TMV035 ALA-B

90. Linearization. Jacobi matrix. Newton’s method.

0.1 Function of one variable, f : R - R
(AMBS 23) A function f : R — R of one variable is differentiable at Z if there are constants m(z),
K;(z) such that

f(z) = f(z) + m(z)(z — 7) + Ey(2,7), (1)
where the remainder F satisfies |Ef(z,7)| < K;(Z)(x — Z)? when z is close to Z. The constant
m(Z) is called the derivative of f at T and we write

daf

m(z) = /() = DI @) =

(7).
It is convenient to use the abbreviation h =  — Z, so that x = Z + h and (1) becomes
f(x) = f(Zz+h) = f(T)+ f(Z)h + Ef(z, T), (2)

where |E¢(z,Z)| < K¢(Z)h* when z is close to Z. Note that the first term on the right side, f(z),
is constant with respect to x. The second term,

f'@h = f(@)(x - 1), 3)
is a linear function of the increment h = x — Z. These terms are called the linearization of f at z,
fol@) = f(@) + f'(@)(x — 2). (4)

The straight line y = f3 (z) is the tangent to the curve y = f(x) at z.
Example 1. Let f(z) = 2%. Then f'(x) = 2z and the linearization at Z = 3 is

f3(x) = 9+ 6(x — 3).
Numerical computation of the derivative. (AMBS 23.13) If we divide (2) by h, then we get

w — f'(2) + B;(z,7)/h. (5)

Here the remainder satisfies |E¢(z,Z)/h| < K;(Z)|h| when h is small. This suggests that we can
approximate the derivative by the difference quotient

fl(z) ~ w (6)

A better approximation is obtained if we use Taylor’s formula (AMBS 24.8, 28.15):

f@+h)—f@—h)=f@)+f(z )h+f”( )h?/2 + Ry(T + h, )
—(f(@) (@)h + f"(Z)h? /2 + Ro(Z — h, 7))
=2f'(z )h—‘y—Rg(Jf—l—h Z) — Ro(ZT — h, 7).

The remainders satisfy |Ro(Z £ h,z)| < K(z)|h|® when h is small. This suggests the symmetric
difference quotient:
f@+h)—f(z-h)

HOE - . 7

The difference quotients in (6) and (7) are of the form ”small number divided by small number”.
If this is computed with round-off error on a computer, then the total error will be large if the step
h is very small. Therefore we must choose the step “moderately small” here, see (AMBS 23.13).
It can be shown that in Matlab a good choice for (6) is h = 108 and for (7) h = 1075,




0.2 Function of two variables, f : R? — R

(AMBS 24.11 ) Let f(z1,22) be a function of two variables, i.e., f : R? — R. We write x = (21, z2)
and f(x) = f(x1,22). The function f is differentiable at Z = (Z1, Z2), if there are constants m1 (),
mo(Z), K;(Z) such that

flx) = f(@+h) = f(Z)+mi(Z)h1 + m2(ZT)ho + E¢(z,T), h=2z-7, (8)

where the remainder E; satisfies |E¢(z, Z)| < K¢(Z)|h|? when z is close to Z. Here |h| = \/h3 + h3
denotes the norm of the increment h = (hy, he) = (1 — T1,22 — T2).
If we take h = (h1,0), then we get

f(z1,Z2) = f(Z1 + h1,Z2) = f(Z) + m1(T)h + Ef(z,7),

with |E¢(x,Z)| < K¢(Z)h?. This means that m;(Z) is the derivative of the one-variable function

f(z1) = f(x1,T2), obtained from f by keeping 25 = Z5 fixed. By taking h = (0, hy) we see in a
similar way that mz(Z) is the derivative of the one-variable function, which is obtained from f by
keeping z1 = Zy fixed. The constants m(Z), ma(Z) are called the partial derivatives of f at T
and we denote them by

Now (8) may be written
f@) = f@+h) = f(2) + f1,(@)h1 + [, (@)1 + Ef(2,2), h=x—-1. (10)

It is convenient to write this formula by means of matrix notation. Let

a= [al,az], b= [2;]

We say that a is a row matrix of type 1 x 2 (one by two) and that b is a column matrix of type
2 x 1 (two by one). Their product is defined by

b
ab = [al,ag] |:b;:| = a1b1 + azbg.
The result is a matrix of type 1 x 1 (a real number), according to the rule: 1 x 2 times 2 x 1 makes

1x1.
Going back to (10) we define

F@ = Di@) = (1@ fu@]. n=[y).

The matrix f'(Z) = Df(Z) is called the derivative (or Jacobi matrix) of f at Z. Then (10) may
be written

@)= FE+h) = @)+ [ @) 1 @)] [
= (@) + F'(@)h + Ey(x.2),

(11)

Note that the first term on the right side, f(Z), is constant with respect to . The second
term,

f'@h=f(@)(x-z), (12)
is a linear function of the increment A = x — . These terms are called the linearization of f at T,
folz) = f(@) + ['(@)(2 - 2). (13)

The plane x3 = ff (z1,x2) is the tangent to the surface z3 = f(z1,z2) at .



Example 2. Let f(z) = 2%25. Then

of of B 5 Of 0 Of (o 5\ o4
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so that f'(z) = [2z123 5aix3] and the linearization at = (3,1) is

o) =9+[o 5] [ 7).
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0.3 Two functions of two variables, f : R? — R?

Let fi(z1,22), f2(z1,22) be two functions of two variables. We write = (x1,22) and f(z) =
(fi(z1,22), fa(w1,12)), ie., f: R? — R2. The function f is differentiable at = (Z1, %), if there
are constants my1(Z), mi2(Z), ma1(Z), ma2(Z), and K¢(z) such that

fi(@) = fi(@ + k) = f1(Z) + m11(@)h1 + ma2(T)he + By, (2, 7),

fa(x) = f2(Z + h) = f2(Z) + m21(T)h1 + Mo (T)he + Ef, (x,T), (14)

where h = & — Z and the remainders Ey, satisfy |Ey, (z,Z)| < Ky(Z)|h|* when  is close to .
Here |h| = \/h? + h3 denotes the norm of the increment h = (hy, he) = (¥1 — T1,72 — T2). From
the previous subsection we recognize that the constants m,;(Z) are the partial derivatives of the
functions f; at £ and we denote them by

0 ?
11 (@) = i (@) = 52 0), miala) = f,(@) = @)
02 o

Mo () = f, (7) = G2@). () = (@) = S (@)

_|b

= b, |-

We say that A is a matrix of type 2 x 2 (two by two) and that b is a column matrix of type 2 x 1
(two by one). Their product is defined by

Ab — {au am] {h] _ {aulh +a12b2]
az  aza| |bo ag1by + azzba |’

It is convenient to use matrix notation. Let

A= {011 a12:|

asy  ao2|’

The result is a matrix of type 2 x 1 (column matrix), according to the rule: 2 x 2 times 2 x 1
makes 2 x 1.
Going back to (14) we define

hwy i
B fl(x) rn o 8%1 8x2 B hl
r=[f0] rw=prm=| 00 L= [pl o)

PGl G

The matrix f'(Z) = Df(Z) is called the derivative (or Jacobi matrix) of f at Z. Then (14) may
be written

ofv _\ Of1,_

A@] [h@E+n] [A@] |06® 85, @ [m] [
= = + + , (16)
L@]  le@en]  a@] |0k 08l k] |Bu@e)
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or in more compact form
f@)=f(@+h)=f@) + f(@)h+Ef(z,z), h=z-=. (17)

Note that the first term on the right side, f(Z), is constant with respect to x. The second
term,

f'@h=f(z)(z—2), (18)
is a linear function of the increment h = x — Z. These terms are called the linearization of f at Z,
folw) = f(@) + f'(@)(x — 2). (19)

zix}
Example 3. Let f(x) = { ;32]. Then
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and the linearization at Z = (3, 1) is
o 9] . [6 45] [x1—3
LR R i ]

0.4 Several functions of several variables, f: R® — R™

(AMBS 53) It is now easy to generalize to any number of functions in any number of variables.
Let f; be m functions of n variables z;, i.e., f: R" — R™. As in (15) we define

1 h1 T — T
r= ’ h = - )

L Tn hn, Ty — Ty

Of1,_ of1 ,_
[ fi(x1,. . @) a_xi(m) a—x;(x)

fw) = s . '@ =Df@)=| : ;

(1, ) Ofm Ofm
L Tl IR )

The m x n matrix f/(Z) = D f(Z) is called the derivative (or Jacobi matrix) of f at Z. In a similar
way to (17) we get

f@)=f@+h)=f@)+ f(@h+Es(2,7), h=z-2. (20)
The linearization of f at Z is 5
fa(@) = f(@) + f'(2) (2 — 7). (21)
Numerical computation of the derivative. In order to compute the j-th column aa—f(:i) of
Ly
the Jacobi matrix, we choose the increment h such that h; =6 and h; =0 for ¢ # j, i.e.,
[0] [0] [0]
0 0 0
h= 6| =6 |1| =de;, e; = |1| — row number j.
0 0 0
10] 10] 10]




Here the steplength ¢ is a small positive number and e; is the j-th standard basis vector. If we
use this increment in a symmetric difference quotient, see (7), we get

of f(x+ dej) — f(z — dej)
—_— ~ . 22
5o ) - (22)
Remember that the steplength ¢ should be small, but not too small.
0.5 Newton’s method for f(z) =0
Consider a system of n equations with n unknowns:
fl(xlw--axn) = 07
fn(xla cee 7xn) =0.
If we define
1 f1 0
Ln In 0
then f: R™ — R™, and we can write our system of equations in the compact form
f(@) =0. (23)

Suppose that we have found an approximate solution . We want to find a better approximation
x = T + h. Instead of solving (23) directly, which is usually impossible, we solve the linearized
equation at z: _
fz(@+h)=f(z)+ f(Z)h =0. (24)
Rearranging the terms we get
f'@h=—f(z). (25)
Remember that the Jacobi matrix is of type n x n and the increment is of type n x 1. Therefore
we have to solve a linear system of n equations with n unknowns to get the increment h. Then

we set © =T + h.
In algorithmic form Newton’s method can be formulated:

while |h|>tol

evaluate the residual b=-1f (x)

evaluate the Jacobian A=£’ (x)

solve the linear system Ah=b

update x=x+h
end

You will implement this algorithm in the studio exercises. You will use the MATLAB command
h=A\Db

to solve the system. But later in this course we will study linear systems of equations of the form
Ah = b and we will answer important questions such as:

e Is there a unique solution h for each b7
e How do you compute the solution?

The study of systems of linear equations is an important part of the subject “linear algebra”.



90 Problems
Problem 90.1. Let
a=[1 2, b=, a=|} 2
’ 2|’ 3 4|
Compute the products ab, ba, Ab, Aa, aA, DbDA.

Problem 90.2. Compute the Jacobi matrix f/(z) (also denoted D f(z)). Compute the lineariza-
tion of f at Z.

@ = [l ase 0 =] 1 |oa= ]

cos(x1) + sin(xz)

Problem 90.3. Compute the gradient vector V f(x) (also denoted f'(z) = Df(z)). Compute the
linearization of f at .

1
(a) f(z) =e "tsin(xz), T =0; b)) fl@)=|z]? =22 +23+23, zeR? z=|1
1

Problem 90.4. Here f : R — R2. Compute f’(t). Compute the linearization of f at f.
_ |cos(t) T e _ |t F_
@ s0= 0] = o =), L) -0
Problem 90.5. (a) Write the system
U2 (1 — u%) =0,
2 — UipUg = 0

in the form f(u) = 0. Find the all the solutions by hand calculation.
(b) Compute the Jacobi matrix D f(u).
(c) Perform the first step of Newton’s method for the equation f(u) = 0 with initial vector

1
0) —
u 1l
(d) Solve the equation f(u) with your MATLAB program newton.m.
Problem 90.6. (a) Write the system

U1 (1 — UQ) = O,
UQ(l — ul) = 0,

in the form f(u) = 0. Find the all the solutions by hand calculation.
(b) Compute the Jacobi matrix D f(u).
(c) Perform the first step of Newton’s method for the equation f(u) = 0 with initial vector

u®_m.

(d) Solve the equation f(u) with your MATLAB program newton.m.



Answers and solutions

90.1. Use MATLAB to check your answers.

90.2.
)
Flay= | o) e e =+ e -a =[]+ g 9 2]
(v
0 0 1 0 0 1
f()=[1 0 ] f@%=ﬂ@+f(ﬂm—@={ 2]+{10]L__J
1+e
90.3.
)
Vf(z)=[-e in(xs) (z2)]
J(2) = @) + ' @) —7) = 0+ [0 q[}:x
(v
Vi) = [ 2y 2]
xr1 — 1
f) = 1@+ @)@ -5 =3+ [2 2 ﬂ{m—&]:—3+ma+zm+2m.
rs3 — 1
90.4.
8
1 |—sin(t)
F#) = { cos(t) } ’
oy =10+ -0 =] + [ ] @ -2
(v

£O= |y
1 t

oy =10+ e -0 = 5] + o] = 1]

90.5. (a) The solutions are given by
fue(1=u?)] [0
f(u)_ [Q—U1U2 o (1

We find two solutions @ = B] and u = {:ﬂ .



(b) The Jacobian is

| 2ugus lfu%
Drt) = |2 17
(c) The first step of Newton’s method:
evaluate A=Df(1,1) = [j _OJ and b= —f(1,1) = [_01]
B —2 0][m] _[oO
solve Ah =0, [1 1} {hJ = [J

—2h1 =0
1 ) h:|:0:|
—hy—hy =1, 1

update u =4 4 h= [1} +
bingo!

90.6. (a) The solutions are given by

We find two solutions u = {8] and u = E] .
(b) The Jacobian is

(¢) The first step of Newton’s method:

evaluate A=Df(2,2) = {_; _ﬂ and b=-f(2,2) = {

B 1 =2][m] _[2
solve Ah =0, {2 J |:h2 = {2],

_h1_2h2:27 72/3

h =
—2hy — ho = 2, -2/3
W) O gy — 2| 4 [ 723 43

update u = +h{2}+{_2/3 = |4/3

getting closer to u!
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