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A Parametri
 Approa
h to Yeast Growth Curve Estimation and StandardizationIlona PylvänäinenDepartment of Mathemati
al Statisti
sChalmers University of Te
hnology and Göteborg UniversityAbstra
tThe purpose of this thesis is to 
ontribute to the understanding of yeast growth.It builds upon a dataset 
onsisting of growth 
urves of 576 Sa

haromy
es 
erevisiaemutants in eight di�erent environments. The data will be a part of a publi
ly availab-le phenotypi
 library, PROPHECY, 
ontaining growth 
urves and 
hara
teristi
s ofviable S. 
erevisiae mutants in a wide variety of growth 
onditions.We 
ompare the �ts of modi�
ations of logisti
, Gompertz, and Chapman-Ri
hardsmodels for the growth 
urves. The 
omparisons indi
ate that the modi�ed Chapman-Ri
hards model des
ribes our growth data best. Relevant information about the be-havior of the mutants is obtained by estimating the physiologi
ally important growthparameters: the lag time (time to adapt to the environmental 
hange), the maxi-mum relative growth rate, and the e�
ien
y of growth. We introdu
e an alternativeparameterization of the modi�ed Chapman-Ri
hards model that uses these growthparameters and investigate its uniqueness and parameter restri
tions. We also show
onvexity of its logarithmi
 parameter spa
e.One of our �ndings is that the lag time and the growth rate depend stronglyon the initial population size. However, in large-s
ale experiments with hundreds ofstrains, it is di�
ult to have the same 
onstant initial population size. To addressthis problem and to enable easy visualization of the data, we develop a method tostandardize growth 
urves with respe
t to the initial population size. The idea is touse a modi�ed Chapman-Ri
hards 
urve to predi
t what the behavior of a growth
urve would have been, had the population had a �xed standard initial size. As aresult, the initial population size 
orrelation with lag time and growth rate redu
esremarkably. We also introdu
e two ways to 
onstru
t a summary 
urve from severalstandardized growth 
urves.We suggest a set of �ltering methods, based on the standardized and summary
urves, in order to dete
t experiments and individual 
urves that are atypi
al orspurious. Finally, we 
ompare the variability of wild type normalized mutant growthparameters from the modi�ed Chapman-Ri
hards, standardized, and summary 
urves.The varian
es are typi
ally slightly smaller with the standardizing and summarizingmethods than with the dire
t Chapman-Ri
hards approa
h.Keywords: Bios
reen, Chapman-Ri
hards model, growth 
urve, growth rate, lagtime, opti
al density (OD), Sa

haromy
es 
erevisiae, standardized 
urve, stationaryphase OD in
rement, summary 
urveMSC2000 
lassi�
ation: 62P10
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Chapter 1Introdu
tionSa

haromy
es 
erevisiae, better known as baker's yeast, has been domesti
ated thou-sands of years ago. It is used in baking, brewing and wine making. S. 
erevisiae is alsoan important model system in modern biology and medi
ine. It reprodu
es qui
kly,and large numbers of 
ells 
an be grown in 
ulture in a very small spa
e, in the sameway as ba
teria 
an be grown. However, S. 
erevisiae has the advantage of being aeukaryoti
 organism, and thus the results from geneti
 studies with S. 
erevisiae aremore easily appli
able to human biology. The 
ollaboration of more than 600 s
ien-tists from over 100 laboratories in Europe, USA, Canada, and Japan resulted in apubli
ation of the 
omplete genomi
 sequen
e of the S. 
erevisiae in 1996 [10℄. It wasthe �rst 
ompletely sequen
ed eukaryote.To 
omplete the 
hara
terization of the S. 
erevisiae genome, the fun
tions of thenovel genes need to be determined. The S. 
erevisiae genome has roughly six thou-sand genes of whi
h approximately seventy per
ent have a known fun
tion [14℄. Oneimportant approa
h for 
hara
terizing a novel gene is to produ
e a kno
k-out mutant1la
king the gene, the logi
 being that the behavior of the mutant, its phenotype, willgive important information about the fun
tion of the gene. Mutant strains of yeastare produ
ed in several international 
onsortia. During the past few years hundredsof papers on large-s
ale fun
tional genomi
s have been published, where these mutantstrains play a key role.Re
ently large-s
ale phenotypi
 
hara
terizations have re
eived a lot of attention.As a result, a few laboratories have spe
ialized in the large-s
ale phenotypi
 analysesof qualitative phenotypes, su
h as growth or non-growth on agar plates 
ontaining anumber of di�erent 
ompounds. Although automated to some extent, these methodsrequire a substantial amount of manual work, and may su�er from relying on sub-je
tive judgment in the assessment of growth. Besides, these methods do not allow1A mutant: a strain that di�ers from the wild type be
ause it 
arries one or more geneti
 
hangesin its DNA. A wild type: referen
e strain within a spe
i�
 strain ba
kground.1



to distinguish the three physiologi
ally relevant growth parameters: lag time (timeto adapt to the environmental 
hange), maximum relative growth rate (kineti
s ofgrowth), and stationary phase OD in
rement (related to the e�
ien
y of growth).Winzeler et al [28℄ showed that large numbers of deletion strains 
an be pooled,grown together and analyzed in parallel by using DNA bar-
odes to uniquely markea
h strain that misses a gene. In the next step, mi
roarrays are used to follow theabundan
e of the di�erent bar-
odes as 
ells proliferate. Although being a powerfulapproa
h, this methodology has some drawba
ks. One of the most serious 
on
ernsmight be the positive and negative intera
tions between mixed strains that are aninherent 
onsequen
e of this experimental setup [25℄.In an alternative approa
h, Warringer and Blomberg [25℄ designed a system forlarge-s
ale quantitative phenotypi
 analysis of S. 
erevisiae based on a 
ommer
iallyavailable Bios
reen C Analyzer2. In this system it is possible to s
reen automati
allyfor phenotypi
 e�e
ts for hundreds of di�erent mutants. The analysis of the growth
urves is automati
 and provides estimates for growth parameters. The purpose of thesystem is to build a publi
ly available phenotypi
 library, PROPHECY3, 
ontaininggrowth 
urves and 
hara
teristi
s of viable S. 
erevisiae mutants in a wide variety ofgrowth 
onditions, and to use the library for studying gene fun
tions. PROPHECYis publi
ly a

essible at http://prophe
y.lundberg.gu.se and it is 
ontinuously updatedwith growth data [7℄.Warringer et al [27℄ used the system for phenotypi
 analysis of a set of 14 deletionstrains in S. 
erevisiae. Applying 96 
onditions and analyzing 3000 growth 
urves,statisti
ally signi�
ant phenotypes for nearly all strains in the s
reen were dete
ted.These quantitative phenotypes portray aberrant growth behavior 
onsidering all threegrowth parameters, thus 
apturing defe
ts in multiple, independent aspe
ts of growth.Eri
son et al [6℄ applied the system on quantitative phenotypi
 analysis of 576 S.
erevisiae mutants in eight di�erent environments. Statisti
ally signi�
ant phenotypeswere revealed for over sixty per
ent of the analyzed genes. A fun
tional role for themajority of the genes had not been reported earlier [14℄.These developments are important initial steps towards large-s
ale analysis of mu-tants based on rigorous statisti
al grounds. However, more analyti
al tools need to beput in pla
e before the methodology be
omes fully operational. It is the aim of thisthesis to address several issues related to growth 
urve modeling and growth para-meter estimation. We hope that the results we obtain will 
ontribute to establishing ofa rigorous modeling basis that will fa
ilitate the phenotypi
 analysis of large numbersof mutants.In Chapter 2 we introdu
e the data that motivated the thesis and brie�y dis
ussthe issues of 
alibration and blank 
orre
tion related to the yeast growth data from the2Labsystems Oy, Finland3PRO�ling of PHEnotypi
 Chara
teristi
s in Yeast2



Bios
reen. In Chapter 3 we 
ompare the �ts of modi�
ations of logisti
, Gompertz,and Chapman-Ri
hards models for S. 
erevisiae growth 
urves. The 
omparisonsshow that of these the modi�ed Chapman-Ri
hards model des
ribes our growth databest. In Chapter 4 we give an alternative biologi
al parameterization to the modi-�ed Chapman-Ri
hards model, and investigate the basi
 theoreti
al properties of thisparameterization.The lag time and the growth rate depend strongly on the initial population size.However, in large-s
ale experiments with hundreds of mutants, it is di�
ult to keepthe initial population size 
onstant. To address this problem and to enable easyvisualization of the data, we introdu
e a method to standardize growth 
urves withrespe
t to the initial population size in Chapter 5. The idea is to predi
t what thebehavior of a growth 
urve would have been, had the population had a standard initialpopulation size. In Chapter 6 we present two ways to 
onstru
t a summary 
urve from
urves from parallel experiments.In Chapter 7 we suggest a set of methods based on the standardized and summary
urves to �lter out 
urves or whole experiments that are atypi
al or spurious. Finally,in Chapter 8 we 
ompare the variability of wild type normalized mutant growth para-meters from the modi�ed Chapman-Ri
hards, standardized, and summary 
urves.
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Chapter 2Ba
kground2.1 How does S. 
erevisiae grow?S. 
erevisiae divides by budding.1 The 
ell 
y
le begins with a single, unbudded 
ell.This 
ell buds, the bud grows to nearly the size of the parent 
ell, the nu
leus divides,and the two 
ells separate into two unbudded 
ells. The 
y
le then starts over forboth of the 
ells. The result is an exponential in
rease in the number of 
ells. Thedoubling time varies with the strain, the growth medium, and the temperature. Formore details, 
f. [20℄.When 
ells are ino
ulated (seeded), they require a period of preparation before theystart dividing. Following this lag phase, whi
h may be up to several hours or dayslong, they enter the exponential phase during whi
h their number and mass doubleat equal time intervals. After a period of growth at a relatively 
onstant rate per
ell, some environmental 
ondition, su
h as la
k of nutrient, be
omes growth limitingso that the rate of growth diminishes and growth eventually stops. The number of
ells and the 
ell mass be
ome 
onstant. In the stationary phase 
ells do not divideanymore, but they usually remain viable for several days. An example of a typi
allogarithmi
 growth 
urve is displayed in Figure 2.1.22.2 Opti
al densityOpti
al density (absorban
e), OD, is a widely used 
on
ept in the estimation of thetotal number of 
ells present in a 
ulture. It is a measure of the turbidity of the 
ulture.A 
ell suspension looks 
loudy (turbid) to the eye be
ause 
ells s
atter the light passing1We work with haploid 
ells.2This is an ideal growth 
urve. In growth inhibiting environments growth 
urves 
an have di�erentshapes. 5
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Figure 2.1: A typi
al logarithmi
 growth 
urve, where Nt is the number of 
ells at timet.through the suspension. The more 
ell material is present, the more the suspensions
atters the light and the more turbid it will be. Opti
al density 
an be measuredwith a spe
trophotometer, a devi
e that passes light through a 
ell suspension anddete
ts the amount of uns
attered light that goes through. For uni
ellular organisms,opti
al density is proportional (within 
ertain limits) to the number of 
ells as well asto the 
ell mass. Opti
al density measurements are qui
k and easy to perform, andthey do not disturb or destroy the sample. They are used widely to monitor the rateof growth of 
ultures, sin
e the same sample 
an be 
he
ked repeatedly [2℄.Opti
al density is de�ned asOD = log10�I0I � ;where I0 is the intensity of the in
ident light and I is the intensity of the transmittedlight [17℄. The exa
t opti
al density of a 
ulture depends on the 
on
entration of the
ells present, the spe
ies and strain of the mi
robe present, the growth 
onditions used,and the wavelength of the light being transmitted. Opti
al density measurementssense all 
ells present in a solution, irrespe
tively of their viability.Sin
e the 
ell sizes a�e
t the absorption 
apa
ity, the OD measurements are neverperfe
tly proportional to the number of 
ells or to the 
ell mass. This error a�e
tseven the measurements done in the exponential phase sin
e the 
ell size distributionin a 
ulture depends on the age distribution whi
h in turn depends on the rate ofgrowth. For the sake of simpli
ity in the sequel, we 
hoose to ignore this problem,both in the 
alibration (Se
tion 2.4.1) and in the interpretation of the data.6



2.3 Bios
reen C AnalyzerBios
reen C Analyzer is an instrument developed to perform a wide range of mi
ro-biology experimentation automati
ally [1℄. It is simultaneously a dispenser/diluter,in
ubator and opti
al density measurement unit, integrated with a 
omputer.A heating/
ooling system provides a wide range of in
ubation temperatures (from1oC to 60oC). Di�erent shaking intensities and intervals 
an be 
hosen (the platesare shaken to provide homogeneous dispersion of 
ells). Opti
al density is measuredby a wide band (450-580 nm) �lter whi
h is rather insensitive to 
olor 
hanges in thesample.There are two 100-well (10 � 10) disposable Honey
omb multiwell plates in ea
hBios
reen C instrument. The volume of ea
h well is 400 �l. Ea
h well 
an be re-garded as an individual test vessel. The Bios
reen mi
robiology reader monitors opti-
al density of the 200 wells simultaneously. The test duration may vary from a singlemeasurement to seven weeks of measurements, and the maximum number of measure-ments per well is 400. This design strongly redu
es the time and work needed for doingexperiments 
ompared with traditional manual te
hniques. In addition, the pre
isionof the Bios
reen measurements is higher than the pre
ision of manual measurements.2.4 Motivating datasetAltogether 577 strains of S. 
erevisiae � 576 mutants and one wild type � were runin syntheti
ally de�ned (SD) medium3, whi
h is the referen
e 
ondition, and in sevendi�erent environments where either some 
hemi
al was added to the SD medium, oranother temperature than the standard 30oC was used. The di�erent environmentsand their abbreviations are given in Table 2.1. Opti
al density was re
orded usinga Bios
reen C Analyzer. Measurements were taken every 20 minutes during a 48hour period, i.e. at 145 time points. Strains were run in quadrupli
ates (referen
e
ondition) or in dupli
ates (environments), in the same well lo
ation and in the sameBios
reen C Analyzer instrument during di�erent days. The wild type positions onthe plates were randomized on
e, with one per quadrant. The positioning of the wildtypes and mutants on the plates and in the Bios
reen instruments is shown in FigureA.1 in Appendix A. In the sequel, by run we refer to ea
h 48 hour period of ODmeasurements of 192 mutants and 8 wild types in a spe
i�
 Bios
reen instrument.All data are smoothened so that ea
h OD value lower than the previous value (i.e.the OD value at the previous time point) is set the previous value. This is biologi
allyreasonable sin
e the measured OD values tend to be too small rather than too large,mostly due to air bubbles. For more information about the data, see [6℄. When we3The SD medium 
ontains yeast nitrogen base (YNB), ammonium, sulphate, su

ini
 a
id andthe ne
essary amino a
ids. 7



Table 2.1: The environments of the motivating dataset and their abbreviations.Environment AbbreviationTemperature 39oC 39oCTemperature 41oC 41oCDinitrophenol DNCa�eine CANatrium 
hloride NAMethylviologen MVMethylmethanesulfonate MMReferen
e 
ondition NO
refer to a spe
i�
 run, we write the environment abbreviation (for 39oC and 41oC onlythe numbers are written), then the Bios
reen instrument (C, D or E), and then thedate, e.g. 39D0307 stands for the run in environment 39oC, in Bios
reen instrumentD, on Mar
h 7.2.4.1 CalibrationA te
hni
al 
hallenge in automated re
ording of yeast growth by opti
al density mea-surement is the non-linear relation between measured OD value and number of 
ellsat higher 
ell densities. The yeast 
ultures should ideally be diluted at higher ODvalues, but this is not possible in the 
urrent high throughput setup. Therefore a
alibration 
urve fun
tion is needed to transform the non-linear relation to a linear,so that the 
alibrated OD values would be proportional to the number of 
ells. Also, ablank representing the ba
kground absorption of the plate has to be subtra
ted fromthe measured OD values.Calibration dataA 100-well plate and �ve di�erent Bios
reen instruments were used. First the wellswere �lled with 350�l sterile water, and the OD was measured on
e in ea
h Bios
reen.This gave us the well and Bios
reen spe
i�
 blanks. Then, the water was poured o� theplate and the plate was pla
ed in a 37oC 
hamber to make all the water evaporate.Stationary phase wild type 
ells (that had been growing on a shaker in 30oC over8
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Figure 2.2: Calibration 
urve and the data that were used to �t the 
alibration 
urvefun
tion. The well spe
i�
 blank values are subtra
ted and the resulting OD values forthe diluted samples are multiplied by ten.night) were spun down, washed, and suspended in water. From this 
ell suspensiondi�erent volumes were taken into tubes. These undiluted samples were ea
h dilutedten times in another tube to obtain the diluted samples. Then, 45 wells were �lledwith diluted and another 45 wells with undiluted samples, and the plate was measuredon
e in ea
h Bios
reen.Sin
e the OD values were measured in �ve Bios
reens, there are 225 pairwise ODmeasurements of diluted and undiluted samples. The well and Bios
reen spe
i�
 blankwas subtra
ted from ea
h of the measured OD values and the blank 
orre
ted dilutedvalues were multiplied by the dilution fa
tor (Table B.1 in Appendix B). Then, inorder to get more robust measurements of the OD, the well spe
i�
 averages overall Bios
reen instruments were taken so that there were 45 average OD values of thediluted and 45 average OD values of the undiluted samples (Table B.2 in AppendixB). After these steps, the well spe
i�
 averages of the diluted values were regardedas perfe
t size proportional measurements (for the higher values this is somewhatin
onsistent with the resulting 
alibration 
urve).Curve �ttingUsing regression, a 
urve was �tted with the well spe
i�
 average of the blank 
orre
tedundiluted OD (x) as independent and the well spe
i�
 average of the blank 
orre
teddiluted OD multiplied by ten (y) as dependent variable (Figure 2.2). Therefore, weassume that due to the blank subtra
tion and multipli
ation by ten, the amount ofvariation in y is mu
h larger than the amount of variation in x.9



We assume that the blank 
orre
ted diluted OD values and the blank 
orre
tedundiluted OD values are almost equal approximately up to 0.3. A 
ubi
 fun
tiony = x+ 
x3was �tted.4 Using least squares estimation, we obtained the 
urve 5y = x+ 0:83x3: (2.1)Having a se
ond degree term in the polynomial would make the 
urve too steep inthe right end, so that when extrapolating for high values of x, the values of y wouldbe too high.We measured the same plate in ea
h Bios
reen and plotted the results 
orrespond-ing to all pairs of Bios
reens against ea
h other. Sin
e the di�eren
es between theOD values from the di�erent Bios
reens were rather small, and the lines were 
loseto the 45o degree line, we de
ided to use the same 
alibration 
urve fun
tion for allBios
reens. All data in this thesis are 
alibrated using the fun
tion (2.1) where now xis the blank 
orre
ted OD value from the Bios
reen and y is the resulting 
alibratedblank 
orre
ted OD value (more about the blank 
orre
tion in the next se
tion).2.4.2 Blank 
orre
tionIn the 576 mutants experiment a blank equal to 0:067 was used for all wells in allBios
reens. This blank is the average blank of all wells in all �ve Bios
reens in twoexperiments where the OD values of wells 
ontaining only sterile water were measured.In these experiments there were altogether 1500 observations whi
h varied between0.060 and 0.112. The histogram of the blank values is shown in Figure 2.3.Varian
es within Bios
reens were rather small (the average of all the within Bio-s
reen varian
es was less than 0:00005). There were di�eren
es between Bios
reens,the lowest Bios
reen average being 0.063 and the highest being 0.072.The same blank value was used in all Bios
reens and in all wells be
ause in pra
ti
eit is not possible to measure Bios
reen and well spe
i�
 blanks for ea
h run. Neither
an the Bios
reen averages from the blank experiments be used as Bios
reen spe
i�
blanks, be
ause the blank depends also on the disposable plates. In the 
alibrationdata it is however important to use the well and Bios
reen spe
i�
 blanks be
ause theerrors are multiplied by ten.4Sin
e x and y are assumed to be almost equal approximately up to 0.3, the 
oe�
ient of x wasset to one.5The value of 
 was 0.8324057, but here it is rounded to 0.83 for simpli
ity. In all 
al
ulations
 = 0:8324057 was used. 10
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Figure 2.3: Histogram of the blank values from two experiments where the OD val-ues of wells 
ontaining only sterile water were measured. There are in total 1500observations.2.4.3 Dis
ussionIt would have been possible to �t a 
alibration 
urve fun
tion assuming that there ismeasurement error in both x and y, but then the error stru
tures should have beenmodeled more 
arefully. The 
alibration 
urve �tting 
ould alternatively have beendone in two steps. First, to �t the fun
tion as we did. Se
ond, to repla
e the smally values (e.g. values 
orresponding to x < 0:35) by the values from the �rst step
alibration 
urve fun
tion and �t the 
urve again. This approa
h 
ould be motivatedby the observation that the measurement pre
ision of x is mu
h higher than themeasurement pre
ision of y, and that the small x values are rather a

urate.We do not really know how well the 
alibration 
urve fun
tion works for high ODvalues. In the dataset that it is based upon, the highest undiluted OD value is 1.22,but in the motivating dataset (and in most of the data 
olle
ted in PROPHECY) thereare OD values up to 1.7. Also, we are aware that the use of the same blank value inall Bios
reens and in all wells is questionable. The e�e
t of a false blank value wasfound to be alarmingly large, although some of it may disappear in the later analysisof the growth parameters due to our experimental setup [12℄. The few really extremeblank measurements are hopefully measurement errors, rather than true blanks.
11
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Chapter 3Growth modelsAn adequate growth model is useful for des
ribing growth 
urves and for 
on
entratingthe information in measured data into a number of meaningful parameters. Also, aparametri
 model will be needed when standardizing growth 
urves with respe
t tothe initial OD, as we will see in Chapter 5.In this 
hapter we 
ompare the following 
ommonly used fun
tions as models foryeast growth: logisti
 [30℄, Gompertz [9℄, Ri
hards [13℄, and Chapman-Ri
hards [11℄.All of them model the relative population size log(Nt=N0), where N0 is the initial sizeof the population and Nt is the size of the population at time t. Modeling log(Nt=N0)
an be a problem be
ause the 
urves 
annot pass through 0 at t = 0. Therefore weadopt the ideas of Garthright [8℄ and modify the fun
tions in order to model log(Nt)instead.3.1 Traditional growth models and their suggested bio-logi
al parameterizationsMost of the 
ommonly used fun
tions for des
ribing a sigmoidal1 growth 
urve utilizeparameters that do not have a 
lear biologi
al interpretation and it 
an be di�
ultto give initial values for the parameters in the model �tting algorithms. To addressthis problem Zwietering et al [30℄ re-parameterized the logisti
, Gompertz, Ri
hards,S
hnute [16℄, and Stannard [19℄ growth 
urve fun
tions. They showed that the modi-�ed fun
tions of Ri
hards, S
hnute, and Stannard are basi
ally the same. The newparameters in the re-parameterized fun
tions are: Az the asymptote, the maximumvalue of the growth rea
hed (on the logarithmi
 s
ale); � the maximum relative popu-lation growth rate, the slope of the tangent of the logarithmi
 growth 
urve at the1A sigmoidal growth 
urve is an in
reasing 
urve whi
h �rst has a 
onvex shape and then a 
on
aveshape. 13



in�e
tion point; and �z the lag time, the time axis inter
ept of the tangent at thein�e
tion point on the logarithmi
 growth 
urve. We use the notations Az and �z forthe growth parameters in the Zwietering's re-parameterized fun
tions to distinguishthem from the modi�ed growth parameters that we will a
tually use and estimate(Se
tion 3.2.2).For easy referen
e we give the growth 
urve fun
tions together with their re-parameterized forms here. Note that we always assume that measurements start attime zero, so that t � 0.Logisti
: The logisti
 growth fun
tion isvt = log�NtN0� = �01� �1e��2t= Az1 + e 4�Az (�z�t)+2 ;where �0; �2; Az; �; �z > 0, and �1 < �1.Gompertz: The Gompertz fun
tion isvt = log�NtN0� = �0e�eb��2t= Aze�e �eAz (�z�t)+1 ;where �0; b; �2; Az; �; �z > 0.Ri
hards: The Ri
hards fun
tion isvt = log�NtN0� = �0�1 + �ek(��t)� 1�= Az�1 + �e �Az (1+�)(1+ 1� )(�z�t)+(1+�)� 1� ; (3.1)where �0; k; Az ; �; �z > 0, and � 6= 0.Chapman-Ri
hards: The Chapman-Ri
hards fun
tion [11℄ isvt = log�NtN0� = �0 h1� �1e��2ti1=(1��3) ; (3.2)where 14



�0; �2 > 0, 0 < �3 < 1 , and 1� �3 < �1 < 1;or �0; �2 > 0, �3 > 1 , and �1 < 1� �3:The restri
tions 1 � �3 < �1 < 1 and �1 < 1 � �3 are made in order to havethe in�e
tion time point of the 
urve later than at time zero. Re-parameterizing theChapman-Ri
hards fun
tion so that it 
ontains biologi
al parameters as in Zwieteringet al [30℄ (the re-parameterizing is done in the same way as the re-parameterization ofthe modi�ed Chapman-Ri
hards fun
tion, whi
h will be presented in detail in Se
tion3.2.1), givesvt = log�NtN0� = Az 2641� (1� �3)e� �3�3�13 �Az (�z�t)+�3375 11��3 ; (3.3)where Az = �0;� = �0�2� �31��33 ;�z = log � �11��3�� �3�2 :Substituting � by �3� 1 in the re-parameterized Ri
hards fun
tion (3.1) would resultin the re-parameterized Chapman-Ri
hards fun
tion (3.3). In fa
t, the Chapman-Ri
hards model is also known as the Ri
hards model.When �3 = 2=3, the fun
tion (3.2) results in the von Bertalan�y fun
tion [22℄.Ri
hards [13℄ showed that the fun
tion is also equivalent to the logisti
 model when�3 = 2. The restri
tion that we have adopted, that the in�e
tion time point shouldbe positive, restri
ts the values of �1 and �3 so that the otherwise possible �3 = 0is not allowed. However, with �3 = 0 and 0 < �1 < 1, the fun
tion 
orrespondsto the monomole
ular growth model [21℄. The limiting form of the fun
tion when�3 tends to 1 and �1 tends to 0 in a subordinated rate, is the Gompertz (for moredetails, 
f. Appendix C). We will not dis
uss the details of the von Bertalan�y andmonomone
ular models.The Chapman-Ri
hards model is very �exible. It 
an be �tted to both expo-nential and sigmoidal growth patterns. This high �exibility is, however, 
ombined15



with disadvantages as well. The parameters (�1; �2; �3) a�e
t the growth 
urve in ahighly 
ollinear manner whi
h 
an 
ause 
onvergen
e problems in the 
urve �ttingalgorithms.3.2 Modi�ed growth modelsAll models des
ribed above have a problem at t = 0 be
ause vt > 0 for all t (althoughv0 is 
lose to 0). Therefore we modify them in the spirit of Garthright [8℄, i.e. insteadof modeling log (Nt=N0), we model log(Nt). That is, we introdu
e a new parameterD < 0, and set gt = log(Nt) = yt +D; (3.4)where D is log(N0)� y0. We then have for the logisti
 
urve,yt = �01� �1e��2t ; (3.5)for the Gompertz 
urve, yt = �0e�eb��2t ; (3.6)and for the Chapman-Ri
hards 
urve,yt = �0 h1� �1e��2ti1=(1��3) : (3.7)By adding the parameter D, �tting problems that would o

ur whenever y0 is noti
e-ably above zero, are avoided.Convention 1 In the sequel, when we write logisti
, Gompertz or Chapman-Ri
hards,we refer to their modi�ed versions as presented in this se
tion.3.2.1 Growth parametersTo obtain information about the growth behavior of the 
ells, we estimate the followingphysiologi
ally important growth parameters: the lag (or adaptation) time �, the(maximum relative) growth rate �, and the stationary phase OD in
rement Y .The lag time is traditionally de�ned as the time required to adjust 
ell metabolismto 
onditions permissive for reprodu
tion [23℄. For instan
e, a longer lag time in
ertain 
hemi
al environment may indi
ate that it takes a longer time for the 
ellsto produ
e a defense against the 
hemi
al, and thus a longer time to be able tostart growing. The (maximum relative) growth rate is the maximum derivative of16



the logarithmi
 growth 
urve gt. From the growth rate the doubling time, the timerequired for the population to double, 
an easily be 
al
ulated as log(2)=�.2 A smallergrowth rate in some environment may for example indi
ate that the DNA repli
ationtakes a longer time in that environment, or that the rate of 
ell death is larger thanin the referen
e 
ondition. The amount of time required for a population to rea
h aspe
i�
 size is, for a range of relatively large sizes, approximately determined by theinitial population size, the lag time, and the doubling time. Therefore both lag timeand growth are important in safety related food mi
robiology, for example.The 
ell density in the stationary phase re�e
ts the a
hieved biomass in
rease,given a limited amount of energy, i.e. the e�
ien
y of growth. We estimate thee�
ien
y of growth by the stationary phase OD in
rement, the di�eren
e between the�nal OD and the initial OD. For example, a smaller stationary phase OD in
rement insome environment may indi
ate that in that parti
ular environment the 
ells 
annotuse the existing energy as e�e
tively as in the referen
e 
ondition.3.2.2 Derivation of the growth parameters of the Chapman-Ri
hardsmodelNext, the growth parameters of the Chapman-Ri
hards modelgt = log(Nt) = �0 h1� �1e��2ti1=(1��3) +D (3.8)are derived. Be
ause of modeling log(Nt) instead of log(Nt=N0) and adding the pa-rameter D, the growth parameters Az and �z that Zwietering et al use are not theparameters we want to estimate. In addition, the stationary phase OD in
rement weestimate di�ers from the parameter Az of Zwietering et al in that it is the in
rementon the non-logarithmi
 s
ale. The growth parameter derivation is illustrated in Figure3.1.The stationary phase OD in
rement: The stationary phase OD in
rement, the�nal OD minus the initial OD, isY = e�0+D � eg0= e�0+D � e�0(1��1) 11��3 +D:(We have idealized slightly in that we think of the �nal OD to be not that at theend of experiment but the value after in�nite time.) The stationary phase OD in
re-ment should only be estimated for 
urves that have rea
hed, or almost rea
hed, thestationary phase at the last time point.2Note that in the �tted Chapman-Ri
hards 
urve there is no exa
t exponential phase, but if therewas one with the relative growth rate �, the doubling time would be log(2)=�.17
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Figure 3.1: An illustration of the growth parameter 
al
ulation in the Chapman-Ri
hards model. Here Nt is the population size at time t, tI is the in�e
tion timepoint, y0 is given by (3.7) (at t = 0), D = log(N0)� y0, and � is the lag time.The growth rate: The (maximum relative) growth rate, �, is de�ned as the slopeof the tangent of the logarithmi
 growth 
urve gt at its in�e
tion point. The in�e
tiontime point tI is obtained by 
al
ulating the se
ond derivative of the fun
tion (3.8) withrespe
t to t, setting this to zero and solving with respe
t to t. The �rst derivative isdgtdt = �0�1�2e��2t �1� �1e��2t� 11��3�11� �3while the se
ond derivative is given byd2gtdt2 = �0�21�22 � 11��3 � 1� e�2�2t(1� �1e��2t) 11��3�21� �3� �0�1�22e��2t �1� �1e��2t� 11��3�11� �3 :Equating this to zero gives the solutiontI = log( �11��3 )�2 :18



The growth rate parameter � is �nally derived by 
al
ulating the �rst derivative atthis in�e
tion time point tI :� = �dgtdt �tI = �0�2� �31��33 :Sin
e we work on the logarithmi
 size s
ale, � 
orresponds to the maximum relativegrowth rate on the absolute s
ale.The lag time: The tangent line through the in�e
tion point ism = �t+ �0� 11��33 � �tI +D:The lag time �, is the time axis value at the inter
ept of this tangent line with thebase line y0 +D, so thaty0 +D = ��+ �0� 11��33 � �tI +D: (3.9)Solving (3.9) with respe
t to � yields:� = y0 � �0� 11��33 + �tI�= �0(1� �1) 11��3 � �0� 11��33 + � log( �11��3 )�2� :We were not able to rewrite the fun
tion (3.8) so that it would only 
ontain thegrowth parameters and D and �3. However, if needed, the initial values for theparameters (in the model �tting algorithms) 
an be estimated using the estimatesfrom the least squares �t of the model for log(Nt=N0), fun
tion (3.3). Furthermore,in Chapter 4 we will see that the Chapman-Ri
hards model 
an be expressed as afun
tion of the initial OD denoted by s, the derivative d0 at time zero, �, �, and �3,even if we 
annot write down the fun
tion expli
itly.The growth parameters of the logisti
 and Gompertz models are derived analo-gously. The growth parameters are� = 41��1 � log(� 1�1 )� 2�2 ;� = �0�24 ;Y = e�0+D � e �01��1+D;19



for the logisti
 model, and � = be + e�eb � 1e�2e ;� = �0�2e ;Y = e�0+D � e�0e�eb+D;for the Gompertz model.3.2.3 Comparing the �ts of the modi�ed growth modelsWe 
ompare the �ts of the modi�ed growth models on the smoothened, blank 
or-re
ted, and 
alibrated data des
ribed in Se
tion 2.4, i.e. hundreds of growth 
urvesfrom di�erent environments. Nonlinear regression models were �tted via least squaresin the 145 measurement points, using the large-s
ale algorithm in the lsqnonlin-fun
tion in Matlab.3 It is a subspa
e trust region method based on the interior-re�e
tive Newton method des
ribed in [3℄, [4℄. Our experien
e shows that the solu-tions are not sensitive to the 
hoi
e of the start values. For the sake of reprodu
ibility,we give the exa
t start values that we used for the parameters in the model �ttingalgorithms: �0 = 4:5, �1 = �50, �2 = 0:3, D = �3 for the logisti
; �0 = 4:5, b = 3:2,�2 = 0:3, D = �3 for the Gompertz; and �0 = 4:5, �1 = �50, �2 = 0:3, �3 = 3,D = �3 for the Chapman-Ri
hards.The �ts are 
ompared visually and by looking at the 
oe�
ient of determination,r2 = 1� SSESST = 1� P145tp=1(g�tp � xtp)2P145tp=1(xtp � �x)2 ; (3.10)where g�tp is the �tted 
urve value at time point tp, xtp is the observed4 value at timepoint tp, and �x = P145tp=1 xtp145 .Figures 3.2-3.5 show typi
al 
urves �tted by the three models 
ompared. Asexpe
ted, the Chapman-Ri
hards method nearly always gives the best �t, sin
e iten
ompasses both the logisti
 and the Gompertz models. The Gompertz model over-estimates the slope, and moreover, it does not give a su�
iently good �t at any partof the 
urve. The logisti
 model gives a better �t than the Gompertz. However, theresidual plots imply that there is a small systemati
 error in the Chapman-Ri
hards3The Matlab fun
tions are available upon request.4Smoothened, blank 
orre
ted, and 
alibrated OD value.20



model as well. The minor systemati
 deviations of the data from the theoreti
al modelare in the beginning of the 
urve and in the transition from the exponential phase tothe stationary phase.We are primarily interested in modeling typi
al growth 
urves rather than prob-lemati
 growth 
urves. Hen
e, the dis
ussion above 
onsiders typi
al growth 
urves.However, we would like to say a few words about �tting atypi
al growth 
urves, threeexamples are given in Figure 3.6. The Chapman-Ri
hards model gives 
learly thebest �t also for atypi
al 
urves although it 
annot be 
onsidered su�
ient to des
ribethem. The top 
urve in Figure 3.6 is an example of an out
ome of te
hni
al artifa
ts.The middle 
urve is a typi
al example of a 
urve in the Methylmethanesulfonate en-vironment. The Chapman-Ri
hards model should not be used for the 
urves in thisenvironment. The bottom 
urve shows o

asionally observed atypi
al behavior in thevery beginning of an experiment. Given the diversity of forms atypi
al 
urves assume,it is very di�
ult to �nd a model that �ts su�
iently well to all types of growth
urves. However, even if the model 
annot be 
onsidered su�
ient to des
ribe atypi-
al 
urves, it 
ould be possible to use the information of the �t, e.g. the 
oe�
ient ofdetermination, to �lter out bad 
urves. We will do this in Chapter 7.It is natural that the Chapman-Ri
hards model gives the best �t of the data sin
eit en
ompasses the other two models and it has more parameters than the other twomodels. This does not ne
essarily mean that the model �ts well to the data, themodel 
ould be over�tting. As the number of parameters in a model in
reases, themodel 
urve 
an bend in more 
ompli
ated ways. If the number of parameters inour model is larger than ne
essary to 
at
h the main 
hara
teristi
s of the "true"growth 
urve, the risk of over�tting in
reases. Similarly, if we use models with lessparameters than ne
essary, the risk of under�tting in
reases; the models may not be�exible enough to mat
h the a
tual growth 
urve well enough. However, sin
e thereare so many measurements for ea
h 
urve, we do not have reason to believe that wehave any over�tting problem here.3.3 A three part modelFrom the residual plots of the �t of hundreds of growth 
urves, we see that the �t inthe beginning of the 
urve and in the transition from the exponential phase to thestationary phase, is often not good. Even the �t of the Chapman-Ri
hards modelis sometimes rather poor in these parts of the 
urve. In addition, sin
e the modelsare sigmoidal, the linear part of the 
urve may be poorly estimated. This is the 
aseespe
ially with the Gompertz model.The desire to over
ome the problems mentioned above was one of the reasons whywe wanted to �t a model whi
h divides the growth 
urve into three parts. The otherreason was to try to neutralize 
orrelation between the initial OD and the lag time,21



and between the initial OD and the growth rate.It has been reported that the initial OD may in�uen
e the rate of growth [5℄. Thisis a natural phenomenon, be
ause in a sample with more 
ells in the beginning, thereare less nutrients per 
ell, and thus the population 
an grow for a shorter time (thana population with less 
ells in the beginning) before it runs out of nutrients. It maynot even rea
h the maximum growth rate. The growth in the beginning, when thereare still enough nutrients for all the 
ells, does not tend to be a�e
ted by the initialOD.We investigated the 
orrelation between initial OD (the 
alibrated and blank 
or-re
ted OD value at the time zero) and growth parameters on a dataset 
ontaining99 wild types in the referen
e 
ondition. The initial OD values vary between 0.015and 0.106 (Figure 3.7). The dataset 
omes from an experiment where the e�e
t ofthe initial OD was studied, and thus the range of the initial OD values is wide onpurpose. The growth parameters are 
al
ulated as given in Se
tion 3.2.2 (using theChapman-Ri
hards model). There is a strong negative 
orrelation between the lagtime and initial OD, and between the growth rate and initial OD (Figure 3.8). How-ever, there is hardly any 
orrelation between the initial OD and the stationary phaseOD in
rement. Figures 3.9-3.11 show the histograms of the initial OD values in ea
henvironment and over all environments in the motivating dataset. The averages and
oe�
ient of variations of the initial OD values in ea
h run are given in Table 3.1.We 
onstru
t a model 
onsisting of three parts: the beginning of the 
urve untilthe in�e
tion point, the linear part following the in�e
tion point, and the rest afterthe linear part.5 One of the fun
tions, the logisti
, the Gompertz, or the Chapman-Ri
hards, is used but with the ex
eption that the linear part in the middle is modeledas a straight line. That is, we have
g�t = 8>>>>>><>>>>>>:

gt; t � tI ;gtI + �(t� tI); tI � t � tI +�;gt�� + ��; t � tI +�; (3.11)
where � is the time span of the linear part (� � 0) and gt is the logisti
, theGompertz, or the Chapman-Ri
hards fun
tion as given in (3.4). The three part modelis illustrated in Figure 3.12.5We still 
all the 
ut point in�e
tion point. 22



3.3.1 Fitting the three part model to the dataWe �tted the three part model as a nonlinear regression model via least squares asin Se
tion 3.2.3, to the same data.6 The start values for the parameters in the model�tting algorithms were the same as in Se
tion 3.2.3 and the start value for � was 0.Atypi
al growth 
urves are ex
luded from the 
omparisons. Examples of 
urve �tswith the three part model are given in Figures 3.13-3.16. Figures 3.2-3.5 show thesame data �tted by the ordinary models.The Gompertz model gains the most from adding the linear part in the middle.For almost all 
urves the estimate of � is larger than one hour, and the �t of themodel improves remarkably 
ompared to the ordinary Gompertz model. With thelogisti
 growth fun
tion as gt, the estimate of � is zero for more than 50% of the
urves. For the rest of the 
urves the �t is in general improved by adding a linear partin the middle. However, the ordinary Chapman-Ri
hards model (3.8) gives a better�t than the three part model with logisti
 or Gompertz fun
tion.The estimate of � is smallest when using the Chapman-Ri
hards fun
tion in thethree part model. For over 90% of the 
urves it is zero, and for over 95% less thanone hour. Even for the 
urves with the estimate of � larger than one hour, the �t ofthe the three part model is often similar to the �t of the ordinary Chapman-Ri
hardsmodel. Although in some 
ases the �t of the three part model is 
learly better, it doesnot neutralize the 
orrelation between the initial OD and lag time and the 
orrelationbetween the initial OD and growth rate (Figure 3.17). In Chapter 5 we will introdu
eanother method to neutralize the e�e
t of the initial OD.3.4 Dis
ussionWith rather typi
al "normal" growth 
urves, the Chapman-Ri
hards model alwaysgives a reasonably good �t. However, the residual plots imply that there is a systemati
error in the model, and that the Chapman-Ri
hards model is not ideal for our data.On the other hand, sin
e the small deviations of the data from the theoreti
al modelare mostly in the transition from the exponential phase to the stationary phase, thegrowth parameter estimation should not su�er from the model not being exa
t.The three part model with logisti
 and Gompertz fun
tions was 
learly betterthan the logisti
 and Gompertz models themselves, but not better than the ordinaryChapman-Ri
hards model. When 
ompared to the Chapman-Ri
hards model, thethree part model with the Chapman-Ri
hards fun
tion gave a better �t in few 
ases,and in the rest of the 
ases the �t was equal to that of the Chapman-Ri
hards model.Sin
e the tree part model is more 
ompli
ated than the Chapman-Ri
hards model,6The Matlab fun
tions are available upon request.23



adding a linear part in the middle may not be relevant here. However, in Chapter 5we will see that it is essential in the standardization of 
urves.
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Figure 3.2: The logisti
, Gompertz and Chapman-Ri
hards models are �tted to thedata NOD0305, well 3. The 
orresponding residual plots are on the right.25
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Figure 3.3: The logisti
, Gompertz and Chapman-Ri
hards models are �tted to thedata NOC0426, well 7. The 
orresponding residual plots are on the right.26
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Figure 3.4: The logisti
, Gompertz and Chapman-Ri
hards models are �tted to thedata NOD0326, well 3. The 
orresponding residual plots are on the right.27
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Figure 3.5: The logisti
, Gompertz and Chapman-Ri
hards models are �tted to thedata NOD0406, well 1. The 
orresponding residual plots are on the right.28



0 10 20 30 40

−3

−2

−1

0

1

2

Time

Lo
g(

O
D

)
Chapman−Richards

0 10 20 30 40
−0.5

0

0.5

Time

R
es

id
ua

ls

Chapman−Richards

0 10 20 30 40

−3

−2

−1

0

1

2

Time

Lo
g(

O
D

)

Chapman−Richards

0 10 20 30 40
−0.5

0

0.5

Time

R
es

id
ua

ls

Chapman−Richards

0 10 20 30 40

−3

−2

−1

0

1

2

Time

Lo
g(

O
D

)

Chapman−Richards

0 10 20 30 40
−0.5

0

0.5

Time

R
es

id
ua

ls

Chapman−Richards

Figure 3.6: Some atypi
al growth 
urves (starting from the top: 39C0309, well 62;MMC0408, well 6; 41E0314, well 20) and �tted Chapman-Ri
hards models. The 
or-responding residual plots are on the right.29
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Figure 3.9: The initial OD values of all mutants and wild types in ea
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orre
ted and 
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Table 3.1: The mean, minimum, maximum and 
oe�
ient of variation (%) of theinitial OD values of all mutants and wild types in ea
h run. The values are blank
orre
ted and 
alibrated.Run Mean Min Max CV (%) Run Mean Min Max CV (%)39C0307 0.10 0.05 0.15 14 MVC0413 0.06 0.03 0.21 3439D0307 0.10 0.04 0.15 14 MVD0413 0.07 0.02 0.11 2239E0307 0.10 0.03 0.14 15 MVE0413 0.07 0.04 0.14 2239C0309 0.10 0.07 0.16 15 MVC0417 0.06 0.03 0.09 2139D0309 0.10 0.05 0.16 13 MVD0417 0.06 0.02 0.10 2339E0309 0.10 0.04 0.15 16 MVE0417 0.06 0.03 0.08 1941C0312 0.10 0.05 0.14 12 MMC0408 0.07 0.03 0.36 4241D0312 0.10 0.04 0.15 15 MMD0408 0.08 0.03 0.15 3041E0312 0.10 0.04 0.13 13 MME0408 0.06 0.03 0.12 3341C0314 0.10 0.06 0.19 14 MMC0411 0.06 0.02 0.10 2441D0314 0.10 0.05 0.15 21 MMD0411 0.06 0.02 0.09 2241E0314 0.09 0.04 0.12 14 MME0411 0.06 0.03 0.11 20DNC0316 0.25 0.19 0.35 11 NOC0305 0.08 0.04 0.16 23DND0316 0.30 0.22 0.44 12 NOD0305 0.11 0.03 0.35 47DNE0316 0.29 0.19 0.48 13 NOE0305 0.12 0.04 0.36 51DNC0319 0.22 0.16 0.31 13 NOC0326 0.08 0.04 0.11 17DND0319 0.32 0.21 0.46 13 NOD0326 0.08 0.04 0.20 28DNE0319 0.30 0.18 0.40 13 NOE0326 0.09 0.04 0.23 26CAC0328 0.15 0.06 0.29 24 NOC0406 0.06 0.03 0.08 20CAD0328 0.13 0.06 0.27 33 NOD0406 0.06 0.03 0.09 23CAE0328 0.13 0.05 0.21 24 NOE0406 0.06 0.03 0.09 18CAC0330 0.09 0.03 0.20 36 NOC0426 0.07 0.01 0.15 48CAD0330 0.07 0.01 0.19 40 NOD0426 0.07 0.02 0.17 40CAE0330 0.05 0.01 0.15 39 NOE0426 0.06 0.02 0.18 40NAC0321 0.10 0.06 0.16 15NAD0321 0.10 0.05 0.16 16NAE0321 0.12 0.03 0.30 34NAC0323 0.11 0.05 0.18 22NAD0323 0.11 0.03 0.19 24NAE0323 0.10 0.01 0.23 30
34
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Figure 3.13: The three part model with logisti
, Gompertz and Chapman-Ri
hardsfun
tions �tted to the data NOD0305, well 3. The estimates of � are 8.37 (Gompertz),4.86 (Logisti
) and 1.57 (Chapman-Ri
hards).35
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Figure 3.14: The three part model with logisti
, Gompertz and Chapman-Ri
hardsfun
tions �tted to the data NOC0426, well 7. The estimates of � are 6.98 (Gompertz),3.75 (Logisti
) and 3.38 (Chapman-Ri
hards).36
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Figure 3.15: The three part model with logisti
, Gompertz and Chapman-Ri
hardsfun
tions �tted to the data NOD0326, well 3. The estimates of � are 8.22 (Gompertz),4.78 (Logisti
) and 2.28 (Chapman-Ri
hards).37
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Figure 3.16: The three part model with logisti
, Gompertz and Chapman-Ri
hardsfun
tions �tted to the data NOD0406, well 7. The estimates of � are 3.53 (Gompertz),0 (Logisti
) and 0 (Chapman-Ri
hards). 38
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ondition plottedagainst lag time and growth rate estimates from the three part model.

39



40



Chapter 4An alternative parameterization ofthe Chapman-Ri
hards modelIn this 
hapter we will see that the Chapman-Ri
hards model growth 
urves presentedin Chapter 3 
an be expressed as a fun
tion of the initial population size s (on thenon-logarithmi
 s
ale), the growth parameters �; �, and Y; and the derivative at timezero (on the logarithmi
 s
ale), denoted by d0. This last parameter is a natural
omplement to �, �, and Y in the phenotypi
 analysis of the mutants: if the �ts ofthe models were perfe
t, d0 would ni
ely re�e
t the initial adaptation behavior.Although we 
annot state the Chapman-Ri
hards fun
tion expli
itly in terms ofthe parameters s, d0, �, �, and Y , it is still important to investigate the basi
 prop-erties of this parameterization. It will, for example, be used in the 
onstru
tion ofsummary 
urves in Chapter 6.Re
all that the Chapman-Ri
hards model is given bygt = �0 h1� �1e��2ti1=(1��3) +D; t � 0;where either �0; �2 > 0, 0 < �3 < 1, 1 � �3 < �1 < 1 or �0; �2 > 0, �3 > 1,�1 < 1��3. The parameter D is always negative. The Chapman-Ri
hards 
urves arenot de�ned at �3 = 1, but the limiting forms when �3 tends to 1 and �1 tends to 0 ina subordinated rate, are members of the Gompertz family.The model we will study in this se
tion is the Gompertz augmented Chapman-Ri
hards model whi
h is obtained from the above equation by writing �1 = eb(1��3),b > 0, gt = �0 h1� eb(1� �3)e��2ti1=(1��3) +D; for �3 6= 1; andgt = �0e�eb��2t +D; for �3 = 1:41



For more details, 
f. Appendix C.The parameterization properties of the model will be studied in Se
tion 4.1. Theparameter spa
e (augmented with the parameters 
orresponding to the Gompertz
urves) is also given expli
itly. Se
tion 4.2 investigates 
ertain 
onvexity properties ofthe parameter spa
e.4.1 UniquenessIn this se
tion we show that a hybrid parameterization (between the original and thenew parameterization) with s, d0, �, �, and �3 as parameters is unique. We thenaddress the question of the uniqueness of the representation by the parameters s, d0,�, �, and Y: We formally 
he
k all but one of the steps of the proof. While no formalproof of the monotoni
ity of a 
ertain impli
it fun
tion stated in Conje
ture 1 (onpage 45) is available, we show through an extensive numeri
al investigation that the
onje
ture is likely to hold. Theorem 1 is the main result of the se
tion.We will need the following basi
 property of the Chapman-Ri
hards model:Proposition 1 The (�0; �1; �2; �3;D)-parameterization is unique.Proof. This uniqueness is probably well-known, but for 
ompleteness we give a proofin Appendix E.The parameters of the new parameterization (in the 
ase �3 6= 1) 
an be writtenas s = e�0(1��1) 11��3 +D (4.1)d0 = �0�1�2(1� �1) �31��31� �3 (4.2)� = (1� �1) 11��3 � �3 11��3 + �3 �31��3 log( �11��3 )�2�3 �31��3 (4.3)� = �0�2�3 �31��3 (4.4)Y = e�0+D � e�0(1��1) 11��3 +D (4.5)= e�0+D � s;= eA � s; 42



where A = �0 +D is the asymptote of the 
urve (on the logarithmi
 s
ale).We start with a lemma 
on
erning the Gompertz model in the hybrid parameteri-zation:Lemma 1 The Gompertz 
urve 
orresponding to any hybrid parameter 
ombinations > 0, 0 < d0 < �, � > 0, � > 0, and �3 = 1 is unique. The parameter b is thesolution of the equation b+1� eb = log(d0� ), and the three other parameters are givenby �0 = ��be+e�eb� 1e , �2 = b+e�eb+1�1� , and D = log(s) � ��e�ebbe+e�eb� 1e . Furthermore, thestationary phase OD in
rement isY = e 1�e�ebb�1e +e�eb !��+log(s) � s:Proof. See Appendix C.We will next state a series of te
hni
al lemmas and propositions formulated for aspe
ial Chapman-Ri
hards sub-model, restri
ted by the assumptions s = 1, 0 < d0 <1, � = 1, � = 1. We will refer to this as the unit-s
aled model.In the unit-s
aled model, the equations (4.1-4.4) are equivalent to the equations(4.6-4.9) below d0 = �1(1� �1) �31��3(1� �3)� �31��33 ; (4.6)�0 = 1� �31��33 hlog � �11��3�� �3i+ (1� �1) 11��3 ; (4.7)�2 = 1�0� �31��33 ; (4.8)D = ��0(1� �1) 11��3 : (4.9)Re
all that �0; �2 > 0, 0 < �3 < 1, 1��3 < �1 < 1 or �0; �2 > 0, �3 > 1, �1 < 1��3.The asymptote A = �0 +D 
an be written asA = 1� (1� �1) 11��3� �31��33 hlog � �11��3�� �3i+ (1� �1) 11��3 : (4.10)
43



The following lemma addresses the hybrid parameterization in the unit-s
aled 
ase:Lemma 2 The (d0; �3)-parameterization is unique in the unit-s
aled model, i.e. thereis exa
tly one 
urve in the Chapman-Ri
hards (Gompertz augmented) model for ea
h
ombination of 0 < d0 < 1 and �3 > 0, and s = 1, � = 1, � = 1.Proof. The parameterization is unique if the equation (4.6) has at most one solution�1 < 1 � �3 for �xed �3 > 1, or 1 � �3 < �1 < 1 for �xed �3 su
h that 0 < �3 < 1.Rewrite the equation (4.6) asf(�1) := �1(1� �1) �31��3 � d0(1� �3)�3 �31��3 = 0:Di�erentiate f with respe
t to �1 to obtainf 0(�1) = (1� �1) �31��3 � �1�3(1 � �3) (1� �1) �31��3(1� �1)= (1� �1) �31��3 �1� �1�3(1� �3)(1� �1)� :For �3 > 1 and �1 < 1� �3,f 0(�1) = (1� �1) �31��3 �1� �1�3(1� �3)(1� �1)�> (1� �1) �31��3 �1� (1� �3)(1� �1)(1� �3)(1� �1)� = 0;and for 0 < �3 < 1 and 1� �3 < �1 < 1,f 0(�1) = (1� �1) �31��3 �1� �1�3(1� �3)(1 � �1)�< (1� �1) �31��3 �1� (1� �3)�3(1� �3)�3� = 0:The above monotoni
ity properties, the 
ontinuity and appropriate sign 
hanges of fin the allowed �1 intervals, prove the required existen
e and uniqueness of �1 in both
ases �3 < 1 and �3 > 1. (The uniqueness of the Gompertz 
urve when �3 = 1 followsdire
tly from Lemma 1). 2It is time for a se
ond result about the Gompertz augmented model:Lemma 3 Fix 0 < d0 < 1: In the unit-s
aled model, the fun
tion A de�ned in (4.10)with the 
onstraint (4.6) is 
ontinuous at �3 = 1 as a fun
tion of �3 > 0.44



Proof. See Appendix C.The following lemma is used in the proof of Lemma 5(b).Lemma 4 Fix �3 > 0: In the unit-s
aled model, the fun
tion A de�ned in (4.10) withthe 
onstraint (4.6) is stri
tly in
reasing as a fun
tion of d0, 0 < d0 < 1.Proof. See Appendix E.Lemma 5 Fix 0 < d0 < 1: In the unit-s
aled model, the fun
tion A de�ned in (4.10)with the 
onstraint (4.6) satis�es(a) lim�3!0A =1(b) lim�3!1A = 1�d0d0�log(d0)�1 .Proof. See Appendix E.Now, we are prepared to dis
uss the main alternative parameterization. As indi-
ated earlier, we need the following monotoni
ity assumption:Conje
ture 1 Fix 0 < d0 < 1: In the unit-s
aled model, the fun
tion A de�ned in(4.10) with the 
onstraint (4.6) is stri
tly de
reasing as a fun
tion of �3 > 0.Note that the 
onje
ture is purely te
hni
al. Re
all that the following restri
tionsalso apply: 1� �3 < �1 < 1 for 0 < �3 < 1 or �1 < 1� �3 for �3 > 1. The 
onje
tureis further dis
ussed and numeri
ally motivated in Appendix D.In the sequel we assume that Conje
ture 1 holds.Proposition 2 Provided that Conje
ture 1 holds, the (d0; A)-parameterization is uni-que in the unit-s
aled model, and the Chapman-Ri
hards (Gompertz augmented) 
urvesexist if and only if A > 1�d0d0�log(d0)�1 .Proof. Consider a model 
urve from the hybrid parameterization with s = 1, � = 1,� = 1, and 0 < d0 < 1 and �3 �xed. The asymptote of this 
urve is given by (4.10),where �1 solves (4.6). Now 
onsider A a fun
tion of �3. This fun
tion is obviously
ontinuous at any �3 6= 1 and Lemma 3 states that it is also 
ontinuous at �3 = 1.Conje
ture 1 states that A is stri
tly de
reasing and hen
e (4.10) has at most onesolution �3, for �1 and A �xed. Combining this with the two limits in Lemma 5�nally 
ompletes the proof.Proposition 3 Provided that Conje
ture 1 holds, the (d0; Y )-parameterization is uni-que in the unit-s
aled model, and the Chapman-Ri
hards (Gompertz augmented) 
urvesexist only for Y > e 1�d0d0�log(d0)�1 � 1. 45



Proof. Follows from Proposition 2 and equation (4.5).For any Chapman-Ri
hards (Gompertz augmented) model 
urve we 
an arbitrarilytime s
ale, s
ale and translate the log-size dimension, and the resulting 
urve is stilla Chapman-Ri
hards (Gompertz augmented) model 
urve. This model invarian
etogether with Lemma 2 and Proposition 3 will be used to prove:Theorem 1 Consider the Chapman-Ri
hards Gompertz augmented model.(a) Any model 
urve is uniquely determined by the parameters s, d0, �, �, and�3. The parameters are 
onstrained by the inequalities s > 0, 0 < d0 < �, � > 0,� > 0, and �3 > 0. Curves with �3 = 1 
orrespond to the Gompertz 
urves.(b) Provided that Conje
ture 1 holds, any model 
urve is uniquely determinedby the parameters s, d0, �, �, and Y: The parameters are 
onstrained by theinequalities s > 0, 0 < d0 < �, � > 0, � > 0, andY > Y ; Y := e 1� d0�d0� �log( d0� )�1!��+log(s) � s:(
) The unique Gompertz 
urve for ea
h allowed parameter 
ombination s, d0, �,and � 
orresponds to the stationary phase OD in
rement parameterY = e 1�e�ebb�1e +e�eb !��+log(s) � s;where b is the solution of the equationb+ 1� eb = log�d0� � :Proof.(a) Take a Chapman-Ri
hards model growth 
urvegt(�0; �1; �2; �3;D) = �0 h1� �1e��2ti1=(1��3) +Dand transform it by multiplying t by some 
onstant 
 > 0, by multiplying the whole
urve by some 
onstant k > 0, and by moving the 
urve (upwards or downwards) bysome 
onstant m. Then,kg
t(�0; �1; �2; �3;D) +m = k��0 h1� �1e��2
ti1=(1��3) +D�+m (4.11)= k�0 h1� �1e��2
ti1=(1��3) + kD +m= gt(k�0; �1; �2
; �3; kD +m);46



so that the result is still a Chapman-Ri
hards model 
urve.Take a growth 
urve gt with �xed (�0; �1; �2; �3;D) 
orresponding to the hybridparameters (s; d0; �; �; �3). Then using (4.11) with k = 1�� , 
 = �, m = � log(s)�� , weget 1��gt�(�0; �1; �2; �3;D)� log(s)�� = ĝt(1; d0� ; 1; 1; �3); (4.12)where the ĝt refers to the unique 
urve with hybrid parameters known to exist in this
ase by Lemma 2. Inverting the relation (4.12) gives thatgt(�0; �1; �2; �3;D) = ��ĝ t� (1; d0� ; 1; 1; �3) + log(s);for any s > 0, 0 < d0 < �, � > 0, � > 0, and �3 > 0, so that gt must also be uniquelydetermined by s, d0, �, �, and �3. Starting with an arbitrary 
ombination of s > 0,0 < d0 < �, � > 0, � > 0, and �3 > 0,��ĝ t� (1; d0� ; 1; 1; �3) + log(s)is always a model 
urve with parameters s, d0, �, �, and �3. This motivates theparameter spa
e restri
tions.(b) We may show the statements by showing that for s; d0; �, and � �xed, �3 isdetermined by Y , if Conje
ture 1 holds. Using (4.12) we obtainA(1; d0� ; 1; 1; �3) = A(s; d0; �; �; �3)�� � log(s)�� ;and hen
e Y (1; d0� ; 1; 1; �3) = �Y (s; d0; �; �; �3)s + 1� 1�� � 1: (4.13)Now, suppose that several �3-
hoi
es yielded the same Y on the right side of (4.13).Then the same �3-
hoi
es would result in the same Y also on the left side, whi
h would
ontradi
t Proposition 3, if the Conje
ture 1 was true. Finally, by inverting (4.13),we also get the parameter spa
e 
onstraints from the restri
tion of Y in Proposition3. (
) Follows dire
tly from Lemma 1. 2
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4.2 Convexity propertiesIn this se
tion we work under the assumption that Conje
ture 1 is true and use theparameterization with s; d0; �; �, and Y . The results in this se
tion will be needed inChapter 6 where two methods for 
onstru
ting summary 
urves are dis
ussed. More
on
retely, the existen
e of summary 
urves is equivalent to the 
onvexity of the newparameter spa
e (for all �xed s) or that of its logarithmi
 version (for all �xed log(s)).As dis
ussed in detail in Chapter 6, the method I summary 
urves do not always existwhereas the method II summary 
urves always exist.Re
all the notation Y for the lower bound of Y (stated in Theorem 1),Y (s; d0; �; �) = s264e 1� d0�d0� �log( d0� )�1!�� � 1375 :The key to the proof is the following lemma:Lemma 6 The log(Y ) is 
onvex as a fun
tion of log(d0), log(�), and log(�) for any�xed log(s), where s > 0, 0 < d0 < �, � > 0, and � > 0.Proof. The proof is rather te
hni
al and we have therefore 
hosen to give it in Ap-pendix E.Theorem 2 Consider the parameter spa
e (s; d0; �; �; Y ), where s > 0 is �xed, 0 <d0 < �, � > 0, � > 0, and Y > Y . Then the following holds(a) The parameter spa
e is not 
onvex for any �xed s.(b) The 
omponent-wise logarithmi
 version of the parameter spa
e is 
onvex forall �xed log(s).Proof.(a) Fix two parameter 
ombinations with the same s:(s; d0(1); �(1); �(1); Y(1)) and (s; d0(2); �(2); �(2); Y(2)).48



Take a 
onvex 
ombination of the parameters and letd0� = �d0(1) + (1� �)d0(2);�� = ��(1) + (1� �)�(2);�� = ��(1) + (1� �)�(2);Y� = �Y(1) + (1� �)Y(2);for some 0 < � < 1. The parameter spa
e is 
onvex if and only if �� > 0, �� > 0,0 < d0� < ��, and Y� > Y � (s; d0�; ��; ��). Sin
e it is obvious that �� > 0, �� > 0,0 < d0� < ��, the 
onvexity of the parameter spa
e is equivalent to proving thatY� > Y � (s; d0�; ��; ��) : (4.14)We next 
onstru
t a set of parameters for whi
h the previous inequality is violated.For s = 1, take � = 0:5, d0(1) = 0:1, d0(2) = 0:0001, �(1) = �(2) = 1, �(1) = �(2) = 1,Y(1) = 0:91 (> Y (1) � 0:8997), and Y(2) = 0:25 (> Y (2) � 0:1295). ThenY� = 0:25 + 0:912 = 0:58and Y �(1; 0:1 + 0:00012 ; 1; 1) � 0:5913;whi
h 
ontradi
ts (4.14). For an arbitrary �xed s, multiply Y(1) and Y(2) by s andleave the other parameters un
hanged.(b) Fix again two parameter 
ombinations with the same s:(s; d0(1); �(1); �(1); Y(1)) and (s; d0(2); �(2); �(2); Y(2)).Take a 
onvex 
ombination of the parameters on the logarithmi
 level and denote the
orresponding non-logarithmi
 parameters byd0� = d�0(1)d1��0(2);�� = ��(1)�1��(2) ;�� = ��(1)�1��(2) ;Y� = Y �(1)Y 1��(2) ;49



for some 0 < � < 1. Sin
e �� > 0, �� > 0, 0 < d0� < ��, proving thatlog(Y�) = � log(Y(1)) + (1� �) log(Y(2)) (4.15)> log [Y � (log(s); log(d0�); log(��); log(��))℄ ;will imply the 
onvexity of the 
omponent-wise logarithmi
 version of the parame-ter spa
e for all �xed log(s). The inequality (4.15) follows from Lemma 6 and theobservation thatlog(Y(i)) > log �Y �log(s); log(d0(i)); log(�(i)); log(�(i))�� ; i = 1; 2:2
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Chapter 5Standardizing 
urvesAs was seen in Se
tion 3.3, the lag time and growth rate depend strongly on theinitial OD. However, in large-s
ale experiments with analysis of hundreds of mutants,it is hard to keep the initial OD 
onstant between di�erent experiments. Hen
e,it would be desirable to redu
e the 
orrelation and to make the 
urves more easily
omparable by developing a method for standardizing growth 
urves with respe
tto the initial OD. Our approa
h has as a starting point the simultaneous �tting ofa three part model 
urve (introdu
ed in Chapter 3) in [12℄ (for more details, 
f.Appendix F). In the optimal �t of the simultaneous model, one of the 
urves willtypi
ally be a Chapman-Ri
hards 
urve while the other will be a three part model
urve. However, this approa
h is not fully satisfa
tory as it does not neutralize theinitial OD 
orrelation with the lag time and growth rate.The philosophy of the new approa
h we introdu
e in this 
hapter is as follows.Assume that the idealized model of a logarithmi
 growth 
urve 
onsisting of a lagphase, an exponential phase and a stationary phase, is true. What di�eren
e should weexpe
t between the 
urves starting from di�erent population sizes, but with similar 
ellphase 
ompositions? In the �rst phase, when there are plenty of nutrients available,we expe
t the same relative growth behavior. In the se
ond phase, the time of theexponential growth will be shorter for a larger initial population. And �nally, whenthe nutrient 
on
entrations are "low enough", the entry into the stationary phase willtake pla
e with populations of approximately the same sizes and similar 
ompositions,so that the logarithmi
 
urves will have a similar shape also in this part.In the type of data we have, a large proportion of the variability in the �tted
urves 
omes from the initial population size. Can we predi
t what the behavior of agrowth 
urve would have been, had the population had a standard initial OD? Can weredu
e the sensitivity of the growth parameter estimates to initial OD? Essentially, theidealized model tells us to 
ut away a linear pie
e in the middle of one of the logarithmi
growth 
urves in order to get the other. Moreover, it is natural to expe
t roughly the51



same stationary phase OD in
rement. The total growth of the population has todo with how e�e
tively the available energy is used. We do not know exa
tly whathappens, but it is likely that some of the energy 
onsumption in the beginning goes toinitiating the growth pro
ess whi
h would imply a slightly smaller stationary phase ODin
rement for larger populations, but we will ignore this. In the exponential phase thepopulations grow and 
onsume nutrients similarly ex
ept that the population witha smaller initial OD grows for a longer time be
ause there is more energy per 
ellavailable. The small di�eren
e in the population sizes when the la
k of nutrientsbegins to slow down the growth, possibly also a�e
ts the relative growth rate slightly(the larger the population is, the faster it will 
onsume the resour
es). However,this e�e
t is probably quite small and therefore we will ignore it. Altogether theseapproximations motivate the assumption that the stationary phase OD in
rementsshould be approximately equal irrespe
tive of the size of the initial OD (within 
ertainlimits of initial OD).The idea behind the standardization is that we �x a standard initial OD andpredi
t what would have happened, had we done the experiment with the standardinitial OD and �tted the Chapman-Ri
hards 
urve on these measurements. We hopethat with the standardization, the 
urves from di�erent runs and environments be
omemore easily 
omparable. The standardization will also be useful for visualizing thedata.We �rst present a method for standardizing growth 
urves upwards, i.e. when thestandard initial OD is larger than the observed initial OD. We begin by des
ribing themethod for standardizing one 
urve and then generalize it to obtain a standardizedgrowth 
urve of two or more 
urves. Se
ond, we present a method for standardizinggrowth 
urves downwards. The 
urves are standardized upwards or downwards de-pending on the relation between the 
hosen standard initial OD and their observedinitial OD based on the ordinary Chapman-Ri
hards 
urve �t.15.1 Standardizing upwardsHere, we try to predi
t what would have happened had the initial OD been �xed to belarger than the observed initial OD. We use the three part model presented in Se
tion3.3 to �t the observed 
urve so that a standardized 
urve 
an be obtained by 'lifting'the �tted 
urve to start from log(s0) and removing the linear pie
e from the middle(Figure 5.1). The growth parameters, i.e. � (lag time), � (maximum relative growthrate), and Y (stationary phase OD in
rement), are to be the same for the three partmodel 
urve and for the standardized 
urve. Sin
e the time span of the linear part inthe three part model is not modeled freely, the parameter values (and thus the �tted1The observed initial OD is de�ned as the value of the Chapman-Ri
hards 
urve �t to the observedOD values at time zero. 52
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Standardized curve Figure 5.1: An illustration of standardizing one 
urve when the standard initial ODs0 is higher than the observed initial OD. Here Nt is the population size at time t andtI is the in�e
tion time point.
urve) are not the same as they would be if the three part model was �tted withoutany 
onstraints (in whi
h 
ase the time span of the linear part would be zero for mostof the 
urves, as was 
on
luded in Se
tion 3.3).Re
all that a 
urve from the three part model is given byg�t = 8>>>>>><>>>>>>:
gt; t � tI ;gtI + �(t� tI); tI � t � tI +�;gt�� + ��; t � tI +�; (5.1)where gt = �0 h1� �1e��2ti1=(1��3) +Dis the Chapman-Ri
hards fun
tion,tI = log( �11��3 )�2is the in�e
tion time point (the time axis value where the linear part starts), and� = �0�2� �31��3353



is the (maximum relative) growth rate, and � is the time span of the linear part. We�t the three part model to the observed data with the 
onstraint that by removing thelinear pie
e in the middle and lifting the 
urve by � � 0, we obtain the standardized
urve, whi
h will be denoted by g�t :g�t = �0 h1� �1e��2ti1=(1��3) +D + �:Let s0 denote the standard initial OD (a �xed value). The logarithm of the initialOD of the standardized 
urve has to equal log(s0), i.e.�0(1� �1) 11��3 +D + � = log(s0): (5.2)Solving the equation (5.2) for � gives� = log(s0)� �0(1� �1) 11��3 �D:The time span of the linear part, �, is adjusted so that the stationary phase ODin
rement of the three part model 
urveY = e�0+D+�� � e�0(1��1) 11��3 +Dequals the stationary phase OD in
rement of the standardized 
urveY � = e�0+D+� � e�0(1��1) 11��3 +D+� :This yields� = ��0 �D + log[e�0+D+� � e�0(1��1) 11��3 +D+� + e�0(1��1) 11��3 +D℄� : (5.3)Model �tting pro
edureWe �rst �x a standard initial OD s0. The 
urves whi
h initial OD a

ording to theChapman-Ri
hards model �t is smaller than or equal to s0, will be standardized usingthis pro
edure:1. An initial value of � is 
hosen.2. The model (5.1) is �tted using a nonlinear least squares method, keeping ��xed.3. The stationary phase OD in
rements, Y and Y �, are 
al
ulated. If jY �Y �j > 
,then a new value of � is 
al
ulated as given in (5.3). The 
onstant 
 is themaximum allowed di�eren
e between Y and Y � (
 is usually a very small realnumber).The steps 2 and 3 are repeated until jY � Y �j < 
.54



5.1.1 Standardizing two or more 
urves simultaneouslyThe method presented in the previous se
tion 
an easily be generalized to obtaina single standardized 
urve for n 
urves. The three part models are �tted to theobserved 
urves with a 
onstraint that the standardized 
urve 
an be obtained byremoving the linear pie
es and lifting the 
urves to start at log(s0). The lag time andgrowth rate are kept the same in all three part model 
urves and in the standardized
urve. The stationary phase OD in
rement of the standardized 
urve is set to be thesame as the average of the stationary phase OD in
rements of the three part model
urves.In the sequel, we dis
uss a standardization method for two 
urves. The generali-zation to n 
urves 
an be done analogously. The three part models with the Chapman-Ri
hards fun
tion 
an be written asg�(k)t = 8>>>>>>><>>>>>>>:
g(k)t ; t � tI ;g(k)tI + �(t� tI); tI � t � tI +�k;g(k)t��k + ��k; t � tI +�k; (5.4)where g(k)t = �0 h1� �1e��2ti1=(1��3) +Dk;and k = 1; 2. The standardized 
urve isg�t = �0 h1� �1e��2ti1=(1��3) +Dk + �k;where �k � 0.The logarithm of the initial OD of the standardized 
urve is set to equal log(s0),i.e. �0(1� �1) 11��3 +D1 + �1 = �0(1� �1) 11��3 +D2 + �2 = log(s0): (5.5)Solving the equation (5.5) for �1 and �2, gives�1 = log(s0)� �0(1� �1) 11��3 �D1;�2 = log(s0)� �0(1� �1) 11��3 �D2:The stationary phase OD in
rements of the three part model 
urves areY1 = e�0+D1+��1 � e�0(1��1) 11��3 +D1 ;Y2 = e�0+D2+��2 � e�0(1��1) 11��3 +D2 :55



The time spans of the linear parts, �1 and �2, are adjusted so that the stationaryphase OD in
rement of the standardized 
urve equals the average of the stationaryphase OD in
rements of the three part model 
urves, i.e. Y � = Y1+Y22 . The expressionsfor �1 and �2 be
ome �1 = ��0 �D2 � �2 + �1 + log[$℄� ; (5.6)where$ = eD2+�22e�0 � 2e�0(1��1)1=(1��3) + e�0(1��1)1=(1��3)��1 + e�0(1��1)1=(1��3)��2 � e�0+�2���2 ;and �2 = ��0 �D2 + log[#℄� ; (5.7)where# = eD2+�22e�0 � 2e�0(1��1)1=(1��3) + e�0(1��1)1=(1��3)��1 + e�0(1��1)1=(1��3)��2 � e�0+�1���1 :One possible variant of this standardization method would be to require thatlog(Y �) = log(Y1)+log(Y2)2 (instead of Y � = Y1+Y22 ), yielding a methodology 
loselyrelated to the method II summary 
urves that will be presented in Chapter 6.Model �tting pro
edureThe models are �tted using a nonlinear least squares method. First a standard initialOD s0 is �xed. As in the standardization of a single 
urve, this pro
edure will beused only for 
urves whi
h initial OD a

ording to the Chapman-Ri
hards model �tis smaller than or equal to s0:1. Initial values for �1 and �2 are obtained by �rst standardizing ea
h of the
urves separately i.e. using the method presented in Se
tion 5.1.2. The Model (5.4) is �tted keeping �1 and �2 �xed.3. The stationary phase OD in
rements, Y1, Y2, and Y �, are 
al
ulated. If jY1+Y22 �Y �j > 
, a new value for �1 is 
al
ulated using equation (5.6) and the model is�tted again keeping �1 and �2 �xed. The 
onstant 
 is the maximum alloweddi�eren
e between Y1+Y22 and Y �.4. The stationary phase OD in
rements, Y1, Y2, and Y �, are 
al
ulated. If jY1+Y22 �Y �j > 
, a new value for �2 is 
al
ulated using equation (5.7) and the model is�tted again keeping �1 and �2 �xed.The steps 3 and 4 are repeated until jY1+Y22 � Y �j < 
. The model �tting pro
edureis illustrated in Figure 5.2. 56



Step 1 

Step 2 

Step 3 

Step 4 
Stop Figure 5.2: An illustration of the model �tting pro
edure for standardizing two 
urvessimultaneously.5.2 Standardizing downwardsWhen the standard initial OD is less than the observed initial OD, we 
annot applythe same standardization method as before. It would be possible to �t a Chapman-Ri
hards model to the observed data and then obtain a standardized 
urve by insertinga linear part in the in�e
tion point of the 
urve �tted to the observed data and movingthe 
urve to start at log(s0). However, this method would have at least two problems.First, the model of the standardized 
urve would not be the Chapman-Ri
hards model.Se
ond, when standardizing downwards, we do not always know if the observed 
urvehas rea
hed the optimal growth rate. Only adding a linear part to the observed 
urvemodel might underestimate the slope.For these reasons we will pro
eed di�erently. A Chapman-Ri
hards model 
urvethat la
ks a part in the middle is �tted to the observed data. The standardized 
urveis then the Chapman-Ri
hards model 
urve, in
luding the part in the middle (that ismissing in the 
urve �tted to the observed data). The stationary phase OD in
rementof the standardized 
urve is to be the same as of the observed 
urve, but the lag timeand growth rate do not need to be the same.The model of the observed 
urve 
an be written asg�t = 8>><>>: gt; t � tL;gt+� � (gtU � gtL) ; t � tL; (5.8)57
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Chapman−Richards model curve    
that lacks a part in the middle 
                                
Standardized curve              Figure 5.3: An illustration of standardizing one 
urve when the standard initial ODs0 is lower than the observed initial OD. Here Nt is the population size at time t, tLis the in�e
tion time point of the 
urve �tted to the observed data, and the in�e
tiontime point of the standardized 
urve is somewhere between tL and tU .where gt = �0 h1� �1e��2ti1=(1��3) +Dis the Chapman-Ri
hards fun
tion and� = tU � tL:The derivatives of the 
urve at t = tL and t = tU have to be the same. The downwardsstandardization is illustrated in Figure 5.3.The in�e
tion time point of the standardized 
urve is somewhere between tL andtU , and the in�e
tion time point of the 
urve �tted to the observed data is tL. ThetL is obtained by setting the derivative of gt,dgtdt = �0�1�2e��2t �1� �1e��2t�1=(1��3)�11� �3 ;at t = tL equal to the derivative at t = tU (=tL +�), and solving the equation withrespe
t to tL. Therefore,tL = 1�2 log2664�1e��2��e�2�+��2(1��3)�3 � 1�e��2(1��3)�3 � 1 3775 :58



The model of the standardized 
urve is written asg�t = �0 h1� �1e��2ti1=(1��3) +D + �;where � (� 0) is obtained by setting the initial log(OD) value of the standardized
urve to log(s0) �0(1� �1)1=(1��3) +D + � = log(s0) (5.9)and solving equation (5.9) with respe
t to � whi
h yields� = log(s0)� �0(1� �1) 11��3 �D:The stationary phase OD in
rement of the standardized 
urveY � = e�0+D+� � e�0(1��1) 11��3 +D+�has to equal the stationary phase OD in
rement of the observed 
urveY = e�0+D�(gtU�gtL) � e�0(1��1) 11��3 +D= e�0+D��0�(1��1e��2(tL+�)) 11��3 �(1��1e��2tL) 11��3 � � e�0(1��1) 11��3 +D :This gives � = �tL + 1�2 log264 �11� �(1� �1e��2tL) 11��3 + ['℄�1��3 375 ; (5.10)where' = �0 +D � log �e�0(1��1) 11��3 +D + e�0+D+� � e�0(1��1) 11��3 +D+���0 :Model �tting pro
edureFirst the standard initial OD s0 is �xed. The 
urves whi
h initial OD a

ording tothe Chapman-Ri
hards model �t is larger than or equal to s0 will be standardizedusing this pro
edure:1. An initial value of � is 
hosen.2. The model (5.8) is �tted using a nonlinear least squares method, keeping ��xed. 59



3. The stationary phase OD in
rements, Y and Y � are 
al
ulated. If jY �Y �j > 
,then a new value of � is 
al
ulated as given in (5.10). The 
onstant 
 is themaximum allowed di�eren
e between Y and Y �.The steps 2 and 3 are repeated until jY � Y �j < 
.Generalizing this method to two or more 
urves is not as trivial as in the 
ase ofstandardizing upwards. The algorithms for simultaneous standardizations of 
urvesdownwards, or for simultaneous standardizations where some 
urves would be stan-dardized upwards and some downwards, would be
ome 
ompli
ated but 
ertainly notimpossible. However, a standardized 
urve for two or more 
urves 
an easily be ob-tained by standardizing �rst ea
h 
urve separately and then making a summary 
urveof them. The summarizing method will be presented in Chapter 6.5.3 Fitting the standardization models to the dataWe �tted the standardization models to hundreds of growth 
urves of the data de-s
ribed in Se
tion 2.4.2 The initial OD values vary between 0.01 and 0.48, and theaverage is 0.107. There are large di�eren
es in initial OD between di�erent environ-ments (Figures 3.9-3.10). A nonlinear regression model was �tted via least squaresin the same way as in Se
tion 3.2.3. The maximum allowed di�eren
e in the sta-tionary phase OD in
rement between �tted and standardized 
urves was 0.001 (i.e.
 = 0:001). The parameter estimates from the Chapman-Ri
hards model �t wereused as start values in the model �tting algorithms for �0, �1, �2, �3, and D. Thestart value for � was 20js� s0j, where s is the initial OD a

ording to the Chapman-Ri
hards model �t to the observed data. The 
urve �t with di�erent standard initialOD values was investigated visually and also using the 
oe�
ient of determination.The �t is rather good when standardizing one 
urve, however, it is not as good aswith the Chapman-Ri
hards method. It is best for the 
urves with a small di�eren
ebetween the observed and standard initial OD. An example of the �t of a 
urvestandardized upwards with s0 = 0:15, s0 = 0:20, and s0 = 0:30 is given in Figure 5.4.The same 
urve is standardized downwards with s0 = 0:08, s0 = 0:05, and s0 = 0:03in Figure 5.5. Figure 3.2 shows the Chapman-Ri
hards model �t of the 
urve.For standardizing two 
urves the method works reasonably well when the 
urveshave rather normal and similar shapes, see e.g. Figure 5.6. Also for obtaining astandardized 
urve of several 
urves the method works, given that the 
urves haverather normal and similar shapes (Figure 5.7). However, if that is not the 
ase, the�t 
an be
ome poor (Figure 5.8).2The Matlab fun
tions are available upon request.60



Both when standardizing upwards or downwards, it is important that the standardinitial OD does not di�er too mu
h from the observed OD. When the di�eren
e is large,the �t 
an be
ome poor and the growth rate and lag time may be overestimated orunderestimated. Two examples of a �t when s0 is far from the observed initial ODare shown in Figure 5.9. The data are the same as in Figures 5.4-5.5. The growthparameter estimates from the standardized 
urves with di�erent s0 and the 
oe�
ientof determinations of the �tted 
urves are shown in Table 5.1.We also 
ompared the estimates of the growth parameters from the least squares �tof the Chapman-Ri
hards model with the estimates from the standardized 
urves. Theaverages of the growth parameter estimates are nearly the same with both methods ifthe standard initial OD is 
lose to the average of the observed initial OD values. The
oe�
ient of variations of repli
ates' growth parameter estimates tend to be smallerwith the standardization method.In Se
tion 3.3 we investigated the 
orrelation of the initial OD with growth rateand lag time estimated with ordinary Chapman-Ri
hard model and ordinary threepart model, i.e. when the time span of the linear part is modeled freely. In thesequel, we investigate the mentioned 
orrelations when the growth rate and lag timeare estimated with the standardization method. Nine di�erent standard initial ODvalues are used: 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, and 0.1. With all ofthem the 
orrelation between growth rate and initial OD redu
es remarkably, mostwith s0 = 0:04, 
ompared with the ordinary Chapman-Ri
hards model or the ordinarythree part model (Figures 3.8, 3.17, 5.10, and 5.11). The 
orrelation between initialOD and lag time redu
es also, however, it remains rather high with all values of s0.5.4 Dis
ussionFrom a 
on
eptional point of view, standardizing downwards proved to be more dif-�
ult than standardizing upwards. When standardizing downwards, if both the ob-served 
urve and the 
urve that we would have gotten from a 
ulture with a standardinitial OD, have rea
hed the exponential phase, they should look similar both inthe beginning and in the end, just as with standardizing upwards. However, if theobserved 
urve has not rea
hed the exponential phase, the whole population 
omposi-tion is di�erent, and the transition me
hanisms should give another 
urve form. If wehave rea
hed the exponential phase but our parametri
 model does not 
apture that,the shapes should again look similar. This observation makes the use of the 
ut-outapproa
h slightly less ad-ho
.In order not to have to model a long unknown part, the standard initial ODshould not be too low 
ompared to the observed initial OD. How large should thestandard initial OD then be? It may be natural to use approximately the average ofthe observed initial OD values, or a value that is 
onsidered to be ideal. However,61



more resear
h on how to 
hoose the standard initial OD is needed.Besides enabling easy 
omparison of data from di�erent experiments, the stan-dardization method redu
es the 
orrelation between initial OD and growth rate andinitial OD and lag time, 
ompared to the ordinary Chapman-Ri
hards method. It ispossible that with the standardization method we have a systemati
 error in both lagtime and growth rate. However, this systemati
 error will 
an
el out, at least partly,in the data analysis (in Chapter 8) when the mutant values are normalized using thewild type values in the same run.The aims of using the ordinary Chapman-Ri
hards method and the standardiza-tion method 
an be di�erent. The standardization may be appropriate when the aimis to have 
omparable 
urves or to visualize data rather than to model the 
urvesa

urately.Table 5.1: The growth parameter estimates from the standardized 
urve and the 
oef-�
ient of determination of the �tted 
urve (NOD0305, well 3). The growth parameterestimates and the 
oe�
ient of determination of the Chapman-Ri
hards model �t tothe same 
urve.Method � � Y r2Chapman-Ri
hards 2.897 0.227 4.007 0.9999Standardization, s0 = 0:015 4.368 0.270 4.031 0.9998Standardization, s0 = 0:030 3.674 0.251 4.019 0.9999Standardization, s0 = 0:050 3.223 0.238 4.008 0.9999Standardization, s0 = 0:080 2.835 0.228 3.995 0.9999Standardization, s0 = 0:150 2.277 0.215 3.986 0.9999Standardization, s0 = 0:200 2.148 0.212 3.981 0.9999Standardization, s0 = 0:300 1.980 0.207 3.976 0.9998Standardization, s0 = 0:900 1.711 0.198 3.962 0.9995
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Figure 5.4: Standardizing one 
urve (NOD0305, well 3) upwards with di�erent stan-dard initial OD. The log(OD) values (dotted), the �tted growth 
urve (solid) and thestandardized growth 
urve (dashed). The 
orresponding residual plots of the �tted
urves are on the right. 63
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Figure 5.5: Standardizing one 
urve (NOD0305, well 3) downwards with di�erentstandard initial OD values. The log(OD) values (dotted), the �tted growth 
urves(solid) and the standardized growth 
urve (dashed). The 
orresponding residual plotsof the �tted 
urves are on the right. 64
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Figure 5.6: Standardizing two 
urves (NAC0321 and NAC0323, well 88). The log(OD)values (dotted), the �tted growth 
urves (solid) and the standardized growth 
urve(dashed). The 
orresponding residual plot of the �tted 
urves is on the right.
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Figure 5.7: Eight wild types in referen
e 
ondition (NOC0326) �tted with the stan-dardization method. The log(OD) values (dotted), the �tted growth 
urves (solid) andthe standardized growth 
urve (dashed). The 
orresponding residual plot of the �tted
urves is on the right. 65



0 10 20 30 40
−3

−2

−1

0

1

2

Time

L
o

g
(O

D
)

0 10 20 30 40
−0.5

0

0.5

Time

R
e

si
d

u
a

ls

Figure 5.8: Eight wild types in 39oC (39
0307) �tted with the standardization method.The log(OD) values (dotted), the �tted growth 
urves (solid) and the standardizedgrowth 
urve (dashed). The 
orresponding residual plot of the �tted 
urves is on theright.
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Figure 5.9: Standardizing one 
urve (NOD0305, well 3) with values of s0 that di�ergreatly from the observed initial OD. The log(OD) values (dotted), the �tted growth
urves (solid) and the standardized growth 
urve (dashed). The 
orresponding residualplots of the �tted 
urves are on the right.
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Figure 5.10: The initial OD of the 99 wild types in referen
e 
ondition plotted againstlag time and growth rate estimates from the standardization method with di�erent s0.68
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Figure 5.11: The initial OD of the 99 wild types in referen
e 
ondition plotted againstlag time and growth rate estimates from the standardizing method with di�erent s0.
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Chapter 6Summarizing 
urvesIn Chapter 5 we suggested a method by whi
h the growth 
urves 
an be standardizedwith respe
t to the initial OD. It is possible to �t a standardized 
urve dire
tly on all
urves that we wish to have a representative 
urve for. However, if the 
urves do nothave similar shapes, or if there are many 
urves to be standardized simultaneously,the �t 
an be
ome poor and the estimated 
urves 
an get strange shapes. It may bebetter to standardize individual 
urves or groups of 
urves, and then summarize theresults.Two similar methods to summarize growth 
urves are presented. For these meth-ods, the 
urves to be summarized have to be standardized �rst, i.e. they must havethe same initial OD. The summary 
urves are based either on averages of the growthparameters d0, �, �, and Y , or on averages of log(d0), log(�), log(�), and log(Y ), ofthe standardized 
urves. In this 
hapter we work under the assumption that Conje
-ture 1 is true, so that the growth parameter parameterization 
an be assumed to beunique a

ording to Theorem 1.6.1 Method IIn this method, the Chapman-Ri
hards model is used for the summary 
urves. Thed0, �, �, and Y of the summary 
urve are to equal the averages of the 
orrespondingparameters of the standardized 
urves it summarizes, and the initial OD is to equalthe standard initial OD.The model parameter values are obtained as follows. Let n be the number ofstandardized 
urves to be summarized, and let�d0 = Pni=1 d0(i)n (6.1)71



be their average derivative at time zero,�� = Pni=1 �(i)n (6.2)their average lag time, �� = Pni=1 �(i)n (6.3)their average growth rate, and �Y = Pni=1 Y(i)n (6.4)their average stationary phase OD in
rement. Furthermore, s0 is the standard initialOD. To �nd the parameters in the original parameterization it would be possible touse the nonlinear least squares method to minimizef(�0; �1; �2; �3;D) = �s0 � e�0(1��1) 11��3 +D�2+ " �d0 � �0�1�2(1� �1) 11��3�11� �3 #2
+ 264��� (1� �1) 11��3 � � 11��33 + � �31��33 log( �11��3 )�2� �31��33 3752+ ���� �0�2� �31��33 �2+ � �Y ��e�0+D � e�0(1��1) 11��3 +D��2 ;and provided that this minimum is approximately zero, the argmin ve
tor wouldapproximate the ve
tor of the parameters �0; �1; �2; �3, and D. However, we have
hosen to use the least squares method only to obtain estimates for �1 and �3, and
al
ulate the values of �0, �2, and D expli
itly.In order to estimate �1 and �3, we �rst translate the 
urve as shown in (4.12) sothat the initial OD, growth rate, and lag time are all equal to one, the derivative attime zero is �d0�� , and the stationary phase OD in
rement is� �Ys0 + 1� 1���� � 1:72



The translation does not a�e
t �1 and �3. They 
an be estimated by applying thenonlinear least squares method sket
hed above on the equations below, derived from(4.1-4.5) and the assumptions that s = 1, � = 1, and � = 1:�d0�� = �1(1� �1) �3�31��3(1� �3)� �3�3�13� �Ys0 + 1� 1���� = e"�3 �31��3 log� �11��3 �+(1��1) 11��3 �� 11��33 #�1e1�(1��1) 11��3 :Then we move ba
k to the non-translated 
urve and obtain �0, �2, and D from theequations below, derived from (4.1-4.5),�2 = (1� �1) 11��3 � � 11��33 + � �31��33 log( �11��3 )� �31��33 �� ;�0 = ���2� �31��33 ;D = log(s0)� �0(1� �1) 1�3�1 :There is a theoreti
al risk that the minimum zero 
annot be rea
hed, be
ausethe spe
i�
 parameter ve
tor is not permitted in the Chapman-Ri
hards model (seeTheorem 2), but the problem seems to be of minor pra
ti
al relevan
e (see Se
tion6.3). This problem 
an be avoided by using method II, des
ribed in the next se
tion.6.2 Method IIHere, we 
onstru
t a summary 
urve for whi
h the logarithms of d0, �, �, and Y equalthe averages of the logarithms of the 
orresponding parameters of the standardized
urves that it summarizes. The model parameter values are obtained in the same way73



as in method I, ex
ept that instead of �d0, ��, ��, and �Y , as given in (6.1- 6.4),~d0 = ePni=1 log[d0(i)℄n = nqePni=1 log[d0(i)℄;~� = ePni=1 log[�(i)℄n = nqePni=1 log[�(i)℄;~� = ePni=1 log[�(i)℄n = nqePni=1 log[�(i)℄;~Y = ePni=1 log[Y(i)℄n = nqePni=1 log[Y(i)℄;are used.6.3 Fitting the dataBoth summarizing methods were tested on hundreds of growth 
urves of the datades
ribed in Se
tion 2.4.1 There were no problems with the �t as long as the lagtimes were not 
lose to zero. When this happened, method II was the more sensitiveone. Although theoreti
ally the method I summary 
urves do not always exist, thiswas never a problem in our data.Figure 6.1 shows examples of summary 
urves of double measurements for mu-tants in 39oC. The two methods often result in almost the same 
urve, sin
e thestandardized 
urves of the double measurements tend to have similar shapes. In Fig-ure 6.2 there are summary 
urves of a mutant in referen
e 
ondition and in Ca�eine,and a mutant in referen
e 
ondition and in Dinitrophenol. It 
an be seen that whenthe shapes of the standardized 
urves are very di�erent (whi
h is natural in this 
asesin
e they are 
urves from di�erent environments), the summary 
urves from the twomethods di�er more. An example of summarizing several 
urves 
an be seen in Figure6.3.Figure 6.4 displays an example of three di�erent ways to obtain a representative
urve for the wild types in 39oC. In the �rst one, all 48 wild type 
urves are stan-dardized simultaneously. In the se
ond one, a method I summary 
urve of all the48 individually standardized wild type 
urves is �tted. In the third one, a method Isummary 
urve of the six runwisely standardized wild type 
urves is �tted. The three
urves look similar. However, the lag time and growth rate di�er quite a lot bet-ween the three methods (Table 6.1): the standardization method gives a remarkably1The Matlab fun
tions are available upon request.74



smaller slope and thus smaller lag time than the other two methods. For 
ompari-son, we look at the averages of the growth parameter estimates of the 48 
urves fromthe Chapman-Ri
hards method. The summary 
urve of individually standardizedwild type 
urves gives growth parameter estimates 
losest to the averages from theChapman-Ri
hards method. However, espe
ially in lag time, the di�eren
es betweenthe estimates from the summary 
urve and the averages of the estimates from theChapman-Ri
hards method are large. Note however, that it is di�
ult to 
omparethe summarizing and simultaneous standardization methods be
ause in the simultane-ous standardization the standard initial OD has to be larger than the observed initialOD values. Therefore, in this example it is also di�
ult to 
ompare the Chapman-Ri
hards method and summarizing method estimates, sin
e the standard initial OD ishigher than the observed OD values. If the standard initial OD was 
lose to the aver-age of the observed OD values, the Chapman-Ri
hards and the summarizing methodwould produ
e rather similar results on average.6.4 Dis
ussionAlthough theoreti
ally method I summary 
urves do not always exist, this is not aproblem in our data. The two summarizing methods produ
e often almost the sameresults. There are more 
omputational problems with the method II when lag timesare very 
lose to zero.It would have been possible to try other methods too, su
h as using averages forsome parameters and averages of logarithms for some parameters. We have 
hosento take logarithms of all parameters be
ause we have previously used this type ofmeasures in the 
al
ulation of logarithmi
 phenotypi
 indexes (LPI) in the analysisof the data [6℄[26℄. Thus, this type of summary 
urves are natural be
ause they
an dire
tly be used in the 
al
ulation and illustration of the LPI. The LPI will bedis
ussed in more detail in Chapter 8.
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Figure 6.1: For three mutants: individually standardized 
urves (dashed) for both runsin 39oC (from top: 39E0307 and 39E0309, well 13; 39E0307 and 39E0309, well 25;39C0307 and 39C0309, well 7) and their summary 
urves (solid).76
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Figure 6.2: Individually standardized 
urves (dashed) and their summary 
urves(solid). (Top) A mutant in 
a�eine and in referen
e 
ondition (CAC0328 andNOC0305, well 4). (Bottom) A mutant in Dinitrophenol and in referen
e 
ondition(DND0316 and NOD0305, well 8).
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Figure 6.3: Individually standardized 
urves (dashed) and their summary 
urve (solid)for the eight wild types in a run in Natrium 
hloride (NAC0323).
Table 6.1: Growth parameter values of the representative 
urves for the wild types in39oC (see Figure 6.4).Estimation method � � YStandardized 
urve of all wild types 0.238 0.241 3.326Summary 
urve (method I) of all individuallystandardized wild type 
urves 1.484 0.275 3.384Summary 
urve (method I) of runwiselystandardized wild type 
urves 0.139 0.234 3.347Chapman-Ri
hards method onea
h wild type, average value 1.677 0.283 3.369
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Figure 6.4: Di�erent ways to obtain a representative 
urve for all the wild types in39oC. (Top, left): Wild type 
urves (dotted) and their standardized 
urve. (Top,right): Individually standardized wild type 
urves (dashed) and their summary 
urve(solid). (Bottom, left): Runwisely standardized wild type 
urves (dashed) and theirsummary 
urve (solid). (Bottom, right): In the same plot the standardized 
urve ofall 48 wild types (solid), the summary 
urve of all individually standardized 
urves(dotted) and the summary 
urve of runwise wild type 
urves (dashed). The summary
urves are �tted using method I.
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Chapter 7Quality �ltersIn large-s
ale s
reenings, where hundreds of strains are measured in ea
h run, a badrun may a�e
t the results of hundreds of tests in the data analysis. Espe
ially ifthe data from large-s
ale s
reenings are analyzed in an automati
 way, it is of greatimportan
e to try to implement �lters that automati
ally dete
t individual 
urvesor whole runs that look atypi
al or spurious. In this 
hapter we will dis
uss thepossibility to use the wild type 
ontrols in ea
h run to identify dubious runs. We willalso suggest a set of �ltering methods that will address some of the problems withindividual 
urves.The motivation for having wild type 
ontrols in ea
h run is twofold. First, we wishto neutralize the variability in the experimental 
onditions by 
omparing the behaviorof the mutants with the behavior of the wild types in the same run. Se
ond, the wildtypes are also there to 
ontrol that the within run variability is reasonably stable.We will dis
uss how we 
an �nd dubious runs by using the growth parameters fromthe standardized wild type 
urves and by visually 
omparing their runwise summary
urves.In most of the data 
olle
ted in PROPHECY, there are only two repeated mea-surements for ea
h strain, so that it is rather hard to distinguish a bad behavior of a
urve from the natural experimental variability of the two 
urves. However, e.g. thevery fa
t that one of the 
urves may look ni
e and 
an be �tted by a standardizedmodel 
urve, while the other 
annot, is a sign of warning.Coe�
ient of determination with a suitable threshold 
an be used to �lter outindividual 
urves that have atypi
al shapes and thus 
annot be well des
ribed bythe parametri
 model. This approa
h may also be applied to �nd 
ollapsing 
urves.The OD values o

asionally drop in su

essive time points long before the 
urve hasentered the stationary phase. If this happens for several su

essive measurement timepoints, there is probably some aggregation of 
ells atta
hing to ea
h other or to thewall of the well, and the measurements should not be trusted (an example is given in81



Figure 7.1). However, if this only happens in single time points and after that the ODvalues are "normal" again, it is believed to be due to air or gas bubbles, and the restof the measurements should not be too mu
h a�e
ted. Most of the time the OD valuesdrop in the end of the 
urves when they probably have rea
hed the stationary phase(an example is given in Figure 7.2). In these 
ases the 
hosen smoothening (i.e. ea
hOD value lower than the previous value is set to the previous value) will take 
are ofthis problem in a natural way. If the OD values drop before the 
urve has rea
hedthe stationary phase, the smoothening will typi
ally make the estimated 
urve biaseddownwards. We will des
ribe a simple �ltering pro
edure to dete
t 
urves with thistype of atypi
al behavior.The samples that do not at least double in size are �ltered away (an example isgiven in Figure 7.3). Some 
urves grow so slowly that at the last measurement timepoint they are still far from the stationary phase (an example is given in Figure 7.4).A simple �lter to dete
t su
h 
urves will also be des
ribed. Yet another problem,whi
h we will not treat in any formal way, is that in some experiments there seems tobe no delay at all and the relative growth is maximal at time zero.In the next 
hapter we will use the quality �ltering te
hniques des
ribed here to
ompare the variability of so 
alled logarithmi
 strain 
oe�
ients [6℄[26℄ for the growthparameters �, �, and Y estimated using ordinary Chapman-Ri
hards, standardization,and summarizing methods. To do that we need to �rst de�ne a set of quality �ltersand to dis
uss expli
it 
hoi
es for the thresholds.
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Figure 7.1: An example of a 
urve whi
h 
ollapses before entering the stationary phase(39C0309, well 39). The OD values are 
alibrated and blank 
orre
ted, but they arenot smoothened. 82
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Figure 7.2: An example of a 
urve whi
h 
ollapses after entering stationary phase(39C0309, well 83). The OD values are 
alibrated and blank 
orre
ted, but they arenot smoothened.7.1 Quality �lters for runsThe quality �lters for the runs are based on the data of the eight wild types in ea
hrun.Comparability of runs within environmentTo investigate the 
omparability of the runs within spe
i�
 environment, we �rstmake runwise method I summary 
urves of the wild types. These summary 
urves areinspe
ted visually. We also 
al
ulate 
oe�
ient of variations for �, �, and Y estimatedfrom the summary 
urves. If at least one of the 
oe�
ient of variations is higher thana threshold, the runs are not 
onsidered 
omparable. In that 
ase, either the deviatingruns or the whole environment 
an be �ltered away.Within run variabilityThe within run variability is assessed by 
al
ulating the 
oe�
ient of variations of the�, �, and Y from the standardized wild type 
urves in ea
h run. If the 
oe�
ient ofvariation for some run ex
eeds a threshold, the run will be �ltered away.7.1.1 Testing on dataThe 
urves in Methylmethanesulfonate (MM) have so abnormal shapes that theChapman-Ri
hards model 
annot des
ribe them su�
iently well and thus no sum-83
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Figure 7.3: An example of a "non-growing" 
urve (41E0312, well 91). The OD valuesare 
alibrated and blank 
orre
ted, but they are not smoothened.mary 
urves are �tted to the 
urves in this environment. The blank 
orre
ted and
alibrated non-smoothened wild type 
urves in Methylmethanesulfonate are shown inFigure 7.5.The runwise summary 
urves (s0 = 0:1) for ea
h environment ex
ept Methyl-methanesulfonate are shown in Figure 7.6. In Dinitrophenol (DN) and Ca�eine (CA)the stationary phase OD in
rements di�er rather mu
h between the runs, however,the shapes of the 
urves are similar. The 
oe�
ient of variations for the growthparameters from the summary 
urves are given in Table 7.1. The 
oe�
ient of varia-tion for lag time is rather high in some environments, espe
ially in 39oC, 41oC, andMV. In fa
t, in these environments there tends to be no delay, and the growth oftenslows down after a while. Thus 
al
ulating lag times in these environments may bequestionable.Appropriate thresholds for the 
oe�
ient of variations 
ould be 10% for growthrate and 20% for stationary phase OD in
rement. Setting a threshold to the 
oe�
ientof variation for lag time is more 
ompli
ated. The lag time itself is not a very robustmeasure and therefore either no threshold or a rather high threshold, e.g. 100%, forthe 
oe�
ient of variation of lag time should be applied.If at least one of the 
oe�
ient of variations ex
eeds the threshold, we 
on
ludethat there is something seriously wrong with the experiment and it should be redoneor the results should be simply ex
luded from the analysis (or, at least, the paramet-ri
 model should not be used). With these thresholds all the environments (ex
eptMethylmethanesulfonate whi
h was ex
luded due to abnormal 
urve shapes) wouldpass the �lter for the 
omparability of runs within environment.84
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Figure 7.4: A growth 
urve (NAC0323, well 39) whi
h has not rea
hed the stationaryphase at the last measurement time point. The OD values are 
alibrated and blank
orre
ted, but they are not smoothened.The 
oe�
ient of variations of the growth parameters from the standardized 
urvesof the eight wild types in ea
h run are given in Tables 7.2-7.3. Again, the 
oe�
ient ofvariations for lag time are high, espe
ially in environments 39oC, 41oC, and MV. Wewill apply the following thresholds for the runwise 
oe�
ient of variations: 100% forthe lag time, 15% for the growth rate, and 25% for the stationary phase OD in
rement.With these thresholds no runs are �ltered out.7.2 Quality �lters for wild type 
urvesWe try to �nd wild type 
urves that have not rea
hed the stationary phase, 
ollapsebefore rea
hing the stationary phase or 
annot be su�
iently well des
ribed by theparametri
 model. We also �lter out 
urves whi
h deviate mu
h from the others in thesame run. All �lters ex
ept (7.1) are based on the standardized 
urves. Appropriatethresholds for the di�erent measures will be proposed in Se
tion 7.2.1.Curves that have not rea
hed the stationary phaseWe try to identify 
urves that have not rea
hed the stationary phase by investigatingthe relation between the derivative of the �tted 
urve at the last time point (dend)and the growth rate (�). The derivative at the last time point isdend = �0�1�2e��2tend �1� �1e��2tend� 11��3�11� �3 ;85



where tend is the last time point. Let 
 dend� be the threshold for dend� . If dend� � 
 dend� ,the 
urve is 
onsidered to have rea
hed the stationary phase. The 
urves for whi
hdend� > 
 dend� are �ltered out.Curves that 
ollapse before rea
hing the stationary phaseCurves that 
ollapse before rea
hing the stationary phase are to be �ltered away by�rst looking at the smoothened and non-smoothened OD-values (re
all that all dataare smoothened so that ea
h OD value lower than previous value is 
orre
ted to equalthe previous value). We 
al
ulate the absolute values of the di�eren
es of the ODvalues after and before smoothing, relative to the OD values after smoothing,! = ����ODsmoothened �ODnon-smoothenedODsmoothened ���� ; (7.1)until one hour after the stationary phase OD in
rement has been rea
hed1, ignoringthe �rst �ve time points be
ause the measurements tend to be shaky in the beginning.Of these !'s, we take the third highest2, and denote it by !�. Let 
!� be a thresholdfor !�. If !� > 
!� the 
urve is 
onsidered 
ollapsing before rea
hing the stationaryphase and it is �ltered out. This method, however, fails to dete
t many 
ollapsing
urves. Therefore, we also investigate the 
oe�
ient of determination, r2, as given in(3.10).Curves that 
annot be well des
ribed with the parametri
 modelWith the help of the 
oe�
ient of determination also 
urves that 
annot be welldes
ribed with the parametri
 model are dete
ted.Curves that deviate greatly from the other 
urves in the same runThe within run 
oe�
ient of variations of the growth rate (
v�) and stationary phaseOD in
rement (
vY ) of the remaining 
urves are investigated in order to dete
t 
urvesthat deviate greatly from the other 
urves in the same run. Let 

v� and 

vY be the
orresponding thresholds. When 
v� > 

v� or 
vY > 

vY , the 
urve that deviatesmost from the others with respe
t to this parameter is removed. The 
oe�
ientof variations are 
al
ulated again, and the same pro
edure is repeated until both
oe�
ient of variations are below the thresholds.1De�ned as where the stationary phase OD in
rement a

ording to the �t of the standardized
urve has been obtained.2The third highest value of ! is 
hosen so that the 
urves would not be �ltered away be
ause ofa single 
ollapsing OD value. 86



7.2.1 Testing on dataBefore de
iding on the thresholds for the quality �lters for wild types, we tested howthey would work on our data (i.e. all wild types in referen
e 
ondition and in allenvironments ex
ept MM). We use a standard initial OD 0.1.Most wild type 
urves have rea
hed the stationary phase. An example of a wildtype 
urve whi
h may be 
onsidered not to have rea
hed the stationary phase is shownin Figure 7.7. For this 
urve the dend� is 0.138.Figures 7.8 and 7.9 display the non-smoothened growth 
urves of the wild types oftwo runs in 39oC. The !� values (Table 7.4) might alarm about the wild type 
urve7 in run 1. The wild type 
urve number 7 in run 2 that 
ollapses already at an earlystage might not be dete
ted by investigating the !�. This 
urve 
an be dete
ted bylooking at its r2 whi
h is 
learly smaller than the other wells' r2 (Table 7.4). In fa
t,also the 
urve 7 in run 1 would have been dete
ted by investigating its r2. Figure7.10 shows another example of a 
urve that 
annot be su�
iently well des
ribed bythe model. For this 
urve the r2 is 0.9066.The previous steps �lter out most of the deviating 
urves. The measures of 
v�and 
vY dete
t 
urves that deviate from the others even if they are otherwise rather"normal". These type of deviating 
urves are rare.After having tested the �ltering steps on our data, we propose the following thresh-olds: 
 dend� = 0:08, 
r2 = 0:995, 
!� = 0:3, 

v� = 15%, 

vY = 25%. The wildtype 
urves in 39oC whi
h pass the quality �lters using these thresholds are in bla
kand the ones that do not are in grey in Figure 7.11. Roughly 96% of the wild type
urves in all environments pass the quality �lters.
7.3 Quality �lters for mutant 
urvesWith the quality �lters for mutants, like for wild types, we try to �nd 
urves thathave not rea
hed the stationary phase, 
ollapse before rea
hing the stationary phaseor 
annot be su�
iently well des
ribed by the parametri
 model. In addition, wetry to �nd non-growing 
urves (this part is not in
luded in the wild type quality�lters be
ause in our data there are no non-growing wild type 
urves). No repli
ate
omparisons are done be
ause there are only two repli
ates for ea
h mutant (ex
eptin the referen
e 
ondition). All �lters, ex
ept (7.1) and when de�ning non-growing
urves, are based on the standardized 
urves.87



Non-growing 
urvesNon-growing 
urves are de�ned as the 
urves whose end OD value is less than twi
ethe initial OD value.3 For the non-growing 
urves the lag time is set to 48 hours butno growth rate or stationary phase OD in
rement is 
al
ulated.The 
urves that have not rea
hed the stationary phaseThe 
urves that have not rea
hed the stationary phase are �ltered out by investigatingthe derivative at the last time point, the same way as in 
ase of wild types. The 
urveswhi
h are 
onsidered not to have rea
hed the stationary phase are ex
luded from theanalysis of stationary phase OD in
rement, but if they pass the other 
riteria of thequality assessment, they remain in the analysis of lag time and growth rate.Curves that 
annot be well des
ribed with the parametri
 modelCurves are to be ex
luded 
ompletely from the analysis of the data, if they 
annotbe �tted with the parametri
 model or 
ollapse before rea
hing the stationary phase.These 
urves are dete
ted in the same way as in 
ase of wild types.We tested the quality �lters on all mutants in referen
e 
ondition and in the sixenvironments. The standard initial OD s0 = 0:1 was used. The same thresholds asfor wild types, i.e. 
 dend� = 0:08, 
!� = 0:3, and 
r2 = 0:995 seem to work well.Using the proposed thresholds, 5:6% of the mutant 
urves are �ltered out totally, 4:7%are 
onsidered not to have rea
hed the stationary phase but qualify for the analysisof lag time and growth rate while 0:14% are non-growing. These last ones are setto have a lag time 48 hours but are ex
luded from the analysis of growth rate andstationary phase OD in
rement. Note however, that when one of the two mutant
urves is �ltered out, the dupli
ate is not used in the analysis either. If at least oneof the four mutant 
urves in the referen
e 
ondition is �ltered out, its repli
ates arenot used in the analysis either (very few 
urves in the referen
e 
ondition are �lteredout). Taking also the dupli
ate/repli
ate ex
lusion into a

ount, 9:5% of the 
urvesare �ltered out totally, 6:1% are �ltered out from the analysis of the stationary phaseOD in
rement but are in
luded in the analysis of lag time and growth rate, and 0:2%are in
luded in the analysis of lag time but ex
luded from the analysis of growth rateand stationary phase OD in
rement.
3The OD values are 
alibrated, blank 
orre
ted and smoothened.88



   
 
 
 
 

   
 
 
 
 

   
 
 
 
 

   
 
 
 
 

   
 
 
 
 

   
 
 
 
 

   
 
 
 
 

   
 
 
 
 

   
 
 
 
 

   
 
 
 
 

   
 
 
 
 

   
 
 
 
 

   
 
 
 
 

   
 
 
 
 

   
 
 
 
 

   
 
 
 
 

   
 
 
 
 

   
 
 
 
 

   
 
 
 
 

   
 
 
 
 

   
 
 
 
 

   
 
 
 
 

   
 
 
 
 

   
 
 
 
 

   
 
 
 
 

   
 
 
 
 

   
 
 
 
 

   
 
 
 
 

   
 
 
 
 

   
 
 
 
 

   
 
 
 
 

   
 
 
 
 

   
 
 
 
 

   
 
 
 
 

   
 
 
 
 

   
 
 
 
 

   
 
 
 
 

   
 
 
 
 

   
 
 
 
 

   
 
 
 
 

   
 
 
 
 

   
 
 
 
 

   
 
 
 
 

   
 
 
 
 

   
 
 
 
 

   
 
 
 
 

   
 
 
 
 

   
 
 
 
 

Figure 7.5: Non-smoothened wild type 
urves in Methylmethanesulfonate (row-wisefrom the top: MMC0408, MMC0411, MMD0408, MMD0411, MME0408, MME0411.).
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Figure 7.6: Runwise summary 
urves of the eight wild types in ea
h run.90



Table 7.1: Coe�
ient of variations (%) for the growth parameters from the runwisesummary 
urves of the eight wild types in ea
h environment.Environment � � Y39oC 24.24 3.26 10.5141oC 68.36 7.07 7.39DN 9.52 3.75 13.25CA 18.34 6.09 18.30NA 15.87 4.18 8.85MV 35.02 6.13 8.08NO 12.17 3.61 4.67
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Figure 7.7: A wild type growth 
urve (NAC0321, well 127) whi
h may not have rea
hedthe stationary phase at the last measurement time point.91



Table 7.2: Coe�
ient of variations (%) for the growth parameters from the eightstandardized wild type 
urves in ea
h run.Run � � Y39C0307 42.82 8.19 16.6239D0307 21.79 1.39 9.8239E0307 10.72 1.75 8.2839C0309 9.42 2.32 10.0339D0309 12.84 2.76 16.3039E0309 10.56 1.66 13.3841C0312 27.20 3.21 11.2741D0312 79.96 4.97 17.0941E0312 85.15 2.31 6.9941C0314 41.98 5.64 19.4241D0314 56.52 4.05 15.6041E0314 89.64 5.30 11.87DNC0316 3.81 3.50 21.43DND0316 13.03 9.05 17.89DNE0316 5.09 12.35 22.58DNC0319 7.24 4.86 17.82DND0319 11.05 10.11 19.17DNE0319 6.49 6.70 17.41CAC0328 12.10 5.01 15.36CAD0328 10.41 2.02 13.19CAE0328 14.23 4.15 13.49CAC0330 16.20 5.83 18.73CAD0330 11.09 2.07 23.27CAE0330 50.68 9.62 16.07NAC0321 12.85 1.24 7.44NAD0321 17.02 3.46 24.96NAE0321 22.37 8.28 9.72NAC0323 24.57 3.24 9.61NAD0323 11.97 3.38 5.15NAE0323 15.08 1.56 8.55
92



Table 7.3: Coe�
ient of variations (%) for the growth parameters from the eightstandardized wild type 
urves in ea
h run.Run � � YMVC0413 64.90 2.44 9.39MVD0413 46.50 0.83 6.03MVE0413 42.35 2.73 3.17MVC0417 42.49 3.78 8.48MVD0417 69.92 6.88 22.36MVE0417 59.00 2.70 12.29NOC0305 5.25 1.97 7.44NOD0305 16.41 7.43 6.43NOE0305 13.73 4.20 5.12NOC0326 2.38 1.28 5.22NOD0326 9.37 1.87 13.29NOE0326 9.37 1.87 13.30NOC0406 7.66 0.80 12.09NOD0406 3.56 0.94 4.61NOE0406 3.93 1.00 3.72NOC0426 10.77 1.63 12.70NOD0426 6.00 1.02 8.09NOE0426 3.24 1.07 4.51
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Figure 7.8: The non-smoothened wild type growth 
urves of run in 39oC (39D0309).
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Figure 7.9: The non-smoothened wild type growth 
urves of run in 39oC (39E0309).
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Table 7.4: The !� and the 
oe�
ient of determination (r2) for the standardized wildtype growth 
urves in two runs in 39oC.Wild type number !� !� r2 r2(39D0309) (39E0309) (39D0309) (39E0309)1 0 0 0.9983 0.99972 0 0 0.9995 0.99833 0 0 0.9989 0.99974 0 0 0.9990 0.99975 0 0 0.9978 0.99966 0 0 0.9994 0.99987 0.4552 0.1876 0.9832 0.99018 0 0 0.9991 0.9997
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Figure 7.10: An example of a bad 
urve �t (MVD0417, well 171). The log(OD) values(dotted), the �tted growth 
urve (solid) and the standardized growth 
urve (dashed).95



   
 

 

 

   
 

 

 

   
 

 

 

   
 

 

 

   
 

 

 

   
 

 

 

   
 

 

 

   
 

 

 

   
 

 

 

   
 

 

 

   
 

 

 

   
 

 

 

   
 

 

 

   
 

 

 

   
 

 

 

   
 

 

 

   
 

 

 

   
 

 

 

   
 

 

 

   
 

 

 

   
 

 

 

   
 

 

 

   
 

 

 

   
 

 

 

   
 

 

 

   
 

 

 

   
 

 

 

   
 

 

 

   
 

 

 

   
 

 

 

   
 

 

 

   
 

 

 

   
 

 

 

   
 

 

 

   
 

 

 

   
 

 

 

   
 

 

 

   
 

 

 

   
 

 

 

   
 

 

 

   
 

 

 

   
 

 

 

   
 

 

 

   
 

 

 

   
 

 

 

   
 

 

 

   
 

 

 

   
 

 

 

Figure 7.11: The wild type growth 
urves in 39oC (ea
h row representing a run, fromthe top: 39C0307, 39D0307, 39E0307, 39C0309, 39D0309, 39E0309). The ones thatwould pass the quality �lters are in bla
k and the ones that would not are in grey.
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Chapter 8The e�e
t of standardization andsummarizing on logarithmi
 strain
oe�
ients (LSC)In the analysis of the data, the growth behavior of ea
h mutant is related to theaverage behavior of the eight wild types in the same run, forming wild type normal-ized growth measures, termed runwise logarithmi
 strain 
oe�
ients, LSC�, LSC�,and LSCY .1 The �nal LSC�, LSC�, and LSCY are the averages of the two (in en-vironment) or four (in referen
e 
ondition) runwise logarithmi
 strain 
oe�
ients.Furthermore, to provide quantitative measures of the spe
i�
 gene-by-environmentintera
tions and to 
ompensate for general growth defe
ts observed even under fa-vorable growth 
onditions, LSC from environments are related to LSC from referen
e
ondition, forming logarithmi
 phenotypi
 indexes, LPI�, LPI�, and LPIY [26℄.We are interested in whether standardization and summarizing have an e�e
t onthe logarithmi
 strain 
oe�
ients, and espe
ially on the varian
e of the runwise LSC,i.e. the varian
e of the wild type normalized mutant repli
ates. We 
ompare theLSC 
al
ulated based on the �tted (1) ordinary Chapman-Ri
hards model 
urves, (2)standardized (s0 = 0:1) 
urves for mutants and method I summary 
urves for wildtypes, and (3) standardized 
urves for mutants and method II summary 
urves forwild types. The LSC values are 
al
ulated on the data that pass the quality �lterspresented in Chapter 7. We see the repli
ates as a sample of size 2 (environments)or 4 (referen
e 
ondition), whi
h is motivated by that the repetitions are in di�erentruns.1The terms used are LSCadaptation , LSCrate and LSCe�
ien
y but we refer to these as LSC�, LSC�,and LSCY 97



8.1 LSCThe logarithmi
 strain 
oe�
ient for lag time for a spe
i�
 mutant in a spe
i�
 envi-ronment is 
al
ulated asLSC� = P2r=1 n1s Psk=1 log(wt(r)k )� log(x(r))o2 (8.1)= LSC(1)� + LSC(2)�2 ;and in the referen
e 
ondition asLSC�(0) = P4r=1 n1s Psk=1 log(wt(r)0;k)� log(x(r)0 )o4 (8.2)= LSC(1)�(0) + LSC(2)�(0) + LSC(3)�(0) + LSC(4)�(0)4 ;where wt(r)k is the lag time of the kth wild type in the environment in the run r, sis the number of wild types (that remain in the data after the quality �ltering, themaximum is eight) in the run, wt(r)0;k is the lag time of the kth wild type in the referen
e
ondition in the run r, x(r) is the lag time of the mutant in the run r, and x(r)0 is thelag time of the mutant in the referen
e 
ondition in the run r [6℄.The logarithmi
 strain 
oe�
ients for growth rate and stationary phase OD in-
rement are 
al
ulated analogously, ex
ept that for the LSC�, the doubling time, i.e.log(2)� , is used instead of the growth rate �. The logarithmi
 phenotypi
 indexes for aspe
i�
 mutant in a spe
i�
 environment, are 
al
ulated asLPI� = LSC� � LSC�(0) (8.3)LPI� = LSC� � LSC�(0) (8.4)LPIY = LSCY (0) � LSCY : (8.5)8.1.1 The varian
e of runwise LSCTo investigate whether the standardization redu
es the varian
e of the runwise loga-rithmi
 strain 
oe�
ients2 we 
al
ulated the LSC in three di�erent ways. First, using2That is, the varian
e of LSC(1) and LSC(2), and the varian
e of LSC(1)(0), LSC(2)(0), LSC(3)(0), andLSC(4)(0), separately for ea
h mutant in ea
h environment and ea
h growth parameter.98



the growth parameters from the Chapman-Ri
hards method in (8.1) and (8.2). Se
ondand third, using the growth parameters from the standardized 
urves for the mutantsas before, but for the wild types the method I and method II summary 
urve growthparameters. That is, instead of1s sXr=1 log(wt(k)r ) and 1s sXr=1 log(wt(k)0;r )the logarithm of the spe
i�
 growth parameter of the summary 
urve is taken. Notethat the third way 
orresponds to using the growth parameters from the standardized
urves in (8.1) and (8.2).The averages of the LSC�, LSC�, and LSCY and the averages of the standarddeviations of the runwise LSC�, LSC�, and LSCY in ea
h environment and over allenvironments are shown in Table 8.1. The lag time estimation for the 
urves inenvironments 39oC and 41oC is questionable be
ause there seems to be often almostno delay.8.2 Dis
ussionOverall, the LSC-varian
es are slightly smaller with the standardizing and summa-rizing methods than with the dire
t Chapman-Ri
hards approa
h. It is natural thatthe di�eren
es in LSC varian
es are not large between the three methods sin
e thedi�eren
es in initial OD values are rather small within runs (Table 3.1).We used only s0 = 0:1. It would have been interesting to do the LSC 
omparisonsalso with other values of s0. This will be the subje
t of further resear
h.
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Table 8.1: Averages of the logarithmi
 strain 
oe�
ients and averages of the standarddeviations of the runwise logarithmi
 strain 
oe�
ients.Environment Method LSC� ŝLSC� LSC� ŝLSC� LSCY ŝLSCYC-R -0.13 0.15 -0.07 0.03 0.02 0.1239oC Summary I -0.09 0.22 -0.07 0.03 0.02 0.12Summary II -0.17 0.30 -0.07 0.03 0.02 0.12C-R 0.14 0.42 -0.06 0.03 0.06 0.1241oC Summary I 0.86 0.74 -0.07 0.03 0.07 0.12Summary II 0.55 0.80 -0.06 0.03 0.06 0.12C-R -0.05 0.07 -0.02 0.07 0.06 0.24DN Summary I -0.06 0.06 -0.01 0.07 0.07 0.24Summary II -0.06 0.06 -0.01 0.07 0.06 0.24C-R -0.08 0.12 -0.08 0.05 -0.05 0.14CA Summary I -0.13 0.18 -0.06 0.05 -0.04 0.14Summary II -0.17 0.19 -0.06 0.05 -0.06 0.14C-R -0.10 0.09 -0.01 0.03 0.01 0.08NA Summary I -0.12 0.08 -0.01 0.03 0.01 0.08Summary II -0.13 0.08 -0.01 0.03 0.01 0.08C-R -0.56 0.97 -0.04 0.06 -0.02 0.11MV Summary I -0.48 0.38 -0.04 0.03 -0.01 0.09Summary II -0.74 0.53 -0.04 0.03 -0.02 0.09C-R -0.07 0.13 -0.04 0.05 0.01 0.09NO Summary I -0.05 0.12 -0.04 0.04 0.02 0.09Summary II -0.05 0.12 -0.04 0.04 0.02 0.09C-R -0.14 0.29 -0.05 0.05 0.01 0.13All Summary I -0.14 0.28 -0.04 0.04 0.01 0.13Summary II -0.05 0.24 -0.04 0.04 0.02 0.13
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Chapter 9Con
lusionsModern genomi
s o�ers great opportunities for the study of measurement-relatedtheoreti
al questions that are important in pra
ti
e. In this thesis we fo
used ontwo problems related to the analysis of mi
robial growth: how to standardize thegrowth 
urves with respe
t to the initial population size, and how to estimate one
urve from several experiments with di�erent initial population sizes. We adopted theChapman-Ri
hards growth 
urves as our basi
 tool.The Chapman-Ri
hards model works well for a wide range of "normal" growth
urves. However, for growth 
urves of atypi
al shapes the �t 
an be poor. Given thediversity of forms atypi
al 
urves assume, it is very di�
ult if not impossible to �nda parametri
 model that �ts su�
iently well all types of growth 
urves. One of themain 
auses of the bad �t with the Chapman-Ri
hards model in our setting is that itassumes that the in�e
tion point is after the �rst measurement time point, whereasin many atypi
al 
urves this does not seem to be the 
ase. An in�e
tion point beforestarting the measurements implies a negative lag time and that the maximum growthrate was obtained before starting the measurements. Hen
e, estimating lag time andgrowth rate from this type of 
urves is questionable.Some of the 
on
erns related to the growth parameter estimation do not dire
tlydepend on the model used. Warringer and Blomberg [25℄ stressed that the stationaryphase OD in
rement should be viewed with some 
aution as an indi
ator of e�
ien
yof growth. First, the relation between the biomass and the OD measured 
an di�erquite substantially between di�erent strains. Se
ond, it is not known if the end of thegrowth phase is always the result of 
omplete utilization of the 
arbon sour
e glu
oseor due to other limitations.Perhaps the most serious 
on
ern related to the growth parameter estimation iswhether the de�nition of the lag time used is appropriate or not. There is 
urrentlyno generally a

epted de�nition for the boundary between the lag and the exponentialphases. If the lag time is de�ned using the tangent line through the in�e
tion point,101



it will be proportionally shorter for slowly growing 
ells than for rapidly growing 
ells.Another problem might be that if the OD measurements are not started soon afterthe sample has been prepared, the lag time is in reality longer than what 
an be seenfrom the growth 
urve. Eri
son et al [6℄ are 
urrently working with another type oflag time de�nition than the one we have used.The lag time and the growth rate depend strongly on the initial population size.However, in large s
ale experiments, it is di�
ult to have the same 
onstant initialpopulation size. We introdu
ed a method to standardize growth 
urves with respe
tto the initial population size. We use a 
ertain Chapman-Ri
hards model to try topredi
t what the behavior of a growth 
urve would have been, had the populationhad a standard initial population size. The standardization redu
es remarkably theinitial population size 
orrelation with the lag time and growth rate, 
ompared tothe ordinary Chapman-Ri
hards method. It is also very useful for visualizing data:without standardization, it is di�
ult to know what the di�eren
e between the 
urvesis. We found that the di�eren
es between the initial population sizes tend to belarger between environments than within environments (Table 3.1). Therefore, thestandardization is important espe
ially be
ause it enables 
omparisons of 
urves fromdi�erent environments. Furthermore, it will be of great value when 
lustering on thewhole 
urves is desired.We introdu
ed two ways to 
onstru
t a summary 
urve from standardized 
urves,in order to represent repetitions of similar growth experiments by a single 
urve. Theyare based on the averages of the growth parameters (method I), or on the averages ofthe logarithms of the growth parameters (method II) of the 
urves to be summarized.We showed that the method II summary 
urves always exist whereas the methodI summary 
urves do not always exist, although the problem seems to be of minorpra
ti
al relevan
e.The standardized and the summary 
urves 
ould be a natural 
omplement tothe phenotypi
 library Warringer et al [27℄, and Fernandez-Ri
aud et al [7℄ havebuilt. For example, a standardized 
urve for ea
h mutant in ea
h run and a summary
urve for the eight wild types in ea
h run 
ould be made available in PROPHECY.Furthermore, a web tool to analyze the yeast growth data using the standardizingmethod, and to dete
t individual 
urves or whole runs that are atypi
al or spurious,
ould be developed.More resear
h on how to 
hoose the standard initial population size is needed.One dire
tion of study is to use the eight wild types in ea
h run, and investigatethe mean and the varian
e of their growth parameters from standardized 
urves withdi�erent standard initial population sizes. It would also be interesting to 
omparethe standardizing method to the Warringer method [26℄ used today in PROPHECY,e.g. by 
omparing the LSC-values and their varian
es. This is the subje
t of futureresear
h. 102



The initial population size 
orrelation with lag time and growth rate 
ould be anartifa
t of the 
alibration 
urve fun
tion or the model. However, we do not believe thatit is due to the 
alibration 
urve fun
tion, be
ause the 
orrelation redu
es remarkablywith the standardization. We do not believe that it is due to the model either,be
ause the 
orrelation is high also when using the Warringer method [26℄ to estimatethe growth parameters. We do believe that it 
ould be a biologi
al e�e
t, i.e. thatthe maximum growth rate 
annot be rea
hed if the initial population size is too large.This has not been tested properly. Therefore, studies with very small initial OD valuesin parallel with initial OD values of the size we have now should be done to verifywhether this really is the 
ase.The quality �lters presented in this thesis probably need to be developed furtherand 
omplemented. Some of the problems related to the shapes of the growth 
urvesmay be due to a slightly false 
alibration 
urve fun
tion or due to a di�erent (orvarying) real blank than the one used in our subtra
tion. Both of these issues requirefurther resear
h. The measurements that are mostly a�e
ted by the blank are those inthe very beginning of the logarithmi
 growth 
urve. Therefore, it may be relevant tostudy the e�e
t of the �rst measurement points on the estimated growth parameters.This 
an be done for example by systemati
ally 
omparing the estimated growthparameters and their varian
es, when the �rst measurement point is ignored, the �rsttwo measurement points are ignored, the �rst three measurement points are ignored,et
. One may also try to model the blank using a Bayesian type approa
h [18℄ so thatit 
an di�er from the �xed blank value with a penalty in the least squares pro
edure.Also other smoothing methods besides the one we used, where ea
h OD value lowerthan the previous value is set to the previous value, may be 
onsidered. One alternativeis to set ea
h OD value lower than the previous value to the average of the logarithmsof the previous and the next value.It would be interesting to study the possibility to standardize growth 
urves usinga non-parametri
 sigmoidal model. Standardizing upwards 
an probably be doneapproximately the same way as it was done in this thesis, but it may be more di�
ultto standardize downwards. Some attempts to estimate growth parameters using anon-parametri
 sigmoidal model are done by Warringer et al [24℄.
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Figure A.1: In the motivating dataset: the positioning of the mutants (numbered) andwild types (balls) on the plates and on the three di�erent Bios
reen instruments (C, Dand E).
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Table B.1: Calibration 
urve fun
tion data (run in June 3, 2002). d=diluted, ud=undiluted,the abbreviations for the spe
i�
 Bios
reen instruments are given in the parenthesis. Well spe-
i�
 blank values are subtra
ted from all the OD values and the undiluted values are multipliedby the dilution fa
tor 10.ud (B) d (B) ud (C) d (C) ud (D) d (D) ud (E) d (E) ud (F) d (F)1.211 2.5 1.181 2.78 1.255 3.09 1.196 2.9 1.276 3.271.2 2.65 1.174 2.94 1.243 3.34 1.215 3.13 1.265 3.481.158 2.63 1.134 2.92 1.217 3.29 1.204 3.13 1.231 3.51.151 2.26 1.127 2.5 1.212 2.93 1.206 2.76 1.223 2.981.134 2.18 1.112 2.41 1.191 2.73 1.192 2.6 1.205 2.861.108 1.84 1.094 2.14 1.166 2.33 1.171 2.24 1.17 2.521.09 1.63 1.071 1.87 1.152 2.11 1.163 2 1.156 2.231.011 1.58 1.036 1.82 1.096 2.05 1.125 1.97 1.107 2.320.98 1.24 1.018 1.4 1.094 1.66 1.109 1.62 1.084 1.770.844 1.19 0.875 1.42 0.997 1.6 1.025 1.59 1.008 1.70.858 1.32 0.894 1.32 0.927 1.34 0.862 1.44 0.936 1.390.866 1.06 0.902 1.14 0.952 1.46 0.905 1.45 0.95 1.470.766 0.9 0.8 1.03 0.858 1.26 0.814 1.35 0.849 1.430.919 1.55 0.951 1.72 1.011 2.07 0.973 2.15 1.013 2.210.684 0.82 0.727 0.95 0.78 1.17 0.751 1.21 0.779 1.230.717 0.88 0.788 1 0.817 1.2 0.79 1.28 0.816 1.320.547 0.66 0.628 0.78 0.643 0.9 0.613 0.93 0.647 0.990.577 0.66 0.527 0.74 0.608 0.87 0.615 0.92 0.663 1.030.521 0.64 0.552 0.76 0.615 0.91 0.619 0.94 0.657 1.030.435 0.49 0.459 0.56 0.5 0.72 0.508 0.72 0.515 0.760.577 0.66 0.614 0.77 0.648 0.9 0.637 0.93 0.699 1.030.515 0.49 0.553 0.58 0.602 0.68 0.6 0.66 0.632 0.750.532 0.45 0.563 0.52 0.624 0.64 0.634 0.65 0.648 0.720.506 0.36 0.542 0.43 0.599 0.52 0.608 0.52 0.628 0.570.477 0.45 0.512 0.52 0.563 0.59 0.57 0.62 0.592 0.680.23 0.18 0.262 0.22 0.291 0.29 0.306 0.19 0.353 0.220.186 0.23 0.21 0.26 0.238 0.32 0.25 0.33 0.275 0.350.269 0.25 0.293 0.27 0.324 0.37 0.303 0.41 0.351 0.430.289 0.25 0.315 0.28 0.351 0.36 0.334 0.4 0.37 0.420.307 0.24 0.326 0.27 0.365 0.35 0.348 0.39 0.375 0.360.32 0.27 0.344 0.31 0.385 0.4 0.363 0.43 0.399 0.440.334 0.31 0.361 0.36 0.397 0.46 0.376 0.51 0.411 0.510.356 0.31 0.397 0.35 0.415 0.43 0.387 0.48 0.43 0.550.329 0.25 0.362 0.32 0.385 0.34 0.359 0.39 0.399 0.420.323 0.24 0.354 0.28 0.372 0.33 0.355 0.33 0.412 0.40.33 0.33 0.344 0.35 0.375 0.49 0.365 0.47 0.423 0.540.266 0.37 0.284 0.43 0.306 0.54 0.306 0.57 0.335 0.620.404 0.31 0.428 0.35 0.469 0.46 0.431 0.46 0.506 0.510.425 0.48 0.455 0.56 0.502 0.71 0.465 0.78 0.517 0.890.439 0.49 0.465 0.61 0.514 0.73 0.488 0.76 0.523 0.860.518 0.7 0.531 0.83 0.588 1 0.559 0.96 0.595 1.110.523 0.68 0.538 0.8 0.595 0.92 0.555 0.9 0.594 1.030.528 0.61 0.545 0.73 0.598 0.76 0.569 0.72 0.602 0.910.595 0.65 0.62 0.76 0.673 0.83 0.652 0.83 0.68 0.981.112 1.86 1.109 2.11 1.167 2.38 1.174 2.29 1.197 2.55112



Table B.2: Well spe
i�
 means of the 
alibration 
urve fun
tion data. (Well spe
i�
blanks are subtra
ted from all the OD values and the diluted OD values are multipliedby the dilution fa
tor 10).Well spe
i�
 means of Well spe
i�
 means ofthe undiluted samples the diluted samples1.22 2.911.22 3.111.19 3.091.18 2.691.17 2.561.14 2.211.13 1.971.07 1.951.06 1.540.95 1.50.895 1.360.915 1.320.817 1.190.973 1.940.744 1.080.786 1.140.616 0.8520.598 0.8440.593 0.8560.483 0.650.635 0.8580.58 0.6320.6 0.5960.577 0.480.543 0.5720.288 0.220.232 0.2980.308 0.3460.332 0.3420.344 0.3220.362 0.370.376 0.430.397 0.4240.367 0.3440.363 0.3160.367 0.4360.299 0.5060.448 0.4180.473 0.6840.486 0.690.558 0.920.561 0.8660.568 0.7460.644 0.811.15 2.24113
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Appendix CGompertz augmentedChapman-Ri
hards modelThe Chapman-Ri
hards 
urves are not de�ned at �3 = 1, but the limiting forms when�3 ! 1 and �1 tends to 0 in a subordinated rate, are members of the Gompertz family;Writing �1 = eb(1��3), b > 0, we de�ne the Gompertz augmented Chapman-Ri
hardsmodel as gt = �0 h1� eb(1� �3)e��2ti1=(1��3) +D; for �3 6= 1; (C.1)gt = �0e�eb��2t +D; for �3 = 1: (C.2)It is straightforward to see that �3 ! 1 implies that gt de�ned by (C.1) 
onverges togt de�ned by (C.2). The parameters s, d0, �, � and Y of the Gompertz fun
tion are:s = e�0e�eb+D (C.3)d0 = �0�2ebe�eb (C.4)� = be + e�eb � 1e�2e (C.5)� = �0�2e (C.6)Y = e�0+D � es: (C.7)115



We will use these equalities to prove Lemma 1.Lemma 1 The Gompertz 
urve 
orresponding to any hybrid parameter 
ombina-tion s > 0, 0 < d0 < �, � > 0, � > 0, and �3 = 1 is unique. The parameter b is thesolution of the equation b+1� eb = log(d0� ), and the three other parameters are givenby �0 = ��be+e�eb� 1e , �2 = b+e�eb+1�1� , and D = log(s) � ��e�ebbe+e�eb� 1e . Furthermore, thestationary phase OD in
rement isY = e 1�e�ebb�1e +e�eb ��+log(s) � s:Proof. Fix a parameter 
ombination s > 0,0 < d0 < �, � > 0 and � > 0. From (C.4)and (C.6) we get d0� = �0�2ebe�eb�0�2e= eb+1e�eb ;whi
h determines b (unique solution). We get from (C.5)�2 = b+ e�eb+1 � 1� ; (C.8)from (C.8) and (C.6) �0 = ��be + e�eb � 1e ; (C.9)and from (C.3) and (C.9) D = log(s)� ��e�ebbe + e�eb � 1e : (C.10)Now, using (C.9) and (C.10) in (C.7), we getY = e 1�e�ebb�1e +e�eb ��+log(s) � s:2 116



The Lemma 1 implies that for the unit-s
aled modelA = 1� e�ebb�1e + e�eb : (C.11)Lemma 3 Fix 0 < d0 < 1: In the unit-s
aled model, the fun
tion A de�ned in(4.10) with the 
onstraint (4.6) is 
ontinuous at �3 = 1 as a fun
tion of �3 > 0.Proof. De�ne b� so that eb�+1e�eb� = d0, and assume thatlim sup�3!1 b = b� + 
:Fix a sequen
e �(n)3 ! 1 su
h that, for the 
orresponding b(n)-sequen
e,limn!1 b(n) = b� + 
:However, by rewriting (4.6) we 
on
lude that (re
all that �1 = eb(1� �3))d0 = limn!1d0= limn!1 eb(n) �1� eb(n)(1� �(n)3 )� �(n)31��(n)3�(n)3 �(n)31��(n)3= eb�+
+1e�eb�+
 ;whi
h for
es 
 to equal 0 and thus lim sup�3!1 b = b�. Analogously also lim inf�3!1 b
an be shown to equal b�. Hen
e, b ! b� as �3 ! 1. Using this and taking limit in(4.10), we getlim�3!1A = lim�3!1 1� (1� eb(1� �3)) 11��3� �31��33 hlog� eb(1��3)1��3 �� �3i+ (1� eb(1� �3)) 11��3= 1� e�eb�b��1e + e�eb� ;whi
h equals A in the Gompertz 
ase (C.11). Hen
e, A is 
ontinuous at �3 = 1. 2117



We �nish this appendix with two 
ontinuity remarks.Remark 1. In the unit-s
aled model for �xed 0 < d0 < 1 it is easy to see that alsothe parameters �0, �2 and D 
onverge when �3 ! 1: setting (4.3), (4.4) and (4.1) toone and using �1 = eb(1 � �3), we obtain the equations for �2, �0 and D, and takinglimits we getlim�3!1�2 = lim�3!1 (1� eb(1� �3)) 11��3 � �3 11��3 + �3 �31��3 log( eb(1��3)1��3 )�3 �31��3= b� + e�eb�+1 � 1;lim�3!1�0 = lim�3!1 1�2� �31��33= 1b�e + e�eb� � 1e ;lim�3!1D = lim�3!1��0(1� eb(1� �3)) 11��3= �e�eb�b�e + e�eb� � 1e ;where b� again solves d0 = eb+1e�eb . Thus all the limiting parameters �2, �0 and D
onverge to the Gompertz parameters as 
laimed.Remark 2. Not only the growth parameters but also the whole Gompertz growth
urves interpolate the Chapman-Ri
hards. Consider the unit-s
aled Chapman-Ri
hardsmodel and �x 0 < d0 < 1. Denote lim�3!1 �0 = ��0 , lim�3!1 �2 = ��2 and lim�3!1D =D�. Consider the Chapman-Ri
hards 
urvegt = �0 h1� eb(1� �3)e��2ti1=(1��3) +Dfor �xed t. Sin
eh1� eb(1� �3)e��2ti1=(1��3) = e�eb�e���2 t(1 + o(1)); for all t;where o(1)! 0 as �3 ! 1, we also get thatlim�3!1��0 h1� eb(1� �3)e��2ti1=(1��3) +D� = ��0e�eb����2 t +D�;whi
h is the Gompertz 
urve evaluated in this t.118



Appendix DDis
ussion of Conje
ture 1Conje
ture 1 Fix 0 < d0 < 1: In the unit-s
aled model, the fun
tion A de�ned in(4.10) with the 
onstraint (4.6) is stri
tly de
reasing as a fun
tion of �3 > 0.Figure D.1 shows a graph where log(log(A + 1) + 1) is plotted against �3 between0 and 100. Ea
h 
urve 
orresponds to a di�erent d0 (between 0.01 to 0.99). It iseasy to see that A is de
reasing as a fun
tion of �3. The derivatives of A are plottedagainst �3 in Figures D.2 (small values of �3) and D.3 (large values of �3) in order tosee that A is stri
tly de
reasing as a fun
tion of �3.
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Figure D.1: log(log(A + 1) + 1) is plotted against �3, ea
h 
urve 
orresponds to adi�erent d0 (between 0.01 and 0.99). The larger d0, the larger value of log(log(A +1) + 1).
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Figure D.2: Derivative of A plotted against small values of �3. Ea
h 
urve 
orrespondsto a di�erent d0 (between 0.01 and 0.99). The larger d0, the smaller derivative of A.120
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Appendix EProofsProposition 1 The (�0; �1; �2; �3;D)-parameterization is unique.Proof. First, look at only the part of the 
urve starting from the in�e
tion timepoint tI . Then, sin
e �1e��2tI = 1� �3; (E.1)we 
an write gtI+t � gtI = �0(1� (1� �3)e��2t) 11��3 � �0� 11��33= �0(1� e��2t[1 + o(1)℄) � �0� 11��33= �0 � �0e��2t[1 + o(1)℄� �0� 11��33 ;where o(1) ! 0, as t ! 1. Now, if two sets of parameters (�0, �1, �2, �3, D) and(�00, �01, �02, �03, D0) pertain to the same 
urve gt, then:gtI+t � gtI + �0� 11��33 � �0 = ��0e��2t[1 + o(1)℄gtI+t � gtI + �00�03 11��03 � �00 = ��00e��02t[1 + ~o(1)℄;where also ~o(1)! 0 as t!1. Sin
e �0e��2t[1+ o(1)℄! 0 and �00e��02t[1+ ~o(1)℄! 0as t!1, it follows that �0 � �0� 11��33 = �00 � �00�03 11��03 ; (E.2)123



and therefore limt!1 �0e��2t�00e��02t = 1: (E.3)From (E.3) it follows that �0 = �00 and �2 = �02, and together with (E.2) we 
an
on
lude that � 11��33 = �03 11��03and hen
e that �3 = �03. From (E.1) we also get that �1 must equal �01. Finally, therelation g0 = �0(1� �1) 11��3 +Dshows that also D must equal D0. 2Lemma 4 Fix �3 > 0: In the unit-s
aled model, the fun
tion A de�ned in (4.10)with the 
onstraint (4.6) is stri
tly in
reasing as a fun
tion of d0, 0 < d0 < 1.Proof. Let gt be a unit-s
aled 
urve 
orresponding to arbitrary �xed �3 and d0,and denote the asymptoti
 parameter of this 
urve A. Consider instead this 
urvestarting from time point 0 < T < tI , where tI is the in�e
tion time point of gt, andre-s
ale and translate it togt(T ) = gT+t(1�T+gT ) � gT1� T + gT :This new 
urve's t-derivative at zero is d0(T ) = g0T > d0, and the re-s
alings andtranslation were 
hosen so that the other four parameters are un
hanged, so thatgt(T ) is again a unit-s
aled 
urve. Denote the asymptote of the new 
urveA(T ) = A� gT1� T + gT :It is straightforward to see that the derivative of A(T ) at T = 0 isA0(0+) = �d0 + (1� d0)A;whi
h is stri
tly positive if A > d01� d0 :124



By 
onvexity of gt, gt > d0t for t � tI :Furthermore, we have d0t � t� 1 for t � 11� d0 :Thus if we assume that tI � 11�d0 , we may 
on
lude from the above inequalities thatgtI > tI � 1:But this would 
ontradi
t the fa
t that gt is unit-s
aled, sin
e this property impliesthat gtI = tI � 1;and thus it follows that tI > 11�d0 . This for
esgtI > d01� d0 ;and therefore also A > d01�d0 , whi
h proves A0(0+) > 0.Consider the relation (using an obvious notation on the left side)A(1; d0(T ); 1; 1; �3) = A(T ): (E.4)Re
all that d0(T ) = g0T , and di�erentiate and evaluate (E.4) at T = 0 to getDd0 [A(1; d0; 1; 1; �3)℄d00(0) = Dd0 [A(1; d0; 1; 1; �3)℄g000 = A0(0+):Lo
al 
onvexity implies that g000 > 0, whi
h proves Dd0 [A(1; d0; 1; 1; �3)℄ > 0. 2Lemma 5 Fix 0 < d0 < 1: In the unit-s
aled model, the fun
tion A de�ned in(4.10) with the 
onstraint (4.6) satis�es(a) lim�3!0A =1(b) lim�3!1A = 1�d0d0�log(d0)�1 .Proof.(a) Note that 1� �3 < �1 < 1 and 0 < �3 < 1, andA = �0 h1� (1� �1) 11��3 i :125



We �rst look at the asymptoti
s ofh1� (1� �1) 11��3 i :From 1� �3 < �1 < 1 and 0 < �3 < 1, we get that0 < (1� �1) 11��3 < � 11��33 ;and sin
e lim�3!0+� 11��33 = 0;it follows that lim�3!0+ h(1� �1) 11��3 i = 0 (E.5)and hen
e lim�3!0+ h1� (1� �1) 11��3 i = 1:Next, we look at the asymptoti
s of�0 = 1� �31��33 hlog � �11��3�� �3i+ (1� �1) 11��3 :From 1� �3 < �1 < 1 and 0 < �3 < 1 it follows that��3 < log� �11� �3�� �3 < � log (1� �3)� �3;so that��3� �31��33 < � �31��33 �log� �11� �3�� �3� < �� �31��33 [log (1� �3) + �3℄ : (E.6)The limit of the left side of (E.6) islim�3!0+���3� �31��33 � = 0and the limit of the right side of (E.6) islim�3!0+�� �31��33 [log (1� �3) + �3℄ = 0;126



and hen
e lim�3!0+� �31��33 �log� �11� �3�� �3� = 0: (E.7)Using (E.5) and (E.7) and the fa
t that �0 > 0, we getlim�3!0+�0 = lim�3!0+ 1� �31��33 hlog � �11��3�� �3i+ (1� �1) 11��3= 1;so that lim�3!0+A = � lim�3!0+�0�� lim�3!0+ h1� (1� �1) 11��3 i�= 1:(b) Let A(1; d0; 1; 1; �3) denote A as a fun
tion of �3 when s = 1, � = 1, � = 1,and 0 < d0 < 1 is �xed. Note that �1 < 1� �3. Take a �x �3 and �x �1,�1 = ��3ed0�3�1 : (E.8)Now using equation (E.8) in the equation of the derivative at time zero (4.6) we getd�3 = � ��3ed0�3�1� h1� � ��3ed0�3�1�i �31��3(1� �3)� �31��33 ;where d�3 ! d0 as �3 !1,lim�3!1d�3 = lim�3!1 � ��3ed0�3�1� h1� � ��3ed0�3�1�i �31��3(1� �3)� �31��33= lim�3!1 � �3ed�3�10 � 11��3� 11��33= d0; 127



andlim�3!1A(1; d�3 ; 1; 1; �3) = lim�3!1 1� �1 + �3ed0�3�1� 11��3� �31��33 24log0�� ��3ed0�3�1�1��3 1A� �335+ �1 + �3ed0�3�1� 11��3= 1� d0d0 � log (d0)� 1 :Now, if ~d0 > d0, then ~d�3 > d0 when �3 is large enough. Lemma 4 states thatA(1; d0; 1; 1; �3) is stri
tly in
reasing as a fun
tion of d0, and hen
e we have thatA(1; d0; 1; 1; �3) < A(1; ~d�3 ; 1; 1; �3) for �3 large enough) lim supA(1; d0; 1; 1; �3) � lim supA(1; ~d�3 ; 1; 1; �3)= 1� ~d0~d0 � log � ~d0�� 1 :Analogously, for ~~d0 < d0lim infA(1; d0; 1; 1; �3) � lim infA(1; ~~d�3 ; 1; 1; �3)= 1� ~~d0~~d0 � log � ~~d0�� 1 :Due to the 
ontinuity of 1�d0d0�log(d0)�1 and the arbitrariness of ~d0 > d0 and ~~d0 < d0lim�3!1A(1; d0; 1; 1; �3) = 1� d0d0 � log (d0)� 1 :2 Remark to Lemma 5(b). In fa
t, it 
an be shown that the whole 
urve gt 
onvergesto a 
urve whi
h is de�ned asd0 �e(d0�log(d0)�1)t � 1�d0 � log(d0)� 1 ; when t � 1 + 1� d0d0 � log(d0)� 1and 1� d0d0 � log(d0)� 1 ; when t > 1 + 1� d0d0 � log(d0)� 1 :128



g
t
 

t Figure E.1: A limiting 
urve of the Chapman-Ri
hards model when �3 !1.In general, the limiting 
urves have the form�1 �e��2t � 1�+ �3; when t � log(�)� log(�1�2)�2 ;where �1; �2; �3 > 0. Figure E.1 shows how these 
urves look like.Lemma 6 The log(Y ) is 
onvex as a fun
tion of log(d0), log(�), and log(�) forany �xed log(s), where s > 0, 0 < d0 < �, � > 0, and � > 0.Proof. Take x1 = log(d0� ) = log(d0) � log(�) < 0, x2 = log(�), x3 = log(�), andwrite log(Y ) as a fun
tion of themLY (log(s);x) = log �elog(s)�e 1�ex1ex1�x1�1 ex2+x3 � 1�� (E.9)= log(s) + log �e 1�ex1ex1�x1�1 ex2+x3 � 1� ;where x = (x1; x2; x3). De�nek(x) = 1� ex1ex1 � x1 � 1ex2+x3and m(x) = log �e 1�ex1ex1�x1�1 ex2+x3 � 1�= log[ek(x) � 1℄:129



The fun
tion LY (log(s);x) is 
onvex for any �xed log(s), if m(x) is 
onvex, i.e. if theHessian D2x[m(x)℄ = ek(x)ek(x) � 1 �D2x[k(x)℄ � 1ek(x) � 1Dx[k(x)℄Dx[k(x)℄T � (E.10)is positive semide�nite. Observe that k(x) > 0 sin
e x1 < 0, and thusek(x)ek(x) � 1 > 0:Therefore, to prove that (E.10) is positive semide�nite, it is enough to prove thatD2x[k(x)℄ � 1ek(x) � 1Dx[k(x)℄Dx[k(x)℄T (E.11)is positive semide�nite.The fun
tion k(x) 
an be written as a produ
t off(x) = 1� ex1ex1 � x1 � 1 and g(x) = ex2+x3 :Now, using that �g(x)�x2 = �g(x)�x3 = g(x), we 
an writeD2x[k(x)℄ = g0BBBBB� �2f�x12 �f�x1 �f�x1�f�x1 f f�f�x1 f f
1CCCCCA ;

Dx[k(x)℄Dx[k(x)℄T = g20BBBBBB� � �f�x1�2 �f�x1 f �f�x1 f�f�x1 f f2 f2�f�x1 f f2 f2
1CCCCCCA ;and (E.11) 
an be written asg0BBBBBB� �2f�x12 � � �f�x1�2 gegf�1 �f�x1 � �f�x1 fgegf�1 �f�x1 � �f�x1 fgegf�1�f�x1 � �f�x1 fgegf�1 f � f2gegf�1 f � f2gegf�1�f�x1 � �f�x1 fgegf�1 f � f2gegf�1 f � f2gegf�1
1CCCCCCA ;
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whi
h is positive semide�nite if all the submatri
es have a non-negative determinant[29℄, and that is what we will prove next. We have that g > 0, we will prove thatf � f2gegf � 1 > 0 (E.12)�f�x1 � �f�x1 fgegf � 1 > 0 (E.13)�2f�x12 �� �f�x1�2 gegf � 1 > 0 (E.14)" �2f�x12 �� �f�x1�2 gegf � 1#�f � f2gegf � 1�� � �f�x1 � �f�x1 fgegf � 1�2 > 0; (E.15)the determinants of all the other submatri
es 
an immediately be seen to equal zero.To prove (E.12) and (E.13), we will use thategf � 1 > gf ) gegf � 1 < 1f : (E.16)Now, f � f2gegf � 1 > f � f2f = 0;and �f�x1 � �f�x1 fgegf � 1 > �f�x1 � �f�x1 ff = 0:To prove (E.14) is a slightly more elaborate task. We will use the inequalityx1 > ex1=2 � e�x1=2; if x1 < 0; (E.17)whi
h in turn 
an be seen by de�ningh(x1) = x1 � (ex1=2 � e�x1=2);and taking derivativeh0(x1) = 1� 12(ex1=2 + e�x1=2)< 1�pex1=2e�x1=2 = 0; for x1 < 0;131



where in the end we used the well known inequality between arithmeti
 and geometri
means [15℄. From this and h(0) = 0 it follows that h(x1) > 0 for all x1 < 0, whi
h isequivalent to (E.17).Now, from (E.16) we �rst get�2f�x12 �� �f�x1�2 gegf � 1 > �2f�x12 �� �f�x1�2 1f ; (E.18)and then we study the sign of this bound�2f�x12 �� �f�x1�2 1f = e3x1x1 � 2e3x1 + 5e2x1 � ex1x12 � ex1x1 � 4ex1 + 1(�ex1 + x1 + 1)3(ex1 � 1) ; (E.19)where (�ex1+x1+1)3 < 0 and ex1�1 < 0, for x1 < 0, so the denominator is positive.We will prove (E.14) from positivity of the nominator, whi
h we may �rst rewrite as(ex1 � 1)2 � ex1x12 + ex1 f(ex1 � 1) [x1(ex1 + 1)� 2(ex1 � 1)℄g ;where ex1 > 0, ex1 � 1 < 0, and then from (E.17) we see that(ex1 � 1)2 � ex1x12 > (ex1 � 1)2 � ex1(ex12 � e�x12 )2= (ex1 � 1)2 � (ex1 � 1)2= 0; for x1 < 0:We get (E.14) if we also show that x1(ex1 + 1)� 2(ex1 � 1) < 0 for x1 < 0. Writev(x1) = x1(ex1 + 1)� 2(ex1 � 1):Then v0(x1) = 1 + ex1(x1 � 1)> 1 + ex1(ex12 � e�x12 � 1) (by E.17)= ex12 (ex1 � 1)� (ex1 � 1)= (ex1 � 1)(ex12 � 1)> 0; 132



and v(0) = 0. Thusv(x1) = x1(ex1 + 1)� 2(ex1 � 1) < 0; for x1 < 0;and the right-hand side of (E.19) is therefore positive, whi
h together with (E.18)proves (E.14).To prove (E.15) we �rst observe that�2f�x12 f > � �f�x1�2 ; (E.20)sin
e the right-hand side of (E.19) is positive by the proof of (E.14). Using (E.20) weget " �2f�x12 �� �f�x1�2 gegf � 1#�f � f2gegf � 1�� � �f�x1 � �f�x1 fgegf � 1�2> � �2f�x12 � �2f�x12 f gegf � 1� �f � f2gegf � 1�� � �f�x1 � �f�x1 fgegf � 1�2= � �2f�x12 �1� fgegf � 1���f �1� fgegf � 1��� � �f�x1 �1� fgegf � 1��2= �1� fgegf � 1�2 " �2f�x12 f �� �f�x1�2# > 0:The transformation between log(d0), log(�), log(�) and x1, x2, x3 is a�ne so thatthe 
onvexity of log(Y ) holds also in the former 
oordinates and the lemma is proved.2
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Appendix FSimultaneous models for twogrowth 
urvesOften in 
ase of double samples, the initial OD values of the two samples vary, but theend OD values are almost the same, and the growth 
urves have approximately thesame shape ex
ept for the length of the exponential phase. This is natural, be
ause inthe sample with less 
ells in the beginning, there are more nutrients per 
ell, and thusthe population 
an grow for a longer time before it runs out of nutrients. However,even the absolute amount of nutrients 
an vary between double samples, and they
an have di�erent initial and �nal OD values, but the shapes of the growth 
urves(apart from the length of the exponential phase) still tend to be nearly the same. Insu
h 
ases modeling the growth 
urves simultaneously would possibly give a betterestimate of the growth behavior than e.g. taking averages of growth parameters oftwo separately modeled 
urves.
F.1 Model IWe tried to model two growth 
urves simultaneously using the three part modelpresented in Se
tion 3.3 so that all parameters ex
ept the time span of the linearpart (�) and D, are the same for both of the 
urves.The model of the 
urve with a smaller in
rement on the logarithmi
 s
ale (i.e. thedi�eren
e between the logarithm of the initial OD and the logarithm of the end OD)is 135



g�(1)t = 8>>>>><>>>>>: g(1)t ; t � tI ;g(1)tI + �(t� tI); tI � t � tI +�1;g(1)t��1 + ��1; t � tI +�1; (F.1)where g(1)t is the Chapman-Ri
hards fun
tiong(1)t = �0 h1� �1e��2ti1=(1��3) +D1;and the model of the 
urve with a larger in
rement on the logarithmi
 s
ale is
g�(2)t = 8>>>>><>>>>>: g(2)t ; t � tI ;g(2)tI + �(t� tI); tI � t � tI +�2;g(2)t��2 + ��2; t � tI +�2; (F.2)where g(2)t = �0 h1� �1e��2ti1=(1��3) +D2: (F.3)This model as well as model II below 
an easily be generalized to more than twosamples.F.2 Model IIWe also tried to �t a model where the asymptotes of the 
urves (F.1) and (F.2) werefor
ed to be the same. Now�0 +�1�0�2� �31��33 +D1 = �0 +�2�0�2� �31��33 +D2) D2 = D1 + (�1 ��2)�0�2� �31��33= D1 + (�1 ��2)�:136



Thus, the Chapman-Ri
hards fun
tion (F.3) in the model of the 
urve with a lowerinitial OD 
an be written asg(2)t = �0 h1� �1e��2ti1=(1��3) +D1 + (�1 ��2)�:In our data, the di�eren
es in the stationary phase OD in
rement of double samplesof normally growing 
ells are small, in general less than 1%. This gives us reason tobelieve that a simultaneous model, where the asymptotes are for
ed to be the same,
ould be a good 
ompromise model for two growth 
urves. It would be more natural tofor
e the stationary phase OD in
rements to be the same, but for
ing the asymptotesto be the same is almost equal to it and easier to implement.F.3 Fitting the simultaneous models to the dataWe �tted the simultaneous models on dupli
ate measurements of the data presentedin Se
tion 3.2.3. The least squares method was used the same way as in Se
tion 3.2.3.With both of the models the estimates of �1 were nearly always zero. With modelI the �t was rather good when the shapes of the two 
urves were almost the same.However, if the shapes di�ered mu
h, the �t was not good. When the asymptotes ofthe two 
urves were nearly the same, the �ts of the two models were similar, see e.g.Figure F.1. When the asymptotes really di�ered, the �t was naturally better withmodel I, see e.g. Figure F.2. Also if the di�eren
e between the time spans of theexponential phases is very large, the �t 
an be
ome poor.It might be useful to be able to model the eight wild types in ea
h run simulta-neously. Although it is possible to generalize the simultaneous models for more thantwo 
urves, the 
omputations would be
ome rather 
ompli
ated. Moreover, the simul-taneous models do not enable easy 
omparison of all the 
urves in the experiment.
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Figure F.1: Two 
urves are �tted using the simultaneous models. The residual plotsof the �t of the upper 
urve are in the middle and the residual plots of the �t of lower
urve are at the bottom. 138
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Figure F.2: Two 
urves are �tted using the simultaneous models. The residual plotsof the �t of the upper 
urve are in the middle and the residual plots of the �t of lower
urve are at the bottom. 139


