PDE Project Course

2. Implementation of adaptive finite element methods

Anders Logg

logg@math.chalmers.se

Department of Computational Mathematics

Lecture plan

- Matrix notation
- Assembling the matrices
- Mapping from a reference element
- Solving nonlinear problems
- Time-stepping

Warning: ξ is used with two different meanings!

Matrix notation

The stiffness matrix S

The stiffness matrix S is given by

$$S_{ij} = \int_{\Omega} \epsilon(x) \nabla \varphi_j(x) \cdot \nabla \hat{\varphi}_i(x) \ dx.$$

In one dimension, with $\Omega = (a, b)$, we have

$$S_{ij} = \int_a^b \epsilon(x) \varphi_j'(x) \hat{\varphi}_i'(x) dx.$$

The load vector b

The *load vector* b is given by

$$b_i = \int_{\Omega} f(x)\hat{\varphi}_i(x) \ dx.$$

Example: Poisson's equation

For Poisson's equation, $-\nabla \cdot (\epsilon(x)\nabla u(x)) = f(x)$ in Ω , we obtain

$$S\xi = b,$$

where S is the stiffness matrix, b is the load vector and ξ is the vector containing the degrees of freedom for the finite element solution U given by

$$U(x) = \sum_{j=1}^{N} \xi_j \varphi_j(x).$$

The mass matrix M

The mass matrix M is given by

$$M_{ij} = \int_{\Omega} \varphi_j(x) \hat{\varphi}_i(x) \ dx.$$

The convection matrix B

The convection matrix B is given by

$$B_{ij} = \int_{\Omega} \beta(x) \cdot \nabla \varphi_j(x) \hat{\varphi}_i(x) \ dx.$$

In one dimension, with $\Omega = (a, b)$, we have

$$B_{ij} = \int_a^b \beta(x)\varphi_j'(x)\hat{\varphi}_i(x) \ dx.$$

Example: convection-diffusion

Using matrix notation, the convection-diffusion equation

$$\dot{u}(x,t) + \beta(x) \cdot \nabla u(x,t) - \nabla \cdot (\epsilon(x)\nabla u(x)) = f(x),$$

can be written in the form

$$M\dot{\xi}(t) + B\xi(t) + S\xi(t) = b.$$

This is an ODE for the degrees of freedom $\xi(t)$.

General bilinear form $a(\cdot, \cdot)$

In general the matrix A_h , representing a bilinear form

$$a(u,v) = (A(u),v),$$

is given by

$$(A_h)_{ij} = a(\varphi_j, \hat{\varphi}_i).$$

Assembling the matrices

Computing $(A_h)_{ij}$

Note that

$$(A_h)_{ij} = a(\varphi_j, \hat{\varphi}_i) = \int_{\Omega} A(\varphi_j) \hat{\varphi}_i \, dx$$
$$= \sum_{K \in \mathcal{T}} \int_K A(\varphi_j) \hat{\varphi}_i \, dx = \sum_{K \in \mathcal{T}} a(\varphi_j, \hat{\varphi}_i)_K.$$

Iterate over all elements K and for each element K compute the contributions to all $(A_h)_{ij}$, for which φ_i and $\hat{\varphi}_i$ are supported within K.

Assembling A_h

```
for all elements K \in \mathcal{T}
   for all test functions \hat{\varphi}_i on K
      for all trial functions \varphi_i on K
          1. Compute I = a(\varphi_i, \hat{\varphi}_i)_K
         2. Add I to (A_h)_{ij}
      end
   end
end
```

Assembling b

for all elements $K \in \mathcal{T}$

for all test functions $\hat{\varphi}_i$ on K

- 1. Compute $I = (f, \hat{\varphi}_i)_K$
- 2. Add I to b_i

end

end

Mapping from a reference element

Some basic calculus

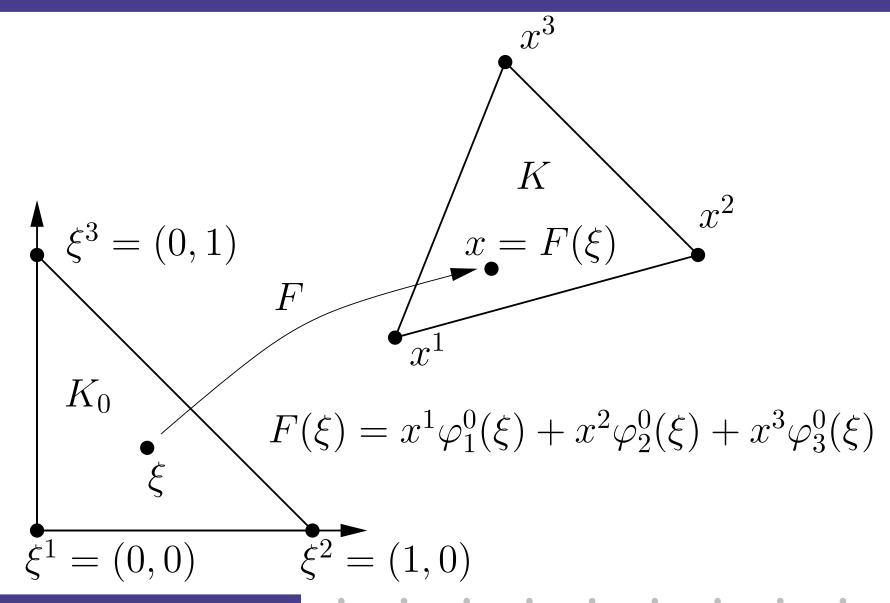
Let v=v(x) be a function defined on a domain Ω and let

$$F:\Omega_0\to\Omega$$

be a (differentiable) mapping from a domain Ω_0 to Ω . We then have $x = F(\xi)$ and

$$\int_{\Omega} v(x) dx = \int_{\Omega_0} v(F(\xi)) |\det \partial F_i / \partial \xi_j| d\xi$$
$$= \int_{\Omega_0} v(F(\xi)) |\det \partial x / \partial \xi| d\xi.$$

The mapping $F: K_0 \to K$



Affine mapping

When the mapping is affine, the determinant is constant:

$$\int_{K} \varphi_{j}(x)\hat{\varphi}_{i}(x) dx$$

$$= \int_{K_{0}} \varphi_{j}(F(\xi))\hat{\varphi}_{i}(F(\xi)) |\det \partial x/\partial \xi| d\xi$$

$$= |\det \partial x/\partial \xi| \int_{K_{0}} \varphi_{j}^{0}(\xi)\hat{\varphi}_{i}^{0}(\xi) d\xi$$

Transformation of derivatives

To compute derivatives, we use the transformation

$$\nabla_{\xi} = \left(\frac{\partial x}{\partial \xi}\right)^{\top} \nabla_{x},$$

or

$$\nabla_x = \left(\frac{\partial x}{\partial \xi}\right)^{-1} \nabla_{\xi}.$$

The stiffness matrix

For the computation of the stiffness matrix, this means that we have

$$\int_{K} \epsilon(x) \nabla \varphi_{j}(x) \cdot \nabla \hat{\varphi}_{i}(x) dx$$

$$= \int_{K_{0}} \epsilon_{0}(\xi) \left[(\partial x/\partial \xi)^{-\top} \nabla_{\xi} \varphi_{j}^{0}(\xi) \right] \cdot \left[(\partial x/\partial \xi)^{-\top} \nabla_{\xi} \hat{\varphi}_{i}^{0}(\xi) \right] \cdots$$

$$\cdots \left| \det (\partial x/\partial \xi) \right| d\xi.$$

Note that we have used the short notation

$$\nabla = \nabla_x$$
.

Computing integrals on K_0

- The integrals on K_0 can be computed exactly or by quadrature.
- In some cases quadrature is the only option.

Standard form:

$$\int_{K_0} v(\xi) \ d\xi \approx |K_0| \sum_{i=1}^n w_i v(\xi^i)$$

where $\{w_i\}_{i=1}^n$ are quadrature weights and $\{\xi^i\}_{i=1}^n$ are quadrature points in K_0 .

Solving nonlinear problems

Nonlinear problems

If the problem is nonlinear, for example,

$$-\nabla \cdot (|\nabla u| \, \nabla u) = f,$$

we rewrite the problem as

$$-\nabla \cdot (|\nabla \tilde{u}| \nabla u) = f.$$

As before, we obtain a linear system $A_h \xi = b$, but now

$$A_h = A_h(\tilde{u}) = A_h(u) = A_h(\xi),$$

i.e.
$$A_h(\xi)\xi = f$$
.

Fixed-point iteration

To solve a nonlinear problem $F(\xi) = 0$, we rewrite the problem in fixed-point form

$$\xi = g(\xi),$$

and apply fixed-point iteration as follows:

$$\xi^0 = \text{a clever guess}$$
 $\xi^1 = g(\xi^0)$
 $\xi^2 = g(\xi^1)$

. . .

Fixed-point iteration

According to the contraction-mapping theorem, fixed-point iteration converges if

$$L_g < 1,$$

where L_g is a Lipschitz-constant of g:

$$||g(\xi) - g(\eta)|| \le L_g ||\xi - \eta||.$$

Basic algorithm

$$\xi = \xi^0$$
 $d = 2 \cdot \text{tol}$
while $d > \text{tol}$
 $\xi_{\text{new}} = g(\xi)$
 $d = \|\xi_{\text{new}} - \xi\|$
 $\xi = \xi_{\text{new}}$

end

Newton's method

Newton's method is a special type of fixed-point iteration for $F(\xi) = 0$, where we take

$$g(\xi) = \xi - (\partial F/\partial \xi)^{-1} F(\xi).$$

Usually converges faster than basic fixed-point iteration, but requires more work to implement.

Time-stepping

A shortcut

Replace $\dot{\xi}$ by $(\xi(t_n) - \xi(t_{n-1}))/k_n$, and replace ξ by

- $\xi(t_{n-1})$: forward / explicit Euler
- $\xi(t_n)$: backward / implicit Euler
- $(\xi(t_{n-1}) + \xi(t_n))/2$: Crank-Nicolson / cG(1)

Example: backward Euler

Discretizing the heat equation $\dot{u} - \Delta u = f$ in space, we have

$$M\dot{\xi} + S\xi = b.$$

Using the implicit Euler method for time-stepping, we obtain

$$M(\xi(t_n) - \xi(t_{n-1}))/k_n + S\xi(t_n) = b(t_n),$$

or

$$(M + k_n S)\xi(t_n) = M\xi(t_{n-1}) + k_n b(t_n).$$

Basic algorithm

$$t_0 = 0$$
 $n = 1$
while $t < T$
 $t_n = t_{n-1} + k$
 $\xi^n = \dots$
 $n = n + 1$

end