Problems Week 7 ## Vector Analysis - **1.** Compute ∇u , $n \cdot \nabla u$, and $\triangle u$ for - (a) u(x, y) = xy; n = (1, 0), - (b) $u(x, y) = \sin(x)\cos(y); \quad n = (1, 1),$ (c) $u(x, y) = \log(r)$ where $r = \sqrt{x^2 + y^2} \quad (r \neq 0); \quad n = (x, y).$ #### Stiffness Matrix 2. Consider the triangulation of $\Omega = [0, 2] \times [0, 1]$ into 3 triangles drawn in Figure 1. (It is the same triangulation as in Problem 5, Week 6.) Figure 1: The triangulation in Problem 1 and Problem 4. Compute by hand the stiffness matrix A with elements $a_{ij} = \iint_{\Omega} \nabla \varphi_j \cdot \nabla \varphi_i \, dx \, dy$, i, j = $1,\ldots,5.$ Hint: Since $\varphi_i(x, y)$ is linear on each triangle, the gradient $\nabla \varphi_i$ will be a constant vector on each triangle. As an example, consider triangle K_1 . On this triangle, it is easy to show that $\varphi_1(x, y) = 1 - (x + y), \ \varphi_2(x, y) = x, \ \text{and} \ \varphi_5(x, y) = y \ \text{(cf. how you did in Problem)}$ 2(a), Week 5). Therefore, on K_1 : $\nabla \varphi_1 = (-1, -1), \ \nabla \varphi_2 = (1, 0), \ \text{and} \ \nabla \varphi_5 = (0, 1).$ Thus, $a_{11} = \iint_{\Omega} \nabla \varphi_1 \cdot \nabla \varphi_1 \, dx \, dy = \iint_{K_1} \nabla \varphi_1 \cdot \nabla \varphi_1 \, dx \, dy = \iint_{K_1} 2 \, dx \, dy = 1$. Observe that some matrix elements will get contributions from more than one triangle. 3. Let $\mathcal{P}(K) = \{v(x) = c_0 + c_1x_1 + c_2x_2, c_i \in \mathbf{R}, i = 1, 2, 3; x = (x_1, x_2) \in K\}$ be the space of linear polynomials defined on a triangle K with corners a^1 , a^2 , and a^3 . Derive explicit expressions (in terms of the corner coordinates $a^1 = (a_1^1, a_2^1), a^2 = (a_1^2, a_2^2),$ and $a^3 = (a_1^3, a_2^3)$ for the gradients $\nabla \lambda_1, \nabla \lambda_2, \nabla \lambda_3$ of the basis functions $\lambda_1, \lambda_2, \lambda_3 \in \mathcal{P}(K)$ defined by $$\lambda_i(a^j) = \begin{cases} 1 & i = j, \\ 0 & i \neq j, \end{cases} \tag{1}$$ with i, j = 1, 2, 3. Compare with the corresponding expressions in MyFirst2DPoissonAssembler. Hint: Use the result from Problem 3, Week 6. ### **Robin Boundary Conditions** - **4.** Consider once more the triangulation of $\Omega = [0, 2] \times [0, 1]$ into 3 triangles drawn in Figure 1. Let $\Gamma = \partial \Omega$ denote the boundary of Ω . Assuming that $\gamma(x, y) = 1$, $g_D(x, y) = 1 + x + y$, and $g_N(x, y) = 0$, compute by hand: - (a) The "boundary matrix" R with elements $r_{ij} = \int_{\Gamma} \gamma \varphi_i \varphi_i ds$, $i, j = 1, \ldots, 5$. - (b) The "boundary vector" rv with elements $\mathbf{rv}_i = \int_{\Gamma} (\gamma g_D g_N) \varphi_i \, ds, i = 1, \dots, 5.$ *Hint:* You can either compute the curve integrals analytically or use *Simpson's* formula which is exact in this case. # The Finite Element Method: Stationary Problems (2D). **5.** Show that the equation: $$\iint_{\Omega} \nabla U \cdot \nabla v \, dx \, dy = \iint_{\Omega} f v \, dx \, dy \quad \text{for all } v \in V_{h0}, \tag{2}$$ is equivalent to $$\iint_{\Omega} \nabla U \cdot \nabla \varphi_i \, dx \, dy = \iint_{\Omega} f \varphi_i \, dx \, dy \quad \text{for } i = 1, \dots, N,$$ (3) where N is the number of internal nodes ("nintnodes") and $\{\varphi_i\}_{i=1}^N$ is the basis of "tent-functions" in V_{h0} . **6***. Show that the problem: find $U \in V_{h0}$ such that $$\iint_{\Omega} \nabla U \cdot \nabla w dx \, dy = \iint_{\Omega} f w \, dx \, dy \quad \text{for all } w \in V_{h0}, \tag{4}$$ is equivalent to the minimization problem: find $U \in V_{h0}$ such that $$\frac{1}{2} \iint_{\Omega} \nabla U \cdot \nabla U \, dx \, dy - \iint_{\Omega} fU \, dx \, dy = \min_{v \in V_{h0}} \frac{1}{2} \iint_{\Omega} \nabla v \cdot \nabla v \, dx \, dy - \iint_{\Omega} fv \, dx \, dy. \tag{5}$$ 7*. (a) Consider the quadratic equation $$at^2 + bt + c = 0, (6)$$ Investigate under what condition on the coefficients a, b, c equation (6) does not have two distinct real roots. (b) Prove the Cauchy-Schwarz inequality: $$| \iint_{\Omega} vw \, dx \, dy | \le ||v||_{L^{2}(\Omega)} ||w||_{L^{2}(\Omega)}$$ (7) Hint: start from the fact that $||v+tw||_{L^2(\Omega)}^2 \ge 0$. Expanding $||v+tw||_{L^2(\Omega)}^2$ gives a quadratic polynomial which can not have two distinct real roots (why?). Use (a) to prove the Cauchy-Schwarz inequality. - **8.** Calculate $\|\nabla f\|_{L^2(\Omega)}$ where $\Omega = [0,1] \times [0,1]$ and - (a) $f = x_1 x_2^2$. - (b) $f = \sin(nx_1)\sin(mx_2)$ with n and m arbitrary integers. What happens when n, m tends to infinity? - **9.** Let $u = x_1 x_2^2$ and $a = 1 + x_2^2$. Calculate - (a) ∇u . - (b) Δu . - (c) $\nabla \cdot a \nabla u$. - 10. Consider the problem: find u such that $$-\Delta u + cu = f \qquad \qquad \text{in } \Omega, \tag{8}$$ $$u = g_D$$ on Γ_D , (9) $$-n \cdot \nabla u = g_N \qquad \qquad \text{on } \Gamma_N, \tag{10}$$ with the usual notation. - (a) Derive a finite element method for this problem using approximation of the Dirichlet boundary conditions. - (b) Prove that the finite element solution is unique when 1. c > 0 and 2. Γ_D is nonempty. - 11. Let K be a triangle with corners (0,0), (0,1), and (1,0), and let $f=x_1^2+x_2$. Calculate $$\iint_{K} f \, dx \, dy,\tag{11}$$ using - (a) one point ("center of gravity") quadrature, - (b) corner ("node") quadrature, - (c) mid-point (of the triangle sides) quadrature. Also compute (11) analytically and compare with your results above. - 12. Let K be a triangle with corners (0,0), (0,1), and (1,0). - (a) Calculate the three basis functions λ_i , i = 1, 2, 3, for the space $\mathcal{P}(K)$ of linear functions defined on K. - (b) Calculate the 3×3 element mass matrix with elements $m_{ij} = \iint_K \lambda_j \lambda_i \, dx \, dy$ approximately using corner quadrature. (c) Calculate the 3×3 element stiffness matrix with elements $a_{ij} = \iint_K \nabla \lambda_j \cdot \nabla \lambda_i \, dx \, dy$.