards model fit to the observed data. The curve fit with different standard initial
OD values was investigated visually and also using the coefficient of determination.

The fit is rather good when standardizing one curve, however, it is not as good as
with the Chapman-Richards method. It is best for the curves with a small difference
between the observed and standard initial OD. An example of the fit of a curve
standardized upwards with so = 0.15, sg = 0.20, and sgo = 0.30 is given in Figure 5.4.
The same curve is standardized downwards with so = 0.08, so = 0.05, and sg = 0.03
in Figure 5.5. Figure 3.2 shows the Chapman-Richards model fit of the curve.

For standardizing two curves the method works reasonably well when the curves
have rather normal and similar shapes, see e.g. Figure 5.6. Also for obtaining a
standardized curve of several curves the method works, given that the curves have
rather normal and similar shapes (Figure 5.7). However, if that is not the case, the
fit can become poor (Figure 5.8).

2The Matlab functions are available upon request.
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Both when standardizing upwards or downwards, it is important that the standard
initial OD does not differ too much from the observed OD. When the difference is large,
the fit can become poor and the growth rate and lag time may be overestimated or
underestimated. Two examples of a fit when sg is far from the observed initial OD
are shown in Figure 5.9. The data are the same as in Figures 5.4-5.5. The growth
parameter estimates from the standardized curves with different sy and the coefficient
of determinations of the fitted curves are shown in Table 5.1.

We also compared the estimates of the growth parameters from the least squares fit
of the Chapman-Richards model with the estimates from the standardized curves. The
averages of the growth parameter estimates are nearly the same with both methods if
the standard initial OD is close to the average of the observed initial OD values. The
coefficient of variations of replicates’ growth parameter estimates tend to be smaller
with the standardization method.

In Section 3.3 we investigated the correlation of the initial OD with growth rate
and lag time estimated with ordinary Chapman-Richard model and ordinary three
part model, i.e. when the time span of the linear part is modeled freely. In the
sequel, we investigate the mentioned correlations when the growth rate and lag time
are estimated with the standardization method. Nine different standard initial OD
values are used: 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, and 0.1. With all of
them the correlation between growth rate and initial OD reduces remarkably, most
with sg = 0.04, compared with the ordinary Chapman-Richards model or the ordinary
three part model (Figures 3.8, 3.17, 5.10, and 5.11). The correlation between initial
OD and lag time reduces also, however, it remains rather high with all values of sg.

5.4 Discussion

From a conceptional point of view, standardizing downwards proved to be more dif-
ficult than standardizing upwards. When standardizing downwards, if both the ob-
served curve and the curve that we would have gotten from a culture with a standard
initial OD, have reached the exponential phase, they should look similar both in
the beginning and in the end, just as with standardizing upwards. However, if the
observed curve has not reached the exponential phase, the whole population composi-
tion is different, and the transition mechanisms should give another curve form. If we
have reached the exponential phase but our parametric model does not capture that,
the shapes should again look similar. This observation makes the use of the cut-out
approach slightly less ad-hoc.

In order not to have to model a long unknown part, the standard initial OD
should not be too low compared to the observed initial OD. How large should the
standard initial OD then be? It may be natural to use approximately the average of
the observed initial OD values, or a value that is considered to be ideal. However,
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more research on how to choose the standard initial OD is needed.

Besides enabling easy comparison of data from different experiments, the stan-
dardization method reduces the correlation between initial OD and growth rate and
initial OD and lag time, compared to the ordinary Chapman-Richards method. It is
possible that with the standardization method we have a systematic error in both lag
time and growth rate. However, this systematic error will cancel out, at least partly,
in the data analysis (in Chapter 8) when the mutant values are normalized using the
wild type values in the same run.

The aims of using the ordinary Chapman-Richards method and the standardiza-
tion method can be different. The standardization may be appropriate when the aim
is to have comparable curves or to visualize data rather than to model the curves
accurately.

Table 5.1: The growth parameter estimates from the standardized curve and the coef-
ficient of determination of the fitted curve (NOD0305, well 3). The growth parameter
estimates and the coefficient of determination of the Chapman-Richards model fit to
the same curve.

Method A 7 Y r?

Chapman-Richards 2.897 0.227 4.007 0.9999
Standardization, sg = 0.015 4.368 0.270 4.031 0.9998
Standardization, sg = 0.030 3.674 0.251 4.019 0.9999
Standardization, sg = 0.050 3.223 0.238 4.008 0.9999
Standardization, sg = 0.080 2.835 0.228 3.995 0.9999
Standardization, sqg = 0.150 2.277 0.215 3.986 0.9999
Standardization, sg = 0.200 2.148 0.212 3.981 0.9999
Standardization, sg = 0.300 1.980 0.207 3.976 0.9998
Standardization, sg = 0.900 1.711 0.198 3.962 0.9995
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Figure 5.4: Standardizing one curve (NOD0305, well 3) upwards with different stan-

dard initial OD. The log(OD) values (dotted), the fitted growth curve (solid) and the
standardized growth curve (dashed). The corresponding residual plots of the fitted
curves are on the right. 63



standard initial OD wvalues.

Standardization method, sO=O.08
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of the fitted curves are on the right.
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Figure 5.6: Standardizing two curves (NAC0321 and NAC0323, well 88). The log(OD)
values (dotted), the fitted growth curves (solid) and the standardized growth curve
(dashed). The corresponding residual plot of the fitted curves is on the right.
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Figure 5.7: Eight wild types in reference condition (NOC0326) fitted with the stan-

dardization method. The log(OD) values (dotted), the fitted growth curves (solid) and
the standardized growth curve (dashed). The corresponding residual plot of the fitted

curves 1s on the right.
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Residuals

0 10 20 30 40 0 10 20 30 40
Time Time
Figure 5.8: Eight wild types in 39°C (39¢0307) fitted with the standardization method.

The log(OD) wvalues (dotted), the fitted growth curves (solid) and the standardized
growth curve (dashed). The corresponding residual plot of the fitted curves is on the

right.
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Figure 5.9: Standardizing one curve (NODO0305, well 3) with values of sg that differ
greatly from the observed initial OD. The log(OD) wvalues (dotted), the fitted growth
curves (solid) and the standardized growth curve (dashed). The corresponding residual
plots of the fitted curves are on the right.
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Figure 5.10: The initial OD of the 99 wild types in reference condition plotted against
lag time and growth rate estimates from the standardization method with different sg.
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Standardization method, so=0.07

Standardization method, SD=0.07
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Figure 5.11: The initial OD of the 99 wild types in reference condition plotted against
lag time and growth rate estimates from the standardizing method with different sg.
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Chapter 6

Summarizing curves

In Chapter 5 we suggested a method by which the growth curves can be standardized
with respect to the initial OD. It is possible to fit a standardized curve directly on all
curves that we wish to have a representative curve for. However, if the curves do not
have similar shapes, or if there are many curves to be standardized simultaneously,
the fit can become poor and the estimated curves can get strange shapes. It may be
better to standardize individual curves or groups of curves, and then summarize the
results.

Two similar methods to summarize growth curves are presented. For these meth-
ods, the curves to be summarized have to be standardized first, i.e. they must have
the same initial OD. The summary curves are based either on averages of the growth
parameters dg, A, u, and Y, or on averages of log(dy), log()), log(u), and log(Y), of
the standardized curves. In this chapter we work under the assumption that Conjec-
ture 1 is true, so that the growth parameter parameterization can be assumed to be
unique according to Theorem 1.

6.1 Method I

In this method, the Chapman-Richards model is used for the summary curves. The
do, A, pu, and Y of the summary curve are to equal the averages of the corresponding
parameters of the standardized curves it summarizes, and the initial OD is to equal
the standard initial OD.

The model parameter values are obtained as follows. Let m be the number of
standardized curves to be summarized, and let

Sy
dy = L‘; e (6.1)
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be their average derivative at time zero,

_ . Adi
A= M (6.2)

n

their average lag time,

D Sy TTe)

= ==t (6.3)
n
their average growth rate, and
n
_ .Y,
y - =Y (6.4)
n

their average stationary phase OD increment. Furthermore, sq is the standard initial
OD. To find the parameters in the original parameterization it would be possible to
use the nonlinear least squares method to minimize

f(Bo, b1, 82,83, D) = -goeﬂo(lﬂ1)1_15§+p]2
P e
o =
-0 AT 4 B gl 2
+ [x= - -
BaBy

B3

] 2
+ |n- 505253163]

2

)

r 1
+ |Y - (@30+D —3/30(1/31)163+D>

and provided that this minimum is approximately zero, the argmin vector would
approximate the vector of the parameters fg, 1, 82,83, and D. However, we have
chosen to use the least squares method only to obtain estimates for 5, and 3, and
calculate the values of By, B2, and D explicitly.

In order to estimate (31 and B3, we first translate the curve as shown in (4.12) so
that the initial OD, growth rate, and lag time are all equal to one, the derivative at
time zero is %0, and the stationary phase OD increment is

_ 1

Y e
(—+1> .

S0
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The translation does not affect f; and B3. They can be estimated by applying the
nonlinear least squares method sketched above on the equations below, derived from
(4.1-4.5) and the assumptions that s =1, A =1, and p = 1:

B3
Pr(1— Br)ss 5

do
—_ - B3
7! =
(1—B3)Bs* "
B3 1 17—t
= €L T-F3 B1 _3\T=B3 _p31-Ps3
<Z+1> AR _ e|:ﬂ3 3l()g(1*ﬁ:~z)+(] Bu) * P 61*(17,31)1*163.
S0

Then we move back to the non-translated curve and obtain £y, 82, and D from the
equations below, derived from (4.1-4.5),

1 L Ba
P U et R
2 = 3
B
fo = —"5
BafBy %8
D = log(s[]) — %
(1= )Pt

There is a theoretical risk that the minimum zero cannot be reached, because
the specific parameter vector is not permitted in the Chapman-Richards model (see
Theorem 2), but the problem seems to be of minor practical relevance (see Section
6.3). This problem can be avoided by using method II, described in the next section.

6.2 Method II

Here, we construct a summary curve for which the logarithms of dg, A, y, and Y equal
the averages of the logarithms of the corresponding parameters of the standardized
curves that it summarizes. The model parameter values are obtained in the same way
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as in method I, except that instead of dy, A, fi, and Y, as given in (6.1- 6.4)

~ E;L:lodi n n

Y

Sio los[\p)]

PREPEE L VS S )
I Y g

[L = e n = ezi:'l Og[“(l)]7

- S log[ V(] n n

Y = e o = \[eXim IOg[Y(i)],

are used.

6.3 Fitting the data

Both summarizing methods were tested on hundreds of growth curves of the data
described in Section 2.4.! There were no problems with the fit as long as the lag
times were not close to zero. When this happened, method II was the more sensitive
one. Although theoretically the method I summary curves do not always exist, this
was never a problem in our data.

Figure 6.1 shows examples of summary curves of double measurements for mu-
tants in 39°C. The two methods often result in almost the same curve, since the
standardized curves of the double measurements tend to have similar shapes. In Fig-
ure 6.2 there are summary curves of a mutant in reference condition and in Caffeine,
and a mutant in reference condition and in Dinitrophenol. It can be seen that when
the shapes of the standardized curves are very different (which is natural in this case
since they are curves from different environments), the summary curves from the two
methods differ more. An example of summarizing several curves can be seen in Figure
6.3.

Figure 6.4 displays an example of three different ways to obtain a representative
curve for the wild types in 39°C. In the first one, all 48 wild type curves are stan-
dardized simultaneously. In the second one, a method I summary curve of all the
48 individually standardized wild type curves is fitted. In the third one, a method I
summary curve of the six runwisely standardized wild type curves is fitted. The three
curves look similar. However, the lag time and growth rate differ quite a lot bet-
ween the three methods (Table 6.1): the standardization method gives a remarkably

!The Matlab functions are available upon request.
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smaller slope and thus smaller lag time than the other two methods. For compari-
son, we look at the averages of the growth parameter estimates of the 48 curves from
the Chapman-Richards method. The summary curve of individually standardized
wild type curves gives growth parameter estimates closest to the averages from the
Chapman-Richards method. However, especially in lag time, the differences between
the estimates from the summary curve and the averages of the estimates from the
Chapman-Richards method are large. Note however, that it is difficult to compare
the summarizing and simultaneous standardization methods because in the simultane-
ous standardization the standard initial OD has to be larger than the observed initial
OD values. Therefore, in this example it is also difficult to compare the Chapman-
Richards method and summarizing method estimates, since the standard initial OD is
higher than the observed OD values. If the standard initial OD was close to the aver-
age of the observed OD values, the Chapman-Richards and the summarizing method
would produce rather similar results on average.

6.4 Discussion

Although theoretically method I summary curves do not always exist, this is not a
problem in our data. The two summarizing methods produce often almost the same
results. There are more computational problems with the method II when lag times
are very close to zero.

It would have been possible to try other methods too, such as using averages for
some parameters and averages of logarithms for some parameters. We have chosen
to take logarithms of all parameters because we have previously used this type of
measures in the calculation of logarithmic phenotypic indexes (LPI) in the analysis
of the data [6]|26]. Thus, this type of summary curves are natural because they
can directly be used in the calculation and illustration of the LPI. The LPI will be
discussed in more detail in Chapter 8.
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Figure 6.1: For three mutants: individually standardized curves (dashed) for both runs
in 39°C" (from top: 39E0307 and 39E0309, well 13; 39E0307 and 39E0309, well 25;
39C0307 and 39C0309, well 7) and their summary curves (solid).
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Figure 6.2: Individually standardized curves (dashed) and their summary curves
(solid). (Top) A mutant in caffeine and in reference condition (CAC0328 and
NOC0305, well 4). (Bottom) A mutant in Dinitrophenol and in reference condition
(DND0316 and NOD0305, well 8).
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Figure 6.3: Individually standardized curves (dashed) and their summary curve (solid)
for the eight wild types in a run in Natrium chloride (NAC0323).

Table 6.1: Growth parameter values of the representative curves for the wild types in

39°C (see Figure 6.4).

Estimation method A I Y
Standardized curve of all wild types 0.238 0.241 3.326
Summary curve (method I) of all individually

standardized wild type curves 1.484 0.275 3.384
Summary curve (method I) of runwisely

standardized wild type curves 0.139 0.234 3.347
Chapman-Richards method on

each wild type, average value 1.677 0.283 3.369
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Figure 6.4: Different ways to obtain a representative curve for all the wild types in
39°C. (Top, left): Wild type curves (dotted) and their standardized curve. (Top,
right): Individually standardized wild type curves (dashed) and their summary curve
(solid). (Bottom, left): Runwisely standardized wild type curves (dashed) and their
summary curve (solid). (Bottom, right): In the same plot the standardized curve of
all 48 wild types (solid), the summary curve of all individually standardized curves
(dotted) and the summary curve of runwise wild type curves (dashed). The summary
curves are fitted using method I.
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Chapter 7

Quality filters

In large-scale screenings, where hundreds of strains are measured in each run, a bad
run may affect the results of hundreds of tests in the data analysis. Especially if
the data from large-scale screenings are analyzed in an automatic way, it is of great

or whole runs that look atypical or spurious. In this chapter we will discuss the
possibility to use the wild type controls in each run to identify dubious runs. We will
also suggest a set of filtering methods that will address some of the problems with
individual curves.

The motivation for having wild type controls in each run is twofold. First, we wish
to neutralize the variability in the experimental conditions by comparing the behavior
of the mutants with the behavior of the wild types in the same run. Second, the wild
types are also there to control that the within run variability is reasonably stable.
We will discuss how we can find dubious runs by using the growth parameters from
the standardized wild type curves and by visually comparing their runwise summary
curves.

In most of the data collected in PROPHECY, there are only two repeated mea-
surements for each strain, so that it is rather hard to distinguish a bad behavior of a
curve from the natural experimental variability of the two curves. However, e.g. the
very fact that one of the curves may look nice and can be fitted by a standardized
model curve, while the other cannot, is a sign of warning.

Coefficient of determination with a suitable threshold can be used to filter out
individual curves that have atypical shapes and thus cannot be well described by
the parametric model. This approach may also be applied to find collapsing curves.
The OD values occasionally drop in successive time points long before the curve has
entered the stationary phase. If this happens for several successive measurement time
points, there is probably some aggregation of cells attaching to each other or to the
wall of the well, and the measurements should not be trusted (an example is given in
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Figure 7.1). However, if this only happens in single time points and after that the OD
values are "normal" again, it is believed to be due to air or gas bubbles, and the rest
of the measurements should not be too much affected. Most of the time the OD values
drop in the end of the curves when they probably have reached the stationary phase
(an example is given in Figure 7.2). In these cases the chosen smoothening (i.e. each
OD value lower than the previous value is set to the previous value) will take care of
this problem in a natural way. If the OD values drop before the curve has reached
the stationary phase, the smoothening will typically make the estimated curve biased
downwards. We will describe a simple filtering procedure to detect curves with this
type of atypical behavior.

The samples that do not at least double in size are filtered away (an example is
given in Figure 7.3). Some curves grow so slowly that at the last measurement time
point they are still far from the stationary phase (an example is given in Figure 7.4).
A simple filter to detect such curves will also be described. Yet another problem,
which we will not treat in any formal way, is that in some experiments there seems to
be no delay at all and the relative growth is maximal at time zero.

In the next chapter we will use the quality filtering techniques described here to
compare the variability of so called logarithmic strain coefficients [6][26] for the growth
parameters A, 4, and Y estimated using ordinary Chapman-Richards, standardization,
and summarizing methods. To do that we need to first define a set of quality filters
and to discuss explicit choices for the thresholds.

Log(OD)

0 10 20 30 40
Time
Figure 7.1: An example of a curve which collapses before entering the stationary phase

(39C0309, well 39). The OD wvalues are calibrated and blank corrected, but they are
not smoothened.
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Figure 7.2: An example of a curve which collapses after entering stationary phase
(89C0309, well 83). The OD wvalues are calibrated and blank corrected, but they are
not smoothened.

7.1 Quality filters for runs

The quality filters for the runs are based on the data of the eight wild types in each
run.

Comparability of runs within environment

To investigate the comparability of the runs within specific environment, we first
make runwise method I summary curves of the wild types. These summary curves are
inspected visually. We also calculate coefficient of variations for A\, u, and Y estimated
from the summary curves. If at least one of the coefficient of variations is higher than
a threshold, the runs are not considered comparable. In that case, either the deviating
runs or the whole environment can be filtered away.

Within run variability

The within run variability is assessed by calculating the coefficient of variations of the
A, i, and Y from the standardized wild type curves in each run. If the coefficient of
variation for some run exceeds a threshold, the run will be filtered away.

7.1.1 Testing on data

The curves in Methylmethanesulfonate (MM) have so abnormal shapes that the
Chapman-Richards model cannot describe them sufficiently well and thus no sum-
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Figure 7.3: An example of a "non-growing” curve (41E0312, well 91). The OD wvalues
are calibrated and blank corrected, but they are not smoothened.

mary curves are fitted to the curves in this environment. The blank corrected and
calibrated non-smoothened wild type curves in Methylmethanesulfonate are shown in
Figure 7.5.

The runwise summary curves (so = 0.1) for each environment except Methyl-
methanesulfonate are shown in Figure 7.6. In Dinitrophenol (DN) and Caffeine (CA)
the stationary phase OD increments differ rather much between the runs, however,
the shapes of the curves are similar. The coefficient of variations for the growth
parameters from the summary curves are given in Table 7.1. The coefficient of varia-
tion for lag time is rather high in some environments, especially in 39°C, 41°C, and
MYV. In fact, in these environments there tends to be no delay, and the growth often
slows down after a while. Thus calculating lag times in these environments may be
questionable.

Appropriate thresholds for the coefficient of variations could be 10% for growth
rate and 20% for stationary phase OD increment. Setting a threshold to the coefficient
of variation for lag time is more complicated. The lag time itself is not a very robust
measure and therefore either no threshold or a rather high threshold, e.g. 100%, for
the coefficient of variation of lag time should be applied.

If at least one of the coefficient of variations exceeds the threshold, we conclude
that there is something seriously wrong with the experiment and it should be redone
or the results should be simply excluded from the analysis (or, at least, the paramet-
ric model should not be used). With these thresholds all the environments (except
Methylmethanesulfonate which was excluded due to abnormal curve shapes) would
pass the filter for the comparability of runs within environment.
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Figure 7.4: A growth curve (NAC0323, well 39) which has not reached the stationary

phase at the last measurement time point. The OD wvalues are calibrated and blank
corrected, but they are not smoothened.

The coefficient of variations of the growth parameters from the standardized curves
of the eight wild types in each run are given in Tables 7.2-7.3. Again, the coefficient of
variations for lag time are high, especially in environments 39°C', 41°C, and MV. We
will apply the following thresholds for the runwise coefficient of variations: 100% for
the lag time, 15% for the growth rate, and 25% for the stationary phase OD increment.
With these thresholds no runs are filtered out.

7.2 Quality filters for wild type curves

We try to find wild type curves that have not reached the stationary phase, collapse
before reaching the stationary phase or cannot be sufficiently well described by the
parametric model. We also filter out curves which deviate much from the others in the
same run. All filters except (7.1) are based on the standardized curves. Appropriate
thresholds for the different measures will be proposed in Section 7.2.1.

Curves that have not reached the stationary phase

We try to identify curves that have not reached the stationary phase by investigating
the relation between the derivative of the fitted curve at the last time point (denq)
and the growth rate (u). The derivative at the last time point is

S S
6016116267ﬂ2tend (1 - Bleiﬂztend) 1-B3 1

d =
end 1 52 3
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where t,,4 is the last time point. Let €2

end

be the threshold for d"T”d If d"ﬁd < Qa,,y,

g w
the curve is considered to have reached the stationary phase. The curves for which
—di:"d > Qa,,, are filtered out.

m

Curves that collapse before reaching the stationary phase

Curves that collapse before reaching the stationary phase are to be filtered away by
first looking at the smoothened and non-smoothened OD-values (recall that all data
are smoothened so that each OD value lower than previous value is corrected to equal
the previous value). We calculate the absolute values of the differences of the OD
values after and before smoothing, relative to the OD values after smoothing,

_ ODsmnnthened - ODnon—smnnthened
ODsmoothened

w

, (7.1)

until one hour after the stationary phase OD increment has been reached!, ignoring
the first five time points because the measurements tend to be shaky in the beginning.
Of these w’s, we take the third highest?, and denote it by w*. Let Q,+ be a threshold
for w*. If w* > Q.+ the curve is considered collapsing before reaching the stationary
phase and it is filtered out. This method, however, fails to detect many collapsing
curves. Therefore, we also investigate the coefficient of determination, r?
(3.10).

, as given in

Curves that cannot be well described with the parametric model

With the help of the coefficient of determination also curves that cannot be well
described with the parametric model are detected.

Curves that deviate greatly from the other curves in the same run

The within run coefficient of variations of the growth rate (cv,) and stationary phase
OD increment (cvy) of the remaining curves are investigated in order to detect curves
that deviate greatly from the other curves in the same run. Let Q2cy, and Qcy,. be the
corresponding thresholds. When cv,, > chu or cvy > ey, , the curve that deviates
most from the others with respect to this parameter is removed. The coefficient
of variations are calculated again, and the same procedure is repeated until both
coefficient of variations are below the thresholds.

'Defined as where the stationary phase OD increment according to the fit of the standardized
curve has been obtained.

>The third highest value of w is chosen so that the curves would not be filtered away because of
a single collapsing OD value.
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7.2.1 Testing on data

Before deciding on the thresholds for the quality filters for wild types, we tested how
they would work on our data (i.e. all wild types in reference condition and in all
environments except MM). We use a standard initial OD 0.1.

Most wild type curves have reached the stationary phase. An example of a wild
type curve which may be considered not to have reached the stationary phase is shown
in Figure 7.7. For this curve the deT"d is 0.138.

Figures 7.8 and 7.9 display the non-smoothened growth curves of the wild types of
two runs in 39°C. The w* values (Table 7.4) might alarm about the wild type curve
7 in run 1. The wild type curve number 7 in run 2 that collapses already at an early
stage might not be detected by investigating the w*. This curve can be detected by
looking at its 72 which is clearly smaller than the other wells’ 2 (Table 7.4). In fact,
also the curve 7 in run 1 would have been detected by investigating its r2. Figure
7.10 shows another example of a curve that cannot be sufficiently well described by
the model. For this curve the 72 is 0.9066.

The previous steps filter out most of the deviating curves. The measures of cv,
and cvy detect curves that deviate from the others even if they are otherwise rather
"normal". These type of deviating curves are rare.

After having tested the filtering steps on our data, we propose the following thresh-
olds: Qa,,, = 0.08, Q.2 = 0.995, Q« = 0.3, Qcy, = 15%, Qcyy = 25%. The wild

I
type curves in 39°C' which pass the quality filters using these thresholds are in black
and the ones that do not are in grey in Figure 7.11. Roughly 96% of the wild type
curves in all environments pass the quality filters.

7.3 Quality filters for mutant curves

With the quality filters for mutants, like for wild types, we try to find curves that
have not reached the stationary phase, collapse before reaching the stationary phase
or cannot be sufficiently well described by the parametric model. In addition, we
try to find non-growing curves (this part is not included in the wild type quality
filters because in our data there are no non-growing wild type curves). No replicate
comparisons are done because there are only two replicates for each mutant (except
in the reference condition). All filters, except (7.1) and when defining non-growing
curves, are based on the standardized curves.
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Non-growing curves

Non-growing curves are defined as the curves whose end OD value is less than twice
the initial OD value.? For the non-growing curves the lag time is set to 48 hours but
no growth rate or stationary phase OD increment is calculated.

The curves that have not reached the stationary phase

The curves that have not reached the stationary phase are filtered out by investigating
the derivative at the last time point, the same way as in case of wild types. The curves
which are considered not to have reached the stationary phase are excluded from the
analysis of stationary phase OD increment, but if they pass the other criteria of the
quality assessment, they remain in the analysis of lag time and growth rate.

Curves that cannot be well described with the parametric model

Curves are to be excluded completely from the analysis of the data, if they cannot
be fitted with the parametric model or collapse before reaching the stationary phase.
These curves are detected in the same way as in case of wild types.

We tested the quality filters on all mutants in reference condition and in the six
environments. The standard initial OD sy = 0.1 was used. The same thresholds as
for wild types, i.e. Qa,,, = 0.08, Q- = 0.3, and €2,> = 0.995 seem to work well.

Using the proposed thregholds, 5.6% of the mutant curves are filtered out totally, 4.7%
are considered not to have reached the stationary phase but qualify for the analysis
of lag time and growth rate while 0.14% are non-growing. These last ones are set
to have a lag time 48 hours but are excluded from the analysis of growth rate and
stationary phase OD increment. Note however, that when one of the two mutant
curves is filtered out, the duplicate is not used in the analysis either. If at least one
of the four mutant curves in the reference condition is filtered out, its replicates are
not used in the analysis either (very few curves in the reference condition are filtered
out). Taking also the duplicate/replicate exclusion into account, 9.5% of the curves
are filtered out totally, 6.1% are filtered out from the analysis of the stationary phase
OD increment but are included in the analysis of lag time and growth rate, and 0.2%
are included in the analysis of lag time but excluded from the analysis of growth rate
and stationary phase OD increment.

3The OD values are calibrated, blank corrected and smoothened.
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Figure 7.5: Non-smoothened wild type curves in Methylmethanesulfonate (row-wise
from the top: MMC0408, MMCO0411, MMD0408, MMD0411, MME0408, MMFE0411.).
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Figure 7.6: Runwise summary curves of the eight wild types in each run.
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Table 7.1: Coefficient of variations (%) for the growth parameters from the runwise
summary curves of the eight wild types in each environment.

Environment A W Y
39°C 2424 3.26 10.51
41°C 68.36 7.07 7.39
DN 9.52 3.75 13.25
CA 18.34 6.09 18.30
NA 15.87 4.18 8.85
MV 35.02 6.13 8.08
NO 12.17  3.61  4.67
2
1 L
g 9
k<3
3
_l -
-2
0 10 20 30 40
Time

Figure 7.7: A wild type growth curve (NAC0321, well 127) which may not have reached
the stationary phase at the last measurement time point.

91



Table 7.2: Coefficient of variations (%) for the growth parameters from the eight
standardized wild type curves in each run.

Run A 7 Y

39C0307  42.82 819 16.62
39D0307  21.79 139 9.82
39E0307 10.72 1.75  8.28
39C0309 9.42 232 10.03
39D0309 12.84 276 16.30
39E0309 10.56  1.66 13.38

41C0312 2720 3.21 11.27
41D0312 79.96 497 17.09
41E0312 85.15 2.31 6.99
41C0314 4198  5.64 1942
41D0314  56.52  4.05 15.60
41E0314 89.64  5.30 11.87

DNCO0316 3.81 3.50 21.43
DND0316 13.03 9.05 17.89
DNE0316 5.09 1235 22.58
DNC0319 724 486 17.82
DND0319 11.05 10.11 19.17
DNEO0319 6.49 6.70 17.41

CAC0328 12.10 5.01 15.36
CADO0328 10.41 2.02 13.19
CAE0328 14.23 4.15 13.49
CACO0330 16.20 5.83 18.73
CADO0330 11.09 2.07 23.27
CAE0330 50.68 9.62 16.07

NAC0321 12.85 1.24 7.44
NADO0321 17.02 3.46 24.96
NAE0321 2237 828 9.72
NAC0323 24.57 3.24 9.61
NADO0323 11.97 338 5.15
NAE0323 15.08 1.56  8.55
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Table 7.3: Coefficient of variations (%) for the growth parameters from the eight
standardized wild type curves in each run.

Run A 7 Y

MVC0413 6490 244  9.39
MVDO0413 46.50 0.83 6.03
MVE0413 4235 273  3.17
MVC0417 42.49 3.78 8.48
MVDO0417 69.92 6.88 22.36
MVE(0417 59.00 2.70 12.29

NOCO0305 5.25 197 7.44
NODO0305 16.41 7.43 6.43
NOE0305 13.73 420 5.12
NOC0326 238 1.28 5.22
NODO0326 9.37 1.87 13.29
NOE0326 9.37 1.87 13.30
NOC0406 7.66 0.80 12.09
NODO0406 3.56 094 461
NOE0406 3.93 1.00 3.72
NOC0426 10.77 1.63 12.70
NODO0426 6.00 1.02 8.09
NOE0426 3.24 1.07 451
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Figure 7.8: The non-smoothened wild type growth curves of run in 39°C (39D0309).
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Figure 7.9: The non-smoothened wild type growth curves of run in 39°C (39E0309).



Table 7.4: The w* and the coefficient of determination (r?) for the standardized wild
type growth curves in two runs in 39°C.

Wild type number w* w* r? r?

(39D0309)  (39E0309) (39D0309)  (39E0309)

1 0 0 0.9983 0.9997
2 0 0 0.9995 0.9983
3 0 0 0.9989 0.9997
4 0 0 0.9990 0.9997
5 0 0 0.9978 0.9996
6 0 0 0.9994 0.9998
7 0.4552 0.1876 0.9832 0.9901
8 0 0 0.9991 0.9997
2 0.5
= o
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Figure 7.10: An ezample of a bad curve fit (MVD0417, well 171). The log(OD) values
(dotted), the fitted growth curve (solid) and the standardized growth curve (dashed).
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Figure 7.11: The wild type growth curves in 39°C' (each row representing a run, from
the top: 39C0307, 39D0307, 39E0307, 39C0309, 39D0309, 39E0309). The ones that
would pass the quality filters are in black and the ones that would not are in grey.
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Chapter 8

The effect of standardization and
summarizing on logarithmic strain

coefficients (LSC)

In the analysis of the data, the growth behavior of each mutant is related to the
average behavior of the eight wild types in the same run, forming wild type normal-
ized growth measures, termed runwise logarithmic strain coefficients, LSCy, LSC,,
and LSCy.! The final LSCy, LSC,, and LSCy are the averages of the two (in en-
vironment) or four (in reference condition) runwise logarithmic strain coefficients.
Furthermore, to provide quantitative measures of the specific gene-by-environment
interactions and to compensate for general growth defects observed even under fa-
vorable growth conditions, LSC from environments are related to LSC from reference
condition, forming logarithmic phenotypic indexes, LPIy, LPI,, and LPIy [26].

We are interested in whether standardization and summarizing have an effect on
the logarithmic strain coefficients, and especially on the variance of the runwise LSC,
i.e. the variance of the wild type normalized mutant replicates. We compare the
LSC calculated based on the fitted (1) ordinary Chapman-Richards model curves, (2)
standardized (s9 = 0.1) curves for mutants and method I summary curves for wild
types, and (3) standardized curves for mutants and method IT summary curves for
wild types. The LSC values are calculated on the data that pass the quality filters
presented in Chapter 7. We see the replicates as a sample of size 2 (environments)
or 4 (reference condition), which is motivated by that the repetitions are in different
runs.

'The terms used are LSCadaptation , LSCrate and LSCefficiency but we refer to these as LSCy, 1LSC,,,
and LSCy
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8.1 LSC

The logarithmic strain coefficient for lag time for a specific mutant in a specific envi-
ronment is calculated as

23:1 {% POy log(11)t§:)) — log(.'l;(r))}

LSC, = 5 (8.1)

rscl’ +Lsc
2 3

and in the reference condition as

i {50 tog(wtf)) — log(af) |

LSCy) = 1 (8.2)
M (2) (3) (@)
_ LSCj, +LSCi, +LSCY ) +LSChg,
— ; :

where wt,(:) is the lag time of the kth wild type in the environment in the run r, s

is the number of wild types (that remain in the data after the quality filtering, the

ér,)c is the lag time of the kth wild type in the reference

condition in the run r, z(") is the lag time of the mutant in the run r, and xér) is the
lag time of the mutant in the reference condition in the run r [6].

The logarithmic strain coefficients for growth rate and stationary phase OD in-
crement are calculated analogously, except that for the LSC,,, the doubling time, i.e.
%, is used instead of the growth rate u. The logarithmic phenotypic indexes for a
specific mutant in a specific environment, are calculated as

maximum is eight) in the run, wt

LPI, = LSC, —LSCy) (8.3)
LPI, = LSC, —LSC,q (8.4)
LPIy = LSCy( — LSCy. (8.5)

8.1.1 The variance of runwise LSC

To investigate whether the standardization reduces the variance of the runwise loga-
rithmic strain coefficients? we calculated the LSC in three different ways. First, using

That is, the variance of LSC") and LSC®, and the variance of LSC!!), LSC?, LSC®), and

(0)° (0)? (0)°
LSCES%, separately for each mutant in each environment and each growth parameter.
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the growth parameters from the Chapman-Richards method in (8.1) and (8.2). Second
and third, using the growth parameters from the standardized curves for the mutants
as before, but for the wild types the method I and method II summary curve growth
parameters. That is, instead of

1< k 1< k
" 2:1 log(wt")) and " z:l log(ﬂ)tg’,})
r= r=

the logarithm of the specific growth parameter of the summary curve is taken. Note
that the third way corresponds to using the growth parameters from the standardized
curves in (8.1) and (8.2).

The averages of the LSC,, LSC,, and LSCy and the averages of the standard
deviations of the runwise LSC,, LSC,, and LSCy in each environment and over all
environments are shown in Table 8.1. The lag time estimation for the curves in
environments 39°C' and 41°C is questionable because there seems to be often almost
no delay.

8.2 Discussion

Overall, the LSC-variances are slightly smaller with the standardizing and summa-
rizing methods than with the direct Chapman-Richards approach. It is natural that
the differences in LSC variances are not large between the three methods since the
differences in initial OD values are rather small within runs (Table 3.1).

We used only sg = 0.1. It would have been interesting to do the LSC comparisons
also with other values of sg. This will be the subject of further research.
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Table 8.1: Awverages of the logarithmic strain coefficients and averages of the standard
deviations of the runwise logarithmic strain coefficients.

Environment Method LSC) §LSCA LSC‘u gLSCu LSCy S1.5Cy
C-R -0.13 0.15 -0.07 0.03 0.02 0.12
39°C Summary I -0.09 0.22  -0.07 0.03 0.02 0.12

Summary II  -0.17 0.30  -0.07 0.03 0.02 0.12

C-R 0.14 0.42 -0.06 0.03 0.06 0.12
41°C Summary I 0.86 0.74  -0.07 0.03 0.07 0.12
Summary II 0.95 0.80 -0.06 0.03 0.06 0.12

C-R -0.05 0.07  -0.02 0.07 0.06 0.24
DN Summary I -0.06 0.06 -0.01 0.07 0.07 0.24
Summary 1T -0.06 0.06 -0.01 0.07 0.06 0.24

C-R -0.08 0.12  -0.08 0.06  -0.05 0.14
CA Summary I -0.13 0.18 -0.06 0.05 -0.04 0.14
Summary 1T -0.17 0.19  -0.06 0.06  -0.06 0.14

C-R -0.10 0.09 -0.01 0.03 0.01 0.08
NA Summary [ -0.12 0.08 -0.01 0.03 0.01 0.08
Summary 1T -0.13 0.08 -0.01 0.03 0.01 0.08

C-R -0.56 0.97 -0.04 0.06  -0.02 0.11
MV Summary I -0.48 0.38  -0.04 0.03  -0.01 0.09
Summary IT  -0.74 0.53 -0.04 0.03  -0.02 0.09

C-R -0.07 0.13  -0.04 0.05 0.01 0.09
NO Summary I -0.05 0.12  -0.04 0.04 0.02 0.09
Summary IT  -0.05 0.12 -0.04 0.04 0.02 0.09

C-R -0.14 0.29 -0.05 0.05 0.01 0.13
All Summary [ -0.14 0.28 -0.04 0.04 0.01 0.13
Summary IT  -0.05 0.24 -0.04 0.04 0.02 0.13
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Chapter 9

Conclusions

Modern genomics offers great opportunities for the study of measurement-related
theoretical questions that are important in practice. In this thesis we focused on
two problems related to the analysis of microbial growth: how to standardize the
growth curves with respect to the initial population size, and how to estimate one
curve from several experiments with different initial population sizes. We adopted the
Chapman-Richards growth curves as our basic tool.

The Chapman-Richards model works well for a wide range of "normal" growth
curves. However, for growth curves of atypical shapes the fit can be poor. Given the
diversity of forms atypical curves assume, it is very difficult if not impossible to find
a parametric model that fits sufficiently well all types of growth curves. One of the
main causes of the bad fit with the Chapman-Richards model in our setting is that it
assumes that the inflection point is after the first measurement time point, whereas
in many atypical curves this does not seem to be the case. An inflection point before
starting the measurements implies a negative lag time and that the maximum growth
rate was obtained before starting the measurements. Hence, estimating lag time and
growth rate from this type of curves is questionable.

Some of the concerns related to the growth parameter estimation do not directly
depend on the model used. Warringer and Blomberg [25] stressed that the stationary
phase OD increment should be viewed with some caution as an indicator of efficiency
of growth. First, the relation between the biomass and the OD measured can differ
quite substantially between different strains. Second, it is not known if the end of the
growth phase is always the result of complete utilization of the carbon source glucose
or due to other limitations.

Perhaps the most serious concern related to the growth parameter estimation is
whether the definition of the lag time used is appropriate or not. There is currently
no generally accepted definition for the boundary between the lag and the exponential
phases. If the lag time is defined using the tangent line through the inflection point,
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it will be proportionally shorter for slowly growing cells than for rapidly growing cells.
Another problem might be that if the OD measurements are not started soon after
the sample has been prepared, the lag time is in reality longer than what can be seen
from the growth curve. Ericson et al [6] are currently working with another type of
lag time definition than the one we have used.

The lag time and the growth rate depend strongly on the initial population size.
However, in large scale experiments, it is difficult to have the same constant initial
population size. We introduced a method to standardize growth curves with respect
to the initial population size. We use a certain Chapman-Richards model to try to
predict what the behavior of a growth curve would have been, had the population
had a standard initial population size. The standardization reduces remarkably the
initial population size correlation with the lag time and growth rate, compared to
the ordinary Chapman-Richards method. It is also very useful for visualizing data:
without standardization, it is difficult to know what the difference between the curves
is. We found that the differences between the initial population sizes tend to be
larger between environments than within environments (Table 3.1). Therefore, the
standardization is important especially because it enables comparisons of curves from
different environments. Furthermore, it will be of great value when clustering on the
whole curves is desired.

We introduced two ways to construct a summary curve from standardized curves,
in order to represent repetitions of similar growth experiments by a single curve. They
are based on the averages of the growth parameters (method I), or on the averages of
the logarithms of the growth parameters (method II) of the curves to be summarized.
We showed that the method Il summary curves always exist whereas the method
I summary curves do not always exist, although the problem seems to be of minor
practical relevance.

The standardized and the summary curves could be a natural complement to
the phenotypic library Warringer et al [27|, and Fernandez-Ricaud et al [7] have
built. For example, a standardized curve for each mutant in each run and a summary
curve for the eight wild types in each run could be made available in PROPHECY.
Furthermore, a web tool to analyze the yeast growth data using the standardizing
method, and to detect individual curves or whole runs that are atypical or spurious,
could be developed.

More research on how to choose the standard initial population size is needed.
One direction of study is to use the eight wild types in each run, and investigate
the mean and the variance of their growth parameters from standardized curves with
different standard initial population sizes. It would also be interesting to compare
the standardizing method to the Warringer method [26] used today in PROPHECY,
e.g. by comparing the LSC-values and their variances. This is the subject of future
research.
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The initial population size correlation with lag time and growth rate could be an
artifact of the calibration curve function or the model. However, we do not believe that
it is due to the calibration curve function, because the correlation reduces remarkably
with the standardization. We do not believe that it is due to the model either,
because the correlation is high also when using the Warringer method [26] to estimate
the growth parameters. We do believe that it could be a biological effect, i.e. that
the maximum growth rate cannot be reached if the initial population size is too large.
This has not been tested properly. Therefore, studies with very small initial OD values
in parallel with initial OD values of the size we have now should be done to verify
whether this really is the case.

The quality filters presented in this thesis probably need to be developed further
and complemented. Some of the problems related to the shapes of the growth curves
may be due to a slightly false calibration curve function or due to a different (or
varying) real blank than the one used in our subtraction. Both of these issues require
further research. The measurements that are mostly affected by the blank are those in
the very beginning of the logarithmic growth curve. Therefore, it may be relevant to
study the effect of the first measurement points on the estimated growth parameters.
This can be done for example by systematically comparing the estimated growth
parameters and their variances, when the first measurement point is ignored, the first
two measurement points are ignored, the first three measurement points are ignored,
etc. One may also try to model the blank using a Bayesian type approach [18] so that
it can differ from the fixed blank value with a penalty in the least squares procedure.
Also other smoothing methods besides the one we used, where each OD value lower
than the previous value is set to the previous value, may be considered. One alternative
is to set each OD value lower than the previous value to the average of the logarithms
of the previous and the next value.

It would be interesting to study the possibility to standardize growth curves using
a non-parametric sigmoidal model. Standardizing upwards can probably be done
approximately the same way as it was done in this thesis, but it may be more difficult
to standardize downwards. Some attempts to estimate growth parameters using a
non-parametric sigmoidal model are done by Warringer et al [24].
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ppendix

igures

Bsc C: Plate 1 BscD: Plate 1 Bsc E: Plate 1
1 10 20 2 ‘ 2 49 59 . 78 ‘ Ed 193 | 202 | 212 | 221 ‘ 21 | 241 | 251 . 270 ‘ 219 35 | 304 | 404 | 413 ‘ 423 | 43 | a3 . 462 ‘ an
2 1 2 EY 40 50 60 69 79 88 194 | 203 | 213 | 222 | 232 | 242 | 252 | 261 | 211 | 280 386 | 395 | 405 | 414 | 424 | 43¢ | a4 | 453 | 463 | 472
3 12 22 31 4 51 61 70 80 89 195 | 204 | 214 | 223 | 233 | 243 | 253 | 262 | 22 | 281 387 | 396 | 406 | 415 | 425 | 435 | a5 | 454 | 464 | 473
4 | B 2 2 a2 52 62 7 S % 19 | 205 | 215 | 224 | 234 | 244 | 254 | 263 | 273 | 282 388 | 397 | 407 | 416 | 426 | 436 | 446 | 455 | 465 | 474
. 1 2 Ed 3 53 63 72 8 9 | . 206 | 26 | 25 | 235 | 245 | 255 | 264 | 274 | 283 | . 208 | 408 | 417 | 420 | 437 | 447 | 456 | 466 | 475 |
5 | 15 2 3 4 54 64 7 8 92 197 | 207 | 217 | 226 | 23 | 246 | 256 | 265 | 215 | 284 389 | 399 | 400 | 418 | 428 | 438 | M8 | 457 | 467 | 476
6 | 16 . 3 5 55 65 7 8 93 198 | 208 . 221 | 231 | 247 | 257 | 266 | 276 | 285 390 | 400 . 419 | 429 | 439 | 449 | 458 | 488 | 477
7 7 2 36 6 56 66 75 . £ 199 | 209 | 218 | 228 | 238 | 208 | 258 | 267 . 286 391 | 401 | 410 | 420 | 430 | 440 | 450 | 459 . a8
8 | 18 2 Ed a7 57 67 7 8 . % | 200 | 20 | 210 | 229 | 239 | 249 | 250 | 268 | 277 . 287 | 202 | 402 | 411 | a2 | 431 | 441 | 451 | 460 | 469 . 479 |
9 | 19 2 38 8 58 68 77 8 % 200 | 211 | 220 | 230 | 240 | 250 | 260 | 269 | 2718 | 288 393 | 403 | 412 | 422 | 432 | 442 | 452 | 461 | 470 | 480
Bsc C: Plate 2 Bsc D: Plate 2 Bsc E: Plate 2
97 | 106 | 16 | 125 ‘ 185 | 145 | 155 . 174 ‘ 183 289 | 208 | 308 | 317 ‘ 327 | 31 | a7 . 366 ‘ 375 481 | 490 | 500 | 509 ‘ 519 | 529 | 539 . 558 ‘ 567
9 | 107 | 117 | 126 | 13 | 146 | 156 | 165 | 175 | 184 200 | 209 | 309 | 318 | 37 |38 | 48 | 37 | 367 | 376 482 | 491 | 501 | 510 | 520 | 530 | 540 | 549 | 559 | 568
9 | 108 | 18 | 127 | 137 | 147 | 157 | 166 | 176 | 185 1 201 | 30 | 310 | 319 | 329 |33 | 9 | 38 | 368 | 377 1 483 | 492 | s02 | 511 | 521 | 531 | 541 | 550 | 560 | 569 |
00 | 109 | 119 | 128 | 138 | 18 | 157 | 167 | 177 | 186 202 | 301 | 311 | 320 | 330 | 340 | 30 | 30 | 369 | 378 484 | 493 | 503 | 512 | 522 | 532 | 542 | 551 | 561 | 570
. 10 | 120 | 129 | 139 | 149 | 159 | 168 | 178 | 187 . 302 | 312 | 31 |31 |34 | 31 | 360 | 30 | 379 . 494 | 504 | 513 | 523 | 533 | 543 | 552 | 562 | 571
01 | 11 | 121 | 130 | 140 | 150 | 160 | 169 | 179 | 188 203 | 303 | 313 | 32 | 381 | 342 |32 | B | 37 | 380 485 | 495 | 505 | 514 | 524 | 53¢ | 544 | 553 | 563 | 572
102 | 112 . 131 . 41 | 151 | 161 | 170 | 180 | 189 | 204 | 304 . 323 | 33 |33 |33 | 32 | 372 | 3 | 486 | 49 . 515 | 525 | 535 | 545 | 554 | 564 | 573 |
03 | 13 | 12 | 132 | 142 | 152 | 162 | 171 . 19 205 | 305 | 314 | 324 | 334 | 344 | 34 | 363 . 382 487 | 497 | 506 | 516 | 526 | 536 | 546 | 555 . 574
04 | 14 | 123 | 133 | 143 | 153 | 163 | 172 | 181 | 191 206 | 306 | 315 | 325 | 335 | 345 | 35 | 34 | 373 | 383 483 | 498 | 507 | 517 | 527 | 537 | 547 | 556 | 565 | 575
05 | 15 | 124 | 134 | 144 | 154 | 164 | 173 | 182 | 192 207 | 307 | 316 | 326 |33 | 346 | 36 | 35 | 374 | 384 489 | 509 | 508 | 518 | 528 | 538 | 548 | 557 | 566 | 576
I I I I I I

Figure A.1: In the motivating dataset: the positioning of the mutants (numbered) and
wild types (balls) on the plates and on the three different Bioscreen instruments (C, D
and E).
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Table B.1: Calibration curve function data (run in June 3, 2002). d=diluted, ud=undiluted,
the abbreviations for the specific Bioscreen instruments are given in the parenthesis. Well spe-
cific blank values are subtracted from all the OD values and the undiluted values are multiplied
by the dilution factor 10.

ud(B) d(B) ud(C) d(C) ud(D) d(D) ud(B) d(B) ud(F) d(F)

1.211 2.5 1.181 2.78 1.255 3.09 1.196 2.9 1.276 3.27
1.2 2.65 1.174 2.94 1.243 3.34 1.215 3.13 1.265 3.48
1.158 2.63 1.134 2.92 1.217 3.29 1.204 3.13 1.231 3.5

1.151 2.26 1.127 2.5 1.212 2.93 1.206 2.76 1.223 2.98
1.134 2.18 1.112 2.41 1.191 2.73 1.192 2.6 1.205 2.86
1.108 1.84 1.094 2.14 1.166 2.33 1.171 2.24 1.17 2.52
1.09 1.63 1.071 1.87 1.152 2.11 1.163 2 1.156 2.23
1.011 1.58 1.036 1.82 1.096 2.05 1.125 1.97 1.107 2.32
0.98 1.24 1.018 1.4 1.094 1.66 1.109 1.62 1.084 1.77
0.844 1.19 0.875 1.42 0.997 1.6 1.025 1.59 1.008 1.7

0.858 1.32 0.894 1.32 0.927 1.34 0.862 1.44 0.936 1.39
0.866 1.06 0.902 1.14 0.952 1.46 0.905 1.45 0.95 1.47
0.766 0.9 0.8 1.03 0.858 1.26 0.814 1.35 0.849 1.43
0.919 1.55 0.951 1.72 1.011 2.07 0.973 2.15 1.013 2.21
0.684 0.82 0.727 0.95 0.78 1.17 0.751 1.21 0.779 1.23
0.717 0.88 0.788 1 0.817 1.2 0.79 1.28 0.816 1.32
0.547 0.66 0.628 0.78 0.643 0.9 0.613 0.93 0.647 0.99

0.577 0.66 0.527 0.74 0.608 0.87 0.615 0.92 0.663 1.03
0.521 0.64 0.552 0.76 0.615 0.91 0.619 0.94 0.657 1.03

0.435 0.49 0.459 0.56 0.5 0.72 0.508 0.72 0.515 0.76
0.577 0.66 0.614 0.77 0.648 0.9 0.637 0.93 0.699 1.03
0.515 0.49 0.553 0.58 0.602 0.68 0.6 0.66 0.632 0.75

0.532 0.45 0.563 0.52 0.624 0.64 0.634 0.65 0.648 0.72
0.506 0.36 0.542 0.43 0.599 0.52 0.608 0.52 0.628 0.57

0.477 0.45 0.512 0.52 0.563 0.59 0.57 0.62 0.592 0.68
0.23 0.18 0.262 0.22 0.291 0.29 0.306 0.19 0.353 0.22
0.186 0.23 0.21 0.26 0.238 0.32 0.25 0.33 0.275 0.35

0.269 0.25 0.293 0.27 0.324 0.37 0.303 0.41 0.351 0.43
0.289 0.25 0.315 0.28 0.351 0.36 0.334 0.4 0.37 0.42
0.307 0.24 0.326 0.27 0.365 0.35 0.348 0.39 0.375 0.36

0.32 0.27 0.344 0.31 0.385 0.4 0.363 0.43 0.399 0.44
0.334 0.31 0.361 0.36 0.397 0.46 0.376 0.51 0.411 0.51
0.356 0.31 0.397 0.35 0.415 0.43 0.387 0.48 0.43 0.55

0.329 0.25 0.362 0.32 0.385 0.34 0.359 0.39 0.399 0.42
0.323 0.24 0.354 0.28 0.372 0.33 0.355 0.33 0.412 0.4

0.33 0.33 0.344 0.35 0.375 0.49 0.365 0.47 0.423 0.54
0.266 0.37 0.284 0.43 0.306 0.54 0.306 0.57 0.335 0.62
0.404 0.31 0.428 0.35 0.469 0.46 0.431 0.46 0.506 0.51
0.425 0.48 0.455 0.56 0.502 0.71 0.465 0.78 0.517 0.89
0.439 0.49 0.465 0.61 0.514 0.73 0.488 0.76 0.523 0.86

0.518 0.7 0.531 0.83 0.588 1 0.559 0.96 0.595 1.11
0.523 0.68 0.538 0.8 0.595 0.92 0.555 0.9 0.594 1.03
0.528 0.61 0.545 0.73 0.598 0.76 0.569 0.72 0.602 0.91
0.595 0.65 0.62 0.76 0.673 0.83 0.652 0.83 0.68 0.98

1.112 1.86 1.109 2.11 1.167 2.38 1.174 2.29 1.197 2.55
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Table B.2: Well specific means of the calibration curve function data. (Well specific
blanks are subtracted from all the OD wvalues and the diluted OD values are multiplied
by the dilution factor 10).

Well specific means of ~ Well specific means of
the undiluted samples  the diluted samples

1.22 2.91
1.22 3.11
1.19 3.09
1.18 2.69
1.17 2.56
1.14 2.21
1.13 1.97
1.07 1.95
1.06 1.54
0.95 1.5
0.895 1.36
0.915 1.32
0.817 1.19
0.973 1.94
0.744 1.08
0.786 1.14
0.616 0.852
0.598 0.844
0.593 0.856
0.483 0.65
0.635 0.858
0.58 0.632
0.6 0.596
0.577 0.48
0.543 0.572
0.288 0.22
0.232 0.298
0.308 0.346
0.332 0.342
0.344 0.322
0.362 0.37
0.376 0.43
0.397 0.424
0.367 0.344
0.363 0.316
0.367 0.436
0.299 0.506
0.448 0.418
0.473 0.684
0.486 0.69
0.558 0.92
0.561 0.866
0.568 0.746
0.644 0.81
1.15 2.24
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Appendix C

Gompertz augmented
Chapman-Richards model

The Chapman-Richards curves are not defined at 83 = 1, but the limiting forms when
B3 — 1 and B4 tends to 0 in a subordinated rate, are members of the Gompertz family;
Writing 81 = €?(1—3), b > 0, we define the Gompertz augmented Chapman-Richards
model as

1/(1-B3)
g = Bol|l—et(1— Ba)ePet V4D, for B3 #£1, (C.1)

_eb—Bat

g = poe + D, for ([3=1. (C.2)

It is straightforward to see that $3 — 1 implies that g; defined by (C.1) converges to
gt defined by (C.2). The parameters s, dg, A, p and Y of the Gompertz function are:

b
s = el 4D (C.3)
do = BoPacle (C.4)
Q + efeb i l
A= &£ € 5 € (C.5)
Bof
= 06 2 (C.6)
Y = ebotD s (C.7)



We will use these equalities to prove Lemma 1.

Lemma 1 The Gompertz curve corresponding to any hybrid parameter combina-
tion s >0, 0<dy <pu, A\>0, u>0, and B3 = 1 is unique. The parameter b is the
solution of the equation b+1 —eb = log(‘z—“), and the three other parameters are given

b b
A —e’+1_ e~ €
bylﬁozuibil;ﬁQZMf]) and D = log(s) — 5

Q+efe b_1°

—E=+— . Furthermore, the
c ete —¢
stationary phase OD increment is

[ [

_ 7611
ﬁku+log(s)
Y =e ¢ t¢ —s.

Proof. Fix a parameter combination s > 0,0 < dy < p, A > 0 and g > 0. From (C.4)
and (C.6) we get

b 7‘11
dy _ fopae’e””
M ﬂOBﬂQ

_ b

— €b+1€ e ’

which determines b (unique solution). We get from (C.5)

b+e ¢+l 1
P2 = — (C.8)
from (C.8) and (C.6)
UA
Bo = 72 P é’ (C.9)
and from (C.3) and (C.9)
Aue e’
D =log(s) — (C.10)

e T
Now, using (C.9) and (C.10) in (C.7), we get

b
__—e€
ﬁ)\uHog(s)

Y =e 7= *° — s.
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The Lemma 1 implies that for the unit-scaled model

1—e
A= ———. C.11
e .

Lemma 3 Fiz 0 < dy < 1. In the unit-scaled model, the function A defined in
(4.10) with the constraint (4.6) is continuous at B3 =1 as a function of B3 > 0.

Proof. Define b* so that e”"*le " = dy, and assume that

limsupb = b* + 7.
63—)1

Fix a sequence ,Brgn) — 1 such that, for the corresponding b(™)_sequence,

lim b(™ = b* + .

n—o0

However, by rewriting (4.6) we conclude that (recall that 8; = e(1 — £3))

d[] = lim dg
n—o0o
s{™
n n (n)
eb( ) (1 o eb( )(1 o IB(S"))) 1-B4
= lim
n— o0 Bgn)

By e

* b4y
61) -I—’H—l6 e

)

which forces v to equal 0 and thus limsupg,_,; b = b*. Analogously also liminfg, 1 b
can be shown to equal b*. Hence, b — b* as f3 — 1. Using this and taking limit in
(4.10), we get

1L )T

ﬁlim A = ﬁlim %

3—1 3—1 - 1

’ T log (L) — o] 4+ (1 er(1 — )
1 e

e

which equals A in the Gompertz case (C.11). Hence, A is continuous at 3 = 1. O
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We finish this appendix with two continuity remarks.

Remark 1. In the unit-scaled model for fixed 0 < dy < 1 it is easy to see that also
the parameters [y, f2 and D converge when 3 — 1: setting (4.3), (4.4) and (4.1) to
one and using 1 = €’(1 — B3), we obtain the equations for 8y, By and D, and taking
limits we get

1 1 5(
I 5 (1 — eb(l — 163)) =83 — B37-Ps + 16317?;*3 log(Eb](l/Bfg))
fari P = Baon B3
P3P

lim = lim
ﬂg—)lﬁo Bz—1 =
52,33
B 1
- b* _ob 1°
et o~
1
lim D = lim —fy(1 —e’(1— B3))' P
B3—1 Ba—
7eieb*

b —ebt 17
€+e e

where b* again solves dy = eb+le=¢" Thus all the limiting parameters £, Sy and D
converge to the Gompertz parameters as claimed.

Remark 2. Not only the growth parameters but also the whole Gompertz growth
curves interpolate the Chapman-Richards. Consider the unit-scaled Chapman-Richards
model and fix 0 < dy < 1. Denote limg,_,; By = B;, limg, 1 B2 = B35 and limg, 1 D =
D*. Consider the Chapman-Richards curve

1/(1—-B3)
g = Do [1 —eP(1 — B3)e P! +D

for fixed ¢. Since
[1 —eb(1 ﬂg)efﬁzt}

where o(1) — 0 as 5 — 1, we also get that

1/(1- ) . -85
= (1 4 (1)), for all ¢,

1/(1-B3) 83
lim <BU |:1 _ eb(l o Bg)@iﬂ?t] 3 4 D) _ Sefeb Bat 4 D*,
Ba—1

which is the Gompertz curve evaluated in this ¢.
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Appendix D

Discussion of Conjecture 1

Conjecture 1 Fiz 0 < dy < 1. In the unit-scaled model, the function A defined in
(4.10) with the constraint (4.6) is strictly decreasing as a function of B3 > 0.

Figure D.1 shows a graph where log(log(A + 1) + 1) is plotted against (3 between
0 and 100. Each curve corresponds to a different dy (between 0.01 to 0.99). It is
easy to see that A is decreasing as a function of f3. The derivatives of A are plotted
against (3 in Figures D.2 (small values of 3) and D.3 (large values of f3) in order to
see that A is strictly decreasing as a function of fs.
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log(log(A+1)+1)

0 10 20 30 40 80 60 70 80 90 100
3

Figure D.1: log(log(A + 1) + 1) is plotted against (5, each curve corresponds to a

different dy (between 0.01 and 0.99). The larger dy, the larger value of log(log(A +
1)+ 1).

Derivative of A

” I I I I I I
0.01 0.015 0.02 0.025 0.03 0.035 0.04
3

Figure D.2: Derivative of A plotted against small values of §3. Each curve corresponds
to a different dy (between 0.01 and 0.99). The larger dg, the smaller derivative of A.
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derivative of A

Figure D.3: Derivative of A plotted against large values of 83. Each curve corresponds
to a different dy (between 0.01 and 0.99). The larger dj, the smaller derivative of A.
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Appendix E

Proofs

Proposition 1 The (S, 51, B2, B3, D)-parameterization is unique.

Proof. First, look at only the part of the curve starting from the inflection time
point ;. Then, since

Bre Pl =1 — B3, (E.1)

we can write

st —gn = Po(l— (1= Bs)e YT — gopI %
= Bo(l—e P14+ 0(1)]) — BBy ™

= Bo— Boe P 1+ 0(1)] — Bofs 2,

where o(1) — 0, as t — oo. Now, if two sets of parameters (g, f1, B2, f3, D) and
(By, By, B5, B, D') pertain to the same curve g;, then:

1
Gigrt — G, + BoBs 7 —Bo = —Poe P14 0(1)]

1 , B
Giyrt — g +BOB T — By = —Bhe P21+ 6(1),

where also 6(1) — 0 as t — oo. Since Sge 2![1 +0(1)] — 0 and Bhe P21 +6(1)] = 0
as t — oo, it follows that

o 1
Bo— PoBs 2 = By BB, (E.2)
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and therefore

1m ﬁoeiﬂQt
t—o0 IBéefﬂIQt

= 1. (E.3)

From (E.3) it follows that 8y = f; and B2 = 5, and together with (E.2) we can
conclude that
1

1
1-B3 __ pl 1-p/
3 =P

and hence that 3 = 5. From (E.1) we also get that $; must equal /]. Finally, the
relation

g = Po(l —51)ﬁ +D

shows that also D must equal D'. O

Lemma 4 Fiz 5 > 0. In the unit-scaled model, the function A defined in (4.10)
with the constraint (4.6) is strictly increasing as a function of dy, 0 < dg < 1.

Proof. Let g; be a unit-scaled curve corresponding to arbitrary fixed 3 and dy,
and denote the asymptotic parameter of this curve A. Consider instead this curve
starting from time point 0 < T' < t7, where ¢; is the inflection time point of g;, and
re-scale and translate it to

97+t(1-T+gr) — 9T
T) = .
9:(T) 1-T+gr

This new curve’s t-derivative at zero is do(T') = ¢ > do, and the re-scalings and
translation were chosen so that the other four parameters are unchanged, so that
9:(T) is again a unit-scaled curve. Denote the asymptote of the new curve

A(T):i_
1-T+gr

It is straightforward to see that the derivative of A(T') at T =0 is
A(0+) = —dy + (1 — dy) A,

which is strictly positive if




By convexity of gy,
gr > dot for t < tj.

Furthermore, we have

dot >t—1 fort<

1—dy

Thus if we assume that ¢; < we may conclude from the above inequalities that

_1_
1—dg>
gt >1r — 1.

But this would contradict the fact that g; is unit-scaled, since this property implies
that

gi; = t’ - 17
and thus it follows that £; > lj—do This forces

> do
gt; 1— d[]a

and therefore also A > 1@107 which proves A’(0+) > 0.

Consider the relation (using an obvious notation on the left side)

A(l,dy(T),1,1,83) = A(T). (E4)
Recall that do(T) = g/, and differentiate and evaluate (E.4) at T'= 0 to get
Dy [A(1,do, 1,1, B5)]d(0) = Dao[A(L, do, 1,1, B3)]g5 = A'(0+).
Local convexity implies that gj > 0, which proves Dg,[A(1,dp,1,1,03)] > 0. O

Lemma 5 Fiz 0 < dy < 1. In the unit-scaled model, the function A defined in
(4.10) with the constraint (4.6) satisfies
(a) limg, ,0 A = o0
: _ 1—d,

Proof.
(a) Note that 1 — 83 < /1 <1l and 0 < 83 < 1, and

A= pli-(-p)T5
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We first look at the asymptotics of

T (- gy

From 1 — 83 < 1 < 1 and 0 < 83 < 1, we get that

1 1
0<(1-B)Ta < gy ™,

and since

lim 51 63 =0,
Ba—0+ 3

it follows that

lim [(1—51)1’1—"3} = 0

B3—0+

and hence

lim [1—(1—51)ﬁ} ~ 1

B3—0+

Next, we look at the asymptotics of

1
fo = — -
P e (25) v
From 1 — 83 < /1 < 1 and 0 < B3 < 1 it follows that

b1
1—p3

53<10g< >53<10g(1,63)53,

so that

ﬁwi%<ﬁ%b%(5l)&] BT [log (1 - ) + ).

1-p
The limit of the left side of (E.6) is

li 1= ﬂs —
635%+< B33 )
and the limit of the right side of (E.6) is

ﬂs

ol —By 7 [log (1 — B3) + B3] = 0
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and hence

. 16% ﬁl
ﬂah_{%+ Bs [log <1 — 53> - ,83:| =0. (E.7)

Using (E.5) and (E.7) and the fact that 5y > 0, we get

1
Blirr[} By = ﬂlin& 7
3—0+ 30+ = 1
5 fog (c25) 1] + 01~
= o,

so that

1
im A = [ 1 li [1717 fa}
531—r>%+ <531—r>%+50> <531—r>%+ ( Py >
= Q.

(b) Let A(1,dy,1,1,/3) denote A as a function of 83 when s =1, A =1, p =1,
and 0 < dy < 1 is fixed. Note that f; < 1 — f3. Take a fix 3 and fix £1,
_ —Bse

/61 - d06371' (E8)

Now using equation (E.8) in the equation of the derivative at time zero (4.6) we get

B:
() 1~ ()™
d . d033*1 d033*1
g, = 3 ,
1-— e
(1 - B3)B,
where dg, — do as ff3 — oo,
B3
() 1 - ()]
lim dg = lim 4% do”s !
Bs—ro0 & Bs—o0 lf%3
(1 - :33) 3
1
()"
= lim dgsi]
B3—o0 -
By
= dOa
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and

1 (1+ )™

Ba 1
lim A(1,dg,,1,1,85) = lim do”
o e 2 [ () e\
5 log | 9= | B3| + (1 + W)
1— dy

do — log (do) — 1°

Now, if dy > dg, then cZga > dp when (5 is large enough. Lemma 4 states that
A(1,dy, 1,1, B3) is strictly increasing as a function of dy, and hence we have that

A(1,do,1,1,83) < A(1,dg,,1,1,B3) for B3 large enough

= limsup A(1,dp,1,1,83) < limsup A(1, (iﬂg, 1,1, 83)

Analogously, for (jo < dg

liminf A(1,dg,1,1,85) > liminf A(1,ds,, 1,1, 53)

1= dy
c;g—log <50> —1.

Due to the continuity of W&H and the arbitrariness of Jg > dp and Jg < dy
1—dy
lim A(1,dy, 1,1 = .
631—r)noo ( s &0, Ly 7/63) d[]*l()g(do)*l

O
Remark to Lemma 5(b). In fact, it can be shown that the whole curve g; converges
to a curve which is defined as

d ‘(dnflog(do)f])t —1 —d
U(P ), when ¢t <1+ L —do
d() — log(do) —1 d() — log(dg) —1
and
1 —dy 1—dy
hen ¢t > 1 .
dy —log(dg) — 17 " - do —log(dp) — 1
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Figure E.1: A limiting curve of the Chapman-Richards model when f3 — oc.

In general, the limiting curves have the form

log () — log(6:162)
0 ’

where 61,605,603 > 0. Figure E.1 shows how these curves look like.

01 (ef‘b’5 — 1) + 603, whent <

Lemma 6 The log(Y) is conver as a function of log(dy), log(\), and log(u) for
any fized log(s), where s >0, 0 < dy < p, A >0, and p > 0.

Proof. Take z, = log(%“) = log(dy) — log(u) < 0, zo = log(u), z3 = log(A), and
write log(Y') as a function of them

1 1—e”1 6:1:2+:1:3
LY (log(s),x) = log [e o) <e'i”111 - 1)] (E.9)

1—e”1 8124»13 1:|
- )

= log(s) + log [e"”mll

where x = (1,29, 23). Define

1 —e™

k _ T2+T3
(x) el —xy — 1°
and
1—e®1 zo+tw:
m(x) = log e 17 " 1
= log[eF™) —1].
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The function LY (log(s),x) is convex for any fixed log(s), if m(x) is convex, i.e. if the

Hessian
Di[m(x)] = o= | Dx[k(x)] -

is positive semidefinite. Observe that k(x) > 0 since z; < 0, and thus

k(%)

So1 > O

(E.10)

Therefore, to prove that (E.10) is positive semidefinite, it is enough to prove that

1

me[k(x)]Dx [k(x)]T

Dy [k(x)] -

is positive semidefinite.
The function k(x) can be written as a product of

1—e™

— _ T2tz
() = 7 and g(x) = €™
Now, using that 85’;’:) = 8{%’;’3‘) = g(x), we can write
0’f  of  Of
0r12 Ox1 Ox1
D) = g| X5 |

oL f o f

Dylk(x)|Dx[k(x)]" = ¢*| oLy 2 g2

and (E.11) can be written as

82f_(ﬁ)2 g Of _Of fg  Oof _ Of fg
e9

012 0x1 f—1 0z 0x1 e9f —1 1 1 e9f —1
g of  of _[fg f— g f— %9
' 0z ox1 edf —1 o edf—1 . edf—1
of _ 9f _fg f— f*g f— %9
RER Ox1 e9f —1 edf—1 e9f —1

(E.11)



which is positive semidefinite if all the submatrices have a non-negative determinant
[29], and that is what we will prove next. We have that g > 0, we will prove that

2
f- egéfl >0 (E.12)
of of fg

Oxr, Oxiedf —1

0% f af\° g
8%2(8—%) 71> (E.14)

0% f af\* g 129 af  df fg 1
[83312(8—2:]) egf_ll [fegf—l}[a—.ma—x]egf—l} >0, (E.15)

>0 (B.13)

the determinants of all the other submatrices can immediately be seen to equal zero.
To prove (E.12) and (E.13), we will use that

af _ 9 l
e 1>9f = egf—1<f' (E.16)
Now,
%9 f?
f egf 71 > .f ’f )
and

of _of fg _OF Of/

ory, Oz1e9f —17 Oz Ox f -

To prove (E.14) is a slightly more elaborate task. We will use the inequality

r1/2 _ —w1/2

x> e e , if £ <0, (E.17)

which in turn can be seen by defining
h(z1) = z1— (e””l/2 — 6*11/2)’

and taking derivative

1
W(z1) = 1—§(e$1/2+e*$1/2)

< 1f\/m:0, for z; <0,
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where in the end we used the well known inequality between arithmetic and geometric
means [15]. From this and h(0) = 0 it follows that h(x;) > 0 for all 1 < 0, which is
equivalent to (E.17).

Now, from (E.16) we first get

Rz af \? 0? af \? 1
L _ (9L 9, 97 (oL (E.18)
0z,2 Oz, ) edf —1 0z12 ox1) f
and then we study the sign of this bound
0% f B ﬁ 2 l B e31py — 2e31 4 5e?¥1 —eP1gy? _eTigy — 461 41 (E.19)
012 ox) f (—emt + x4+ 1)3 (e — 1) T

where (—e™ +2;+1)% < 0and " —1 < 0, for z; < 0, so the denominator is positive.
We will prove (E.14) from positivity of the nominator, which we may first rewrite as

(" 1) a4 e (e D (e +1) - 2 1))
where €' > 0, "' — 1 < 0, and then from (E.17) we see that

(" =1 —e"m® > (" —1)° —€"(e? —e 2)?

= 0, for ;1 < 0.
We get (E.14) if we also show that zq(e” + 1) — 2(e”' — 1) < 0 for 1 < 0. Write
v(z1) = z(e” +1) —2(e™ —1).
Then

v'(z1) = 1+ée" (z1—1)
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and v(0) = 0. Thus
v(z1) = 21 (e® +1) = 2(e" — 1) <0, for z; <0,
and the right-hand side of (E.19) is therefore positive, which together with (E.18)

proves (E.14).
To prove (E.15) we first observe that

Of of \*

. A E.20
8,%IQf>(8ml) | (.20)
since the right-hand side of (E.19) is positive by the proof of (E.14). Using (E.20) we
get

ot ([ of 9 |[;_ L9 | _[of _of 19 ’
0z 2 Oz, ) el —1 edf —1 Oxr; Oriedf —1

[0 f 821‘ Hf_ qu] [af of fg r
qu

Or; Oxpedf —1

o fg fg of fa \1°
| 0x1? <1 Cedf — 1)] [f <1 Ceaf — 1)} [&m <1 edf — 1)]
] fg 17| 9%t of
_1_ egf—l} [8x12f <8x]> ] > 0.

The transformation between log(dp), log(A), log(p) and z1, x9, 23 is affine so that

the convexity of log(Y’) holds also in the former coordinates and the lemma is proved.
O

>
05,2 2f edl —1
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Appendix F

Simultaneous models for two
growth curves

Often in case of double samples, the initial OD values of the two samples vary, but the
end OD values are almost the same, and the growth curves have approximately the
same shape except for the length of the exponential phase. This is natural, because in
the sample with less cells in the beginning, there are more nutrients per cell, and thus
the population can grow for a longer time before it runs out of nutrients. However,
even the absolute amount of nutrients can vary between double samples, and they
can have different initial and final OD values, but the shapes of the growth curves
(apart from the length of the exponential phase) still tend to be nearly the same. In
such cases modeling the growth curves simultaneously would possibly give a better
estimate of the growth behavior than e.g. taking averages of growth parameters of
two separately modeled curves.

F.1 Model I

We tried to model two growth curves simultaneously using the three part model
presented in Section 3.3 so that all parameters except the time span of the linear
part (A) and D, are the same for both of the curves.

The model of the curve with a smaller increment on the logarithmic scale (i.e. the
difference between the logarithm of the initial OD and the logarithm of the end OD)
is
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1
q§ )1 tStla

*(1
gV = gDt —ty), i <t<t+A, (F.1)

1
gt(f)Al + MAla t 2 tI + Ala

(1)

where g, ' is the Chapman-Richards function

}1/(1*63)

i = B0 [1 e y

and the model of the curve with a larger increment on the logarithmic scale is

2
q§ )1 tStIa

9:(2) = gt(?) +u(t—tr), tr <t<tr+ Ay, (F.2)

0N, F e, >t Ay,

where

1/(1-63)
| (F.3)

o) = B [1 = pre P!

This model as well as model II below can easily be generalized to more than two
samples.

F.2 Model IT

We also tried to fit a model where the asymptotes of the curves (F.1) and (F.2) were
forced to be the same. Now

B3 B3
Bo+A1BofeBs ™ + D1 = Bo+ AofoBafy * + Dy

B3
=Dy = Di+ (A1~ Ag)Bofafs

= Di+ (A — Ay
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Thus, the Chapman-Richards function (F.3) in the model of the curve with a lower
initial OD can be written as

1/(1-B3)
} ’ + D1+ (A1 — Ag)p.

9 = B [1 = pre !

In our data, the differences in the stationary phase OD increment of double samples
of normally growing cells are small, in general less than 1%. This gives us reason to
believe that a simultaneous model, where the asymptotes are forced to be the same,
could be a good compromise model for two growth curves. It would be more natural to
force the stationary phase OD increments to be the same, but forcing the asymptotes
to be the same is almost equal to it and easier to implement.

F.3 Fitting the simultaneous models to the data

We fitted the simultaneous models on duplicate measurements of the data presented
in Section 3.2.3. The least squares method was used the same way as in Section 3.2.3.

With both of the models the estimates of Ay were nearly always zero. With model
I the fit was rather good when the shapes of the two curves were almost the same.
However, if the shapes differed much, the fit was not good. When the asymptotes of
the two curves were nearly the same, the fits of the two models were similar, see e.g.
Figure F.1. When the asymptotes really differed, the fit was naturally better with
model I, see e.g. Figure F.2. Also if the difference between the time spans of the
exponential phases is very large, the fit can become poor.

It might be useful to be able to model the eight wild types in each run simulta-
neously. Although it is possible to generalize the simultaneous models for more than
two curves, the computations would become rather complicated. Moreover, the simul-
taneous models do not enable easy comparison of all the curves in the experiment.
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Figure F.1: Two curves are fitted using the simultaneous models. The residual plots
of the fit of the upper curve are in the middle and the residual plots of the fit of lower

curve are at the bottom.
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Figure F.2: Two curves are fitted using the simultaneous models. The residual plots
of the fit of the upper curve are in the middle and the residual plots of the fit of lower

curve are at the bottom.
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