
TMV035 ALA–B

90. Linearization. Jacobi matrix. Newton’s method.

0.1 Function of one variable, f : R → R

(AMBS 23) A function f : R → R of one variable is differentiable at x̄ if there are constants m(x̄),
Kf (x̄) such that

f(x) = f(x̄) + m(x̄)(x − x̄) + Ef (x, x̄), (1)

where the remainder Ef satisfies |Ef (x, x̄)| ≤ Kf (x̄)(x − x̄)2 when x is close to x̄. The constant
m(x̄) is called the derivative of f at x̄ and we write

m(x̄) = f ′(x̄) = Df(x̄) =
df

dx
(x̄).

It is convenient to use the abbreviation h = x − x̄, so that x = x̄ + h and (1) becomes

f(x) = f(x̄ + h) = f(x̄) + f ′(x̄)h + Ef (x, x̄), (2)

where |Ef (x, x̄)| ≤ Kf (x̄)h2 when x is close to x̄. Note that the first term on the right side, f(x̄),
is constant with respect to x. The second term,

f ′(x̄)h = f ′(x̄)(x − x̄), (3)

is a linear function of the increment h = x− x̄. These terms are called the linearization of f at x̄,

f̃x̄(x) = f(x̄) + f ′(x̄)(x − x̄). (4)

The straight line y = f̃x̄(x) is the tangent to the curve y = f(x) at x̄.

Example 1. Let f(x) = x2. Then f ′(x) = 2x and the linearization at x̄ = 3 is

f̃3(x) = 9 + 6(x − 3).

Numerical computation of the derivative. (AMBS 23.13) If we divide (2) by h, then we get

f(x̄ + h) − f(x̄)

h
= f ′(x̄) + Ef (x, x̄)/h. (5)

Here the remainder satisfies |Ef (x, x̄)/h| ≤ Kf (x̄)|h| when h is small. This suggests that we can
approximate the derivative by the difference quotient

f ′(x̄) ≈
f(x̄ + h) − f(x̄)

h
. (6)

A better approximation is obtained if we use Taylor’s formula (AMBS 24.8, 28.15):

f(x̄ + h) − f(x̄ − h) = f(x̄) + f ′(x̄)h + f ′′(x̄)h2/2 + R2(x̄ + h, x̄)

−
(

f(x̄) − f ′(x̄)h + f ′′(x̄)h2/2 + R2(x̄ − h, x̄)
)

= 2f ′(x̄)h + R2(x̄ + h, x̄) − R2(x̄ − h, x̄).

The remainders satisfy |R2(x̄ ± h, x̄)| ≤ K(x̄)|h|3 when h is small. This suggests the symmetric
difference quotient:

f ′(x̄) ≈
f(x̄ + h) − f(x̄ − h)

2h
. (7)

The difference quotients in (6) and (7) are of the form ”small number divided by small number”.
If this is computed with round-off error on a computer, then the total error will be large if the step
h is very small. Therefore we must choose the step “moderately small” here, see (AMBS 23.13).
It can be shown that in Matlab a good choice for (6) is h = 10−8 and for (7) h = 10−5.
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0.2 Function of two variables, f : R2 → R

(AMBS 24.11 ) Let f(x1, x2) be a function of two variables, i.e., f : R2 → R. We write x = (x1, x2)
and f(x) = f(x1, x2). The function f is differentiable at x̄ = (x̄1, x̄2), if there are constants m1(x̄),
m2(x̄), Kf (x̄) such that

f(x) = f(x̄ + h) = f(x̄) + m1(x̄)h1 + m2(x̄)h2 + Ef (x, x̄), h = x − x̄, (8)

where the remainder Ef satisfies |Ef (x, x̄)| ≤ Kf (x̄)|h|2 when x is close to x̄. Here |h| =
√

h2
1 + h2

2

denotes the norm of the increment h = (h1, h2) = (x1 − x̄1, x2 − x̄2).
If we take h = (h1, 0), then we get

f(x1, x̄2) = f(x̄1 + h1, x̄2) = f(x̄) + m1(x̄)h1 + Ef (x, x̄),

with |Ef (x, x̄)| ≤ Kf (x̄)h2
1. This means that m1(x̄) is the derivative of the one-variable function

f̂(x1) = f(x1, x̄2), obtained from f by keeping x2 = x̄2 fixed. By taking h = (0, h2) we see in a
similar way that m2(x̄) is the derivative of the one-variable function, which is obtained from f by
keeping x1 = x̄1 fixed. The constants m1(x̄), m2(x̄) are called the partial derivatives of f at x̄
and we denote them by

m1(x̄) = f ′

x1
(x̄) =

∂f

∂x1
(x̄), m2(x̄) = f ′

x2
(x̄) =

∂f

∂x2
(x̄). (9)

Now (8) may be written

f(x) = f(x̄ + h) = f(x̄) + f ′

x1
(x̄)h1 + f ′

x1
(x̄)h1 + Ef (x, x̄), h = x − x̄. (10)

It is convenient to write this formula by means of matrix notation. Let

a =
[

a1, a2

]

, b =

[

b1

b2

]

.

We say that a is a row matrix of type 1 × 2 (one by two) and that b is a column matrix of type
2 × 1 (two by one). Their product is defined by

ab =
[

a1, a2

]

[

b1

b2

]

= a1b1 + a2b2.

The result is a matrix of type 1×1 (a real number), according to the rule: 1×2 times 2×1 makes
1 × 1.

Going back to (10) we define

f ′(x̄) = Df(x̄) =
[

f ′

x1
(x̄) f ′

x2
(x̄)

]

, h =

[

h1

h2

]

.

The matrix f ′(x̄) = Df(x̄) is called the derivative (or Jacobi matrix) of f at x̄. Then (10) may
be written

f(x) = f(x̄ + h) = f(x̄) +
[

f ′

x1
(x̄) f ′

x1
(x̄)

]

[

h1

h2

]

+ Ef (x, x̄)

= f(x̄) + f ′(x̄)h + Ef (x, x̄), h = x − x̄.

(11)

Note that the first term on the right side, f(x̄), is constant with respect to x. The second
term,

f ′(x̄)h = f ′(x̄)(x − x̄), (12)

is a linear function of the increment h = x− x̄. These terms are called the linearization of f at x̄,

f̃x̄(x) = f(x̄) + f ′(x̄)(x − x̄). (13)

The plane x3 = f̃x̄(x1, x2) is the tangent to the surface x3 = f(x1, x2) at x̄.
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Example 2. Let f(x) = x2
1x

5
2. Then

∂f

∂x1
(x) =

∂f

∂x1

(

x2
1x

5
2

)

= 2x1x
5
2,

∂f

∂x2
(x) =

∂f

∂x2

(

x2
1x

5
2

)

= 5x2
1x

4
2,

so that f ′(x) =
[

2x1x
5
2 5x2

1x
4
2

]

and the linearization at x̄ = (3, 1) is

f̃x̄(x) = 9 +
[

6 45
]

[

x1 − 3
x2 − 1

]

.

0.3 Two functions of two variables, f : R2 → R2

Let f1(x1, x2), f2(x1, x2) be two functions of two variables. We write x = (x1, x2) and f(x) =
(f1(x1, x2), f2(x1, x2)), i.e., f : R2 → R2. The function f is differentiable at x̄ = (x̄1, x̄2), if there
are constants m11(x̄), m12(x̄), m21(x̄), m22(x̄), and Kf (x̄) such that

f1(x) = f1(x̄ + h) = f1(x̄) + m11(x̄)h1 + m12(x̄)h2 + Ef1
(x, x̄),

f2(x) = f2(x̄ + h) = f2(x̄) + m21(x̄)h1 + m22(x̄)h2 + Ef2
(x, x̄),

(14)

where h = x − x̄ and the remainders Efj
satisfy |Efj

(x, x̄)| ≤ Kf (x̄)|h|2 when x is close to x̄.

Here |h| =
√

h2
1 + h2

2 denotes the norm of the increment h = (h1, h2) = (x1 − x̄1, x2 − x̄2). From
the previous subsection we recognize that the constants mij(x̄) are the partial derivatives of the
functions fi at x̄ and we denote them by

m11(x̄) = f ′

1,x1
(x̄) =

∂f1

∂x1
(x̄), m12(x̄) = f ′

1,x2
(x̄) =

∂f1

∂x2
(x̄),

m21(x̄) = f ′

2,x1
(x̄) =

∂f2

∂x1
(x̄), m22(x̄) = f ′

2,x2
(x̄) =

∂f2

∂x2
(x̄).

It is convenient to use matrix notation. Let

A =

[

a11 a12

a21 a22

]

, b =

[

b1

b2

]

.

We say that A is a matrix of type 2× 2 (two by two) and that b is a column matrix of type 2× 1
(two by one). Their product is defined by

Ab =

[

a11 a12

a21 a22

] [

b1

b2

]

=

[

a11b1 + a12b2

a21b1 + a22b2

]

.

The result is a matrix of type 2 × 1 (column matrix), according to the rule: 2 × 2 times 2 × 1
makes 2 × 1.

Going back to (14) we define

f(x) =

[

f1(x)
f2(x)

]

, f ′(x̄) = Df(x̄) =











∂f1

∂x1
(x̄)

∂f1

∂x2
(x̄)

∂f2

∂x1
(x̄)

∂f2

∂x2
(x̄)











, h =

[

h1

h2

]

. (15)

The matrix f ′(x̄) = Df(x̄) is called the derivative (or Jacobi matrix) of f at x̄. Then (14) may
be written





f1(x)

f2(x)



 =





f1(x̄ + h)

f2(x̄ + h)



 =





f1(x̄)

f2(x̄)



 +











∂f1

∂x1
(x̄)

∂f1

∂x2
(x̄)

∂f2

∂x1
(x̄)

∂f2

∂x2
(x̄)















h1

h2



 +





Ef1
(x, x̄)

Ef2
(x, x̄)



 , (16)
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or in more compact form

f(x) = f(x̄ + h) = f(x̄) + f ′(x̄)h + Ef (x, x̄), h = x − x̄. (17)

Note that the first term on the right side, f(x̄), is constant with respect to x. The second
term,

f ′(x̄)h = f ′(x̄)(x − x̄), (18)

is a linear function of the increment h = x− x̄. These terms are called the linearization of f at x̄,

f̃x̄(x) = f(x̄) + f ′(x̄)(x − x̄). (19)

Example 3. Let f(x) =

[

x2
1x

5
2

x3
2

]

. Then

f ′(x) = Df(x) =











∂f1

∂x1
(x)

∂f1

∂x2
(x)

∂f2

∂x1
(x)

∂f2

∂x2
(x)











=

[

2x1x
5
2 5x2

1x
4
2

0 3x2
2

]

and the linearization at x̄ = (3, 1) is

f̃x̄(x) =

[

9
1

]

+

[

6 45
0 3

] [

x1 − 3
x2 − 1

]

.

0.4 Several functions of several variables, f : Rn → Rm

(AMBS 53) It is now easy to generalize to any number of functions in any number of variables.
Let fi be m functions of n variables xj , i.e., f : Rn → Rm. As in (15) we define

x =







x1

...
xn






, h =







h1

...
hn






=







x1 − x̄1

...
xn − x̄n






,

f(x) =







f1(x1, . . . , xn)
...

fm(x1, . . . , xn)






, f ′(x̄) = Df(x̄) =













∂f1

∂x1
(x̄) . . .

∂f1

∂xn

(x̄)

...
...

∂fm

∂x1
(x̄) . . .

∂fm

∂xn

(x̄)













.

The m×n matrix f ′(x̄) = Df(x̄) is called the derivative (or Jacobi matrix) of f at x̄. In a similar
way to (17) we get

f(x) = f(x̄ + h) = f(x̄) + f ′(x̄)h + Ef (x, x̄), h = x − x̄. (20)

The linearization of f at x̄ is
f̃x̄(x) = f(x̄) + f ′(x̄)(x − x̄). (21)

Numerical computation of the derivative. In order to compute the j-th column
∂f

∂xj

(x̄) of

the Jacobi matrix, we choose the increment h such that hj = δ and hi = 0 for i 6= j, i.e.,

h =

























0
...
0
δ
0
...
0

























= δ

























0
...
0
1
0
...
0

























= δej , ej =

























0
...
0
1
0
...
0

























— row number j.
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Here the steplength δ is a small positive number and ej is the j-th standard basis vector. If we
use this increment in a symmetric difference quotient, see (7), we get

∂f

∂xj

(x̄) ≈
f(x̄ + δej) − f(x̄ − δej)

2δ
. (22)

Remember that the steplength δ should be small, but not too small.

0.5 Newton’s method for f(x) = 0

Consider a system of n equations with n unknowns:

f1(x1, . . . , xn) = 0,

...

fn(x1, . . . , xn) = 0.

If we define

x =







x1

...
xn






, f =







f1

...
fn






, 0 =







0
...
0






,

then f : Rn → Rn, and we can write our system of equations in the compact form

f(x) = 0. (23)

Suppose that we have found an approximate solution x̄. We want to find a better approximation
x = x̄ + h. Instead of solving (23) directly, which is usually impossible, we solve the linearized
equation at x̄:

f̃x̄(x̄ + h) = f(x̄) + f ′(x̄)h = 0. (24)

Rearranging the terms we get
f ′(x̄)h = −f(x̄). (25)

Remember that the Jacobi matrix is of type n × n and the increment is of type n × 1. Therefore
we have to solve a linear system of n equations with n unknowns to get the increment h. Then
we set x = x̄ + h.

In algorithmic form Newton’s method can be formulated:

while |h|>tol

evaluate the residual b=-f(x)

evaluate the Jacobian A=f’(x)

solve the linear system Ah=b

update x=x+h

end

You will implement this algorithm in the studio exercises. You will use the Matlab command

h=A\b

to solve the system. But later in this course we will study linear systems of equations of the form
Ah = b and we will answer important questions such as:

• Is there a unique solution h for each b?

• How do you compute the solution?

The study of systems of linear equations is an important part of the subject “linear algebra”.
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90 Problems

Problem 90.1. Let

a =
[

1 2
]

, b =

[

1
2

]

, A =

[

1 2
3 4

]

.

Compute the products ab, ba, Ab, Aa, aA, bA.

Problem 90.2. Compute the Jacobi matrix f ′(x) (also denoted Df(x)). Compute the lineariza-
tion of f at x̄.

(a) f(x) =

[

sin(x1) + cos(x2)
cos(x1) + sin(x2)

]

, x̄ = 0; (b) f(x) =





1
1 + x1

1 + x1e
x2



 , x̄ =

[

1
1

]

.

Problem 90.3. Compute the gradient vector ∇f(x) (also denoted f ′(x) = Df(x)). Compute the
linearization of f at x̄.

(a) f(x) = e−x1 sin(x2), x̄ = 0; (b) f(x) = |x|2 = x2
1 + x2

2 + x2
3, x ∈ R3, x̄ =





1
1
1



 .

Problem 90.4. Here f : R → R2. Compute f ′(t). Compute the linearization of f at t̄.

(a) f(t) =

[

cos(t)
sin(t)

]

, t̄ = π/2; (b) f(t) =

[

t
1 + t2

]

, t̄ = 0.

Problem 90.5. (a) Write the system

u2

(

1 − u2
1

)

= 0,

2 − u1u2 = 0

in the form f(u) = 0. Find the all the solutions by hand calculation.
(b) Compute the Jacobi matrix Df(u).
(c) Perform the first step of Newton’s method for the equation f(u) = 0 with initial vector

u(0) =

[

1
1

]

.

(d) Solve the equation f(u) with your Matlab program newton.m.

Problem 90.6. (a) Write the system

u1

(

1 − u2

)

= 0,

u2

(

1 − u1

)

= 0,

in the form f(u) = 0. Find the all the solutions by hand calculation.
(b) Compute the Jacobi matrix Df(u).
(c) Perform the first step of Newton’s method for the equation f(u) = 0 with initial vector

u(0) =

[

2
2

]

.

(d) Solve the equation f(u) with your Matlab program newton.m.
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Answers and solutions

90.1. Use Matlab to check your answers.

90.2.

(a)

f ′(x) =

[

cos(x1) − sin(x2)
− sin(x1) cos(x2)

]

, f̃(x) = f(x̄) + f ′(x̄)(x − x̄) =

[

1
1

]

+

[

1 0
0 1

] [

x1

x2

]

.

(b)

f ′(x) =





0 0
1 0

ex2 x1e
x2



 , f̃(x) = f(x̄) + f ′(x̄)(x − x̄) =





1
2

1 + e



 +





0 0
1 0
e e





[

x1 − 1
x2 − 1

]

.

90.3.

(a)

∇f(x) =
[

−e−x1 sin(x2), e−x1 cos(x2)
]

,

f̃(x) = f(x̄) + f ′(x̄)(x − x̄) = 0 +
[

0 1
]

[

x1

x2

]

= x2.

(b)

∇f(x) =
[

2x1 2x3 2x3

]

,

f̃(x) = f(x̄) + f ′(x̄)(x − x̄) = 3 +
[

2 2 2
]





x1 − 1
x2 − 1
x3 − 1



 = −3 + 2x1 + 2x2 + 2x3.

90.4.

(a)

f ′(t) =

[

− sin(t)
cos(t)

]

,

f̃(t) = f(t̄) + f ′(t̄)(t − t̄) =

[

0
1

]

+

[

−1
0

]

(t − π/2).

(b)

f ′(t) =

[

1
2t

]

,

f̃(t) = f(t̄) + f ′(t̄)(t − t̄) =

[

0
1

]

+

[

1
0

]

t =

[

t
1

]

.

90.5. (a) The solutions are given by

f(u) =

[

u2(1 − u2
1)

2 − u1u2

]

=

[

0
0

]

.

We find two solutions ū =

[

1
2

]

and ū =

[

−1
−2

]

.
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(b) The Jacobian is

Df(u) =

[

−2u1u2 1 − u2
1

−u2 −u1

]

.

(c) The first step of Newton’s method:

evaluate A = Df(1, 1) =

[

−2 0
−1 −1

]

and b = −f(1, 1) =

[

0
−1

]

solve Ah = b,

[

−2 0
−1 −1

] [

h1

h2

]

=

[

0
−1

]

{

− 2h1 = 0,

− h1 − h2 = −1,
h =

[

0
1

]

update u(1) = u(0) + h =

[

1
1

]

+

[

0
1

]

=

[

1
2

]

= ū

bingo!

90.6. (a) The solutions are given by

f(u) =

[

u1(1 − u2)
u2(1 − u1)

]

=

[

0
0

]

.

We find two solutions ū =

[

0
0

]

and ū =

[

1
1

]

.

(b) The Jacobian is

Df(u) =

[

1 − u2 −u1

−u2 1 − u1

]

.

(c) The first step of Newton’s method:

evaluate A = Df(2, 2) =

[

−1 −2
−2 −1

]

and b = −f(2, 2) =

[

2
2

]

solve Ah = b,

[

−1 −2
−2 −1

] [

h1

h2

]

=

[

2
2

]

,

{

− h1 − 2h2 = 2,

− 2h1 − h2 = 2,
h =

[

−2/3
−2/3

]

update u(1) = u(0) + h =

[

2
2

]

+

[

−2/3
−2/3

]

=

[

4/3
4/3

]

getting closer to ū!
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