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_ecture plan

» Matrix notation

« Assembling the matrices

» Mapping from a reference element
» Solving nonlinear problems

» Time-stepping

Warning: ¢ is used with two different meanings!
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Matrix notation
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The stiffness matrix S

The stiffness matrix S Is given by

g = /Q () Vi(x) - Vii(x) d.

In one dimension, with Q = (a, b), we have

Sy = [ elaejla)di(o) do
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The load vector b

The load vector b Is given by

b — /Q F(@)én() da.
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Example: Poisson’s equation

For Poisson’s equation, —V - (e(x)Vu(x)) = f(x)
In €2, we obtain
5¢ =0,

where S Is the stiffness matrix, b Is the load
vector and ¢ Is the vector containing the degrees
of freedom for the finite element solution U given

by
Ulx) = ) _ &)
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The mass matrix M

The mass matrix M Is given by

Mij = /Q%(x)@i(l') da.
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The convection matrix B

The convection matrix B Is given by

Bi; = /95(33) - V(x)pi(z) do.

In one dimension, with 2 = (a, b), we have

Bij = / B(z)¢(x)i(z) d.
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Example: convection—diffusion

Using matrix notation, the convection-diffusion
equation

w(z,t) + f(z) - Vu(z,t) = V- (e(x)Vu(z)) = f(z),
can be written in the form

ME(t) + BE(t) + SE(t) = b.
This is an ODE for the degrees of freedom &(%).
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General bilinear form a(-, -)

In general the matrix A, representing a bilinear
form

afu,v) = (A(u),v),

IS given by

(An)ij = alpj, ¢i).
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Assembling the matrices
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Computing (Ay);;

Note that
(Ah)ij — a(@]a@z): QA(SOJ)@z dx
= 3 [ Alppaide= Y ales p0x
KeT K KeT

lterate over all elements K and for each element
K compute the contributions to all (A;);;, for
which ¢, and ¢; are supported within K.
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Assembling A,

for all elements K € T
for all test functions ¢, on K
for all trial functions ¢, on K
1. Compute I = a(p;, i)k
2. Add I to (Ap);
end
end
end
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Assembling b

for all elements K € T
for all test functions ¢, on K
1. Compute I = (f, ¢i)k
2. Add I to b,
end
end
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Mapping from a
reference element
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Some basic calculus

Let v = v(z) be a function defined on a domain 2
and let
F:Qy— Q

be a (differentiable) mapping from a domain €2,
to 2. We then have x = F'(¢) and

/Qv(az) dr = /Qv(F(f)) | det OF;/OE;| d€
= [ o(F(©) | det 0o de
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The mapping F' : Ky — K
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Affine mapping

When the mapping is affine, the determinant is
constant:

/K 0i(2)¢i(x) da
- /K o3 (F(€)@:(F(€)) | det 0 /0¢]| de

| det 0z /0¢| | ¢j(£)@7(€) d&

Ky
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Transformation of derivatives

To compute derivatives, we use the

transformation
or\ '
Vi~ (5) V-
A
v--(5) e

or
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The stiffness matrix

For the computation of the stiffness matrix, this
means that we have

| €@ Ves(o) Vgila) do

.- | det (0x/0€) | dE.

Note that we have used the short notation
V =V,.
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Computing integrals on K

» The integrals on K can be computed exactly
or by quadrature.

» In some cases quadrature is the only option.

Standard form:

[ o©) d 1Ko 3 wiote)
Ko i=1

where {w;}" , are quadrature weights and {£'}" ,
are quadrature points in K.
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Solving nonlinear problems
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Nonlinear problems

If the problem iIs nonlinear, for example,
=V - (|[Vu| Vu) = f,

we rewrite the problem as
—V - (|Va| Vu) = f.

As before, we obtain a linear system A,¢ = b, but
now

Ap = Ap(a) = Ap(u) = Ap(§),
.e. Ap(§)E=1T.
I
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Fixed-point iteration

To solve a nonlinear problem F'(£) = 0, we
rewrite the problem in fixed-point form

£ =9(§),

and apply fixed-point iteration as follows:

a clever guess

g(&")
g(&h
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Fixed-point iteration

According to the contraction-mapping theorem,
fixed-point iteration converges Iif

L, <1,
where L, Is a Lipschitz-constant of g:

19(&) —gm)|l < Lyllg —nl-
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Basic algorithm

£ =¢"

d=2-tol

while d > tol
Enew = 9(§)
d = |[&new — €]
& = Enew

end

PDE Project Course 03/04 — p. 26



Newton’s method

Newton’s method Is a special type of fixed-point
iteration for F'(¢) = 0, where we take

g(€) =& — (OF/9E) " F(£).

Usually converges faster than basic fixed-point
iteration, but requires more work to implement.
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Time-stepping
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A shortcut

Replace ¢ by (£(t,) — &(tn_1))/kn, and replace ¢
by
° €
* &(t,): backward / implicit Euler
* (&(tp—1) + &(t))/2: Crank-Nicolson / ¢G(1)

(t,,—1): forward / explicit Euler
(tn
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Example: backward Euler

Discretizing the heat equation @ — Au = f In
space, we have

ME+ SE=b.

Using the implicit Euler method for time-stepping,
we obtain

M(&(tn) — &(tn-1))/kn + SE(tn) = b(tn),

or

(M ~+ k,S)E(t,) = ME(ty_1) + knb(t,).
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Basic algorithm

to =0
n=1
while ¢ < T
tn =th 1+ k
= ...
n=n-4+1
end
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