TMA205 Differential equations and scientific computing Kb, part A
THE CATALYST PELLET

1. INTRODUCTION

A substance in gas form is diffusing into a porous catalyst pellet, where it reacts in a first order
reaction under isothermal conditions. This leads to the reaction-diffusion equation,

ou
U _yg. - in O
1) 5 V- (aVu) +cu =0, inQ,

u = gp, on 0,

where u [mol/m%] is the concentration of the interesting substance in the catalyst pellet, gp is
the (constant) ambient concentration, a [m?/s] is the diffusion coefficient, ¢ [s~'] is the rate
coefficient of the reaction, L [m] is the diameter of the pellet, and Vu = (g—;‘l, g—;g, 86—;‘3).
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FIGURE 1. The catalyst pellet.

Note that we make the simplifying assumption that the temperature is constant. This as-
sumption is the same as saying that we ignore the temperature dependence in the rate coefficient
¢ = cogexp(—E/(RT)) given by Arrhenius’ law. However, we want to allow the diffusion and
catalyzation properties to be different in different parts of the pellet. This means that a, ¢y, and
E may vary with position, so that a = a(z1, 2, %3), ¢ = ¢(x1,%2,x3).-

2. DIMENSIONLESS VARIABLES

We now introduce dimensionless variables. Let uret = gp, Gref, Cref; Lret = L, be reference
constants, and set

u* =u/gp, a* =afaws, " =c/crer, (21,23,2%) = (z1/L,z2/L,x3/L).

By choosing the reference constants aper and cper such that they represent the typical order of
magnitude of a and ¢, we may scale the variables so that they are neither very big nor very small,
which is desirable from a numerical point of view. Note that, by the chain rule,
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where V* = (:2;, -2, %) = (L2, L-2-, L;2-) = L V. By using the chain rule again, we get,
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V- (aVu) = areling V* - (a*V*u*),

and (1) thus becomes,
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VAR (a*v*u*) + crefc*gDU* = 07 in Q*a
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Dividing (2) by =<2 we get,

L_Qa(u/gD) _ V* i (a*v*u*) + chref c*
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u* =1, on 9N
Finally, introducing the dimensionless number ¢ = Ly/cret/arer (the Thiele modulus), and the time

scale! trer = L? [ ayer, we get
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where t* = t/t.or is a dimensionless time variable, and we have again used the chain rule
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If the diffusion and rate coefficients are constant, then, of course, we take aref = a, Crof = ¢, SO
that a*(z7,23,2%5) = 1, ¢* (27,25, 23) = 1, and (4) becomes
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where A* = 68* + 25 + 2 is the Laplace operator.
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FIGURE 2. The pellet in dimensionless variables.

We here give some reasons for writing the mathematical model in dimensionless form, including
the one already mentioned:

¢ the dimensionless equation (5) contains fewer constants and variables than the original equa-
tion and is therefore more convenient to work with;

e it gives a possibility of scaling the variables so that they are neither very big nor very small;

¢ it is useful for scaling an apparatus from laboratory size to factory size; this should be done
so that the dimensionless constants are the same;

e in a sense, we need not bother to find realistic values for the physical parameters a, cq, F;
since they are conveniently grouped into the dimensionless number ¢, we can just say that
we want to solve the equation for small, medium and large values of ¢.

IThis is a natural time scale for the problem, depending on the relation between the size of the pellet and the
“speed” of the diffusive transport.
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3. EFFECTIVENESS FACTOR

We now consider the stationary case, i.e., we assume that the system has reached a stationary
state. In this case, the reaction-diffusion equation (4) reads,

—V* - (a*V*u*) + ¢*c*u* =0, in QF,

©) u* =1, on 9N*.

The concentration, and hence the reaction rate, will be lower in the middle of the pellet. This
means that the catalyzing power of the pellet is not fully used. The efficiency of the catalyst
pellet is measured by the quotient of the actual total reaction rate and the ideal reaction rate that
would be achieved if the concentration and the rate coeflicient were everywhere equal to the their
reference values, i.e., if u = gp, ¢ = crer. This quotient is called the effectiveness factor and is
given by
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where || and |Q*| denotes the volume of 2 and Q* respectively. Show this equality!

Exercise 1. Show that 1 can also be expressed in terms of the flux through the boundary of the
pellet: (n* is the exterior unit normal vector)

® 1= G LT

Hint: use (6) and Gauss’ divergence theorem.

FI1GURE 3. Slab and cylinder.

4. AN EXACT SOLUTION

If the coefficients are constant and the geometry of the pellet is simple, namely, a slab, a circular
cylinder, or a sphere, then we can solve (6) analytically. We study one of these examples here.

Exercise 2. If the pellet is a slab (or a cylinder with sealed mantle surface), Figure 3, then u*
depends only on the axial coordinate r = 27 = x1/L and (5) (in the stationary case) becomes,

d*u* 2, 1 1
(9) d2+¢ = —53 <r<y,
u*(—3) = u(3) = L.
Solve this boundary value problem and compute 7 (analytically by hand). Plot 7 as a function of
¢ (with Matlab).

Answer: u*(r) = cosh(¢r)/ cosh(¢/2), u(z1) = gp cosh(/<x1)/ cosh(\/$%),n = 1{321; (r)dr =
tanh(¢/2)/(¢/2), u*(0) = 1/ cosh(¢/2). Note that u*(r) =1 and hence n =1, if ¢ = 0.
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5. NUMERICAL SOLUTION

In general we cannot solve (4) analytically. If we assume that the pellet is a long straight
cylinder with an arbitrary cross-section, so that u* depends only on two variables z7, x5, then we
can use our programs to compute approximate solutions. Some suggestions:

e Solve (6) with a*(z7,z%,23) = 1, ¢*(z7,25,2%) = 1, and ¢ = 1 for several cross-sections:
circle, rectangle, triangle, or whatever. Compute 1 for each geometry (use quadrature!).
Make sure that the diameter is the same (= 1) in each case. Which one has the highest
efficiency?

e Dead core: a region in the middle of the pellet has very small diffusion coefficient.

Hint: Consider the domain Q = {(z1,22) : /22 + 32 < 1}, with core Qeore = {(z1,22) :

2?4+ 22 < %} In pdetool:s draw mode, first draw a circle with centre at the origin and
radius £, then draw another circle, also with centre at the origin, and radius ¢. In PDE mode,
select Show Subdomain Labels, from the PDE menu. Note that .. has one number,
say 1, and Q — Q¢ore has another number, say 2. We call Q¢ore and 2 — Qcore sub-domains
of Q. The union of the sub-domains is 2 itself. Now, define the function a_2D.m such that,
e.g., a* = 0.1 on Qcore, and a* =1 on Q — Qeore (use the argument delomradesnummer). It
might be a good idea to make one extra refinement of the triangulation in this case.

e Poisoning: a region near the boundary of the pellet has very small rate coefficient, ¢* << 1
or c* =0.

e Hole: there is a hole in the middle of the pellet, where the diffusion coefficient is very large,
a* >> 1, and the reaction rate is zero, ¢* = 0.

e Robin boundary conditions: replace the boundary condition in (1) by Robin boundary con-
ditions. Show that in dimensionless variables (with gy = 0, and gp constant) this becomes

—n* - (a*V*u*) =v(u* —1), on 90"

Express the dimensionless number v (the Biot number for mass transfer) in the original
variables. Answer: v = £

Qref ~




