
TMV035 ALA–B

90. Linearization. Jacobi matrix. Newton’s method.

The fixed point iteration (and hence also Newton’s method) works equally well for systems of
equations. For example,

x2

(
1− x2

1

)
= 0,

2− x1x2 = 0,

is a system of two equations in two unknowns. See Problem 90.5 below. If we define two functions

f1(x1, x2) = x2

(
1− x2

1

)
,

f2(x1, x2) = 2− x1x2,

the equations may be written

f1(x1, x2) = 0,

f2(x1, x2) = 0.

With f = (f1, f2), x = (x1, x2), and 0 = (0, 0), we note that f : R2 → R2 and we can write the
equations in the compact form

f(x) = 0.

In this lecture we will see how Newton’s method can be applied to such systems of equations.
Note that the bisection algorithm can only be used for a single equation, but not for a system

of several equations. This is because it relies on the fact the the graph of a Lipschitz continuous
function f : R → R must pass the value zero if it is positive in one point and negative in another
point. This has no counterpart for functions f : R2 → R2.

0.1 Function of one variable, f : R → R

(AMBS 23) A function f : R → R of one variable is differentiable at x̄ if there are constants m(x̄),
Kf (x̄) such that

f(x) = f(x̄) + m(x̄)(x− x̄) + Ef (x, x̄), (1)

where the remainder Ef satisfies |Ef (x, x̄)| ≤ Kf (x̄)(x − x̄)2 when x is close to x̄. The constant
m(x̄) is called the derivative of f at x̄ and we write

m(x̄) = f ′(x̄) = Df(x̄) =
df

dx
(x̄).

It is convenient to use the abbreviation h = x− x̄, so that x = x̄ + h and (1) becomes

f(x) = f(x̄ + h) = f(x̄) + f ′(x̄)h + Ef (x, x̄), (2)

where |Ef (x, x̄)| ≤ Kf (x̄)h2 when x is close to x̄. Note that the first term on the right side, f(x̄),
is constant with respect to x. The second term,

f ′(x̄)h = f ′(x̄)(x− x̄), (3)

is a linear function of the increment h = x− x̄. These terms are called the linearization of f at x̄,

f̃x̄(x) = f(x̄) + f ′(x̄)(x− x̄). (4)

The straight line y = f̃x̄(x) is the tangent to the curve y = f(x) at x̄.
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Example 1. Let f(x) = x2. Then f ′(x) = 2x and the linearization at x̄ = 3 is

f̃3(x) = 9 + 6(x− 3).

Numerical computation of the derivative. (AMBS 23.13) If we divide (2) by h, then we get

f(x̄ + h)− f(x̄)
h

= f ′(x̄) + Ef (x, x̄)/h. (5)

Here the remainder satisfies |Ef (x, x̄)/h| ≤ Kf (x̄)|h| when h is small. This suggests that we can
approximate the derivative by the difference quotient

f ′(x̄) ≈ f(x̄ + h)− f(x̄)
h

. (6)

A better approximation is obtained if we use Taylor’s formula (AMBS 24.8, 28.15):

f(x̄ + h)− f(x̄− h) = f(x̄) + f ′(x̄)h + f ′′(x̄)h2/2 + R2(x̄ + h, x̄)

−
(
f(x̄)− f ′(x̄)h + f ′′(x̄)h2/2 + R2(x̄− h, x̄)

)
= 2f ′(x̄)h + R2(x̄ + h, x̄)−R2(x̄− h, x̄).

The remainders satisfy |R2(x̄ ± h, x̄)| ≤ K(x̄)|h|3 when h is small. This suggests the symmetric
difference quotient:

f ′(x̄) ≈ f(x̄ + h)− f(x̄− h)
2h

. (7)

The difference quotients in (6) and (7) are of the form ”small number divided by small number”.
If this is computed with round-off error on a computer, then the total error will be large if the step
h is very small. Therefore we must choose the step “moderately small” here, see (AMBS 23.13).
It can be shown that in Matlab a good choice for (6) is h = 10−8 and for (7) h = 10−5.

0.2 Function of two variables, f : R2 → R

(AMBS 24.11 ) Let f(x1, x2) be a function of two variables, i.e., f : R2 → R. We write x = (x1, x2)
and f(x) = f(x1, x2). The function f is differentiable at x̄ = (x̄1, x̄2), if there are constants m1(x̄),
m2(x̄), Kf (x̄) such that

f(x) = f(x̄ + h) = f(x̄) + m1(x̄)h1 + m2(x̄)h2 + Ef (x, x̄), h = x− x̄, (8)

where the remainder Ef satisfies |Ef (x, x̄)| ≤ Kf (x̄)|h|2 when x is close to x̄. Here |h| =
√

h2
1 + h2

2

denotes the norm of the increment h = (h1, h2) = (x1 − x̄1, x2 − x̄2).
If we take h = (h1, 0), then we get

f(x1, x̄2) = f(x̄1 + h1, x̄2) = f(x̄) + m1(x̄)h1 + Ef (x, x̄),

with |Ef (x, x̄)| ≤ Kf (x̄)h2
1. This means that m1(x̄) is the derivative of the one-variable function

f̂(x1) = f(x1, x̄2), obtained from f by keeping x2 = x̄2 fixed. By taking h = (0, h2) we see in a
similar way that m2(x̄) is the derivative of the one-variable function, which is obtained from f by
keeping x1 = x̄1 fixed. The constants m1(x̄), m2(x̄) are called the partial derivatives of f at x̄
and we denote them by

m1(x̄) = f ′x1
(x̄) =

∂f

∂x1
(x̄), m2(x̄) = f ′x2

(x̄) =
∂f

∂x2
(x̄). (9)

Now (8) may be written

f(x) = f(x̄ + h) = f(x̄) + f ′x1
(x̄)h1 + f ′x2

(x̄)h2 + Ef (x, x̄), h = x− x̄. (10)
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It is convenient to write this formula by means of matrix notation. Let

a =
[
a1, a2

]
, b =

[
b1

b2

]
.

We say that a is a row matrix of type 1 × 2 (one by two) and that b is a column matrix of type
2× 1 (two by one). Their product is defined by

ab =
[
a1, a2

] [
b1

b2

]
= a1b1 + a2b2.

The result is a matrix of type 1×1 (a real number), according to the rule: 1×2 times 2×1 makes
1× 1.

Going back to (10) we define

f ′(x̄) = Df(x̄) =
[
f ′x1

(x̄) f ′x2
(x̄)

]
, h =

[
h1

h2

]
.

The matrix f ′(x̄) = Df(x̄) is called the derivative (or Jacobi matrix) of f at x̄. Then (10) may
be written

f(x) = f(x̄ + h) = f(x̄) +
[
f ′x1

(x̄) f ′x2
(x̄)

] [
h1

h2

]
+ Ef (x, x̄)

= f(x̄) + f ′(x̄)h + Ef (x, x̄), h = x− x̄.

(11)

Note that the first term on the right side, f(x̄), is constant with respect to x. The second
term,

f ′(x̄)h = f ′(x̄)(x− x̄), (12)

is a linear function of the increment h = x− x̄. These terms are called the linearization of f at x̄,

f̃x̄(x) = f(x̄) + f ′(x̄)(x− x̄). (13)

The plane x3 = f̃x̄(x1, x2) is the tangent to the surface x3 = f(x1, x2) at x̄.

Example 2. Let f(x) = x2
1x

5
2. Then

∂f

∂x1
(x) =

∂f

∂x1

(
x2

1x
5
2

)
= 2x1x

5
2,

∂f

∂x2
(x) =

∂f

∂x2

(
x2

1x
5
2

)
= 5x2

1x
4
2,

so that f ′(x) =
[
2x1x

5
2 5x2

1x
4
2

]
and the linearization at x̄ = (3, 1) is

f̃x̄(x) = 9 +
[
6 45

] [
x1 − 3
x2 − 1

]
.

0.3 Two functions of two variables, f : R2 → R2

Let f1(x1, x2), f2(x1, x2) be two functions of two variables. We write x = (x1, x2) and f(x) =
(f1(x1, x2), f2(x1, x2)), i.e., f : R2 → R2. The function f is differentiable at x̄ = (x̄1, x̄2), if there
are constants m11(x̄), m12(x̄), m21(x̄), m22(x̄), and Kf (x̄) such that

f1(x) = f1(x̄ + h) = f1(x̄) + m11(x̄)h1 + m12(x̄)h2 + Ef1(x, x̄),
f2(x) = f2(x̄ + h) = f2(x̄) + m21(x̄)h1 + m22(x̄)h2 + Ef2(x, x̄),

(14)

where h = x − x̄ and the remainders Efj
satisfy |Efj

(x, x̄)| ≤ Kf (x̄)|h|2 when x is close to x̄.
Here |h| =

√
h2

1 + h2
2 denotes the norm of the increment h = (h1, h2) = (x1 − x̄1, x2 − x̄2). From
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the previous subsection we recognize that the constants mij(x̄) are the partial derivatives of the
functions fi at x̄ and we denote them by

m11(x̄) = f ′1,x1
(x̄) =

∂f1

∂x1
(x̄), m12(x̄) = f ′1,x2

(x̄) =
∂f1

∂x2
(x̄),

m21(x̄) = f ′2,x1
(x̄) =

∂f2

∂x1
(x̄), m22(x̄) = f ′2,x2

(x̄) =
∂f2

∂x2
(x̄).

It is convenient to use matrix notation. Let

A =
[
a11 a12

a21 a22

]
, b =

[
b1

b2

]
.

We say that A is a matrix of type 2× 2 (two by two) and that b is a column matrix of type 2× 1
(two by one). Their product is defined by

Ab =
[
a11 a12

a21 a22

] [
b1

b2

]
=

[
a11b1 + a12b2

a21b1 + a22b2

]
.

The result is a matrix of type 2 × 1 (column matrix), according to the rule: 2 × 2 times 2 × 1
makes 2× 1.

Going back to (14) we define

f(x) =
[
f1(x)
f2(x)

]
, f ′(x̄) = Df(x̄) =


∂f1

∂x1
(x̄)

∂f1

∂x2
(x̄)

∂f2

∂x1
(x̄)

∂f2

∂x2
(x̄)

 , h =
[
h1

h2

]
. (15)

The matrix f ′(x̄) = Df(x̄) is called the derivative (or Jacobi matrix) of f at x̄. Then (14) may
be writtenf1(x)

f2(x)

 =

f1(x̄ + h)

f2(x̄ + h)

 =

f1(x̄)

f2(x̄)

 +


∂f1

∂x1
(x̄)

∂f1

∂x2
(x̄)

∂f2

∂x1
(x̄)

∂f2

∂x2
(x̄)


h1

h2

 +

Ef1(x, x̄)

Ef2(x, x̄)

 , (16)

or in more compact form

f(x) = f(x̄ + h) = f(x̄) + f ′(x̄)h + Ef (x, x̄), h = x− x̄. (17)

Note that the first term on the right side, f(x̄), is constant with respect to x. The second
term,

f ′(x̄)h = f ′(x̄)(x− x̄), (18)

is a linear function of the increment h = x− x̄. These terms are called the linearization of f at x̄,

f̃x̄(x) = f(x̄) + f ′(x̄)(x− x̄). (19)

Example 3. Let f(x) =
[
x2

1x
5
2

x3
2

]
. Then

f ′(x) = Df(x) =


∂f1

∂x1
(x)

∂f1

∂x2
(x)

∂f2

∂x1
(x)

∂f2

∂x2
(x)

 =
[
2x1x

5
2 5x2

1x
4
2

0 3x2
2

]

and the linearization at x̄ = (3, 1) is

f̃x̄(x) =
[
9
1

]
+

[
6 45
0 3

] [
x1 − 3
x2 − 1

]
.
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0.4 Several functions of several variables, f : Rn → Rm

(AMBS 53) It is now easy to generalize to any number of functions in any number of variables.
Let fi be m functions of n variables xj , i.e., f : Rn → Rm. As in (15) we define

x =

x1

...
xn

 , h =

h1

...
hn

 =

x1 − x̄1

...
xn − x̄n

 ,

f(x) =

 f1(x1, . . . , xn)
...

fm(x1, . . . , xn)

 , f ′(x̄) = Df(x̄) =


∂f1

∂x1
(x̄) . . .

∂f1

∂xn
(x̄)

...
...

∂fm

∂x1
(x̄) . . .

∂fm

∂xn
(x̄)

 .

The m×n matrix f ′(x̄) = Df(x̄) is called the derivative (or Jacobi matrix) of f at x̄. In a similar
way to (17) we get

f(x) = f(x̄ + h) = f(x̄) + f ′(x̄)h + Ef (x, x̄), h = x− x̄. (20)

The linearization of f at x̄ is
f̃x̄(x) = f(x̄) + f ′(x̄)(x− x̄). (21)

Numerical computation of the derivative. In order to compute the j-th column
∂f

∂xj
(x̄) of

the Jacobi matrix, we choose the increment h such that hj = δ and hi = 0 for i 6= j, i.e.,

h =



0
...
0
δ
0
...
0


= δ



0
...
0
1
0
...
0


= δej , ej =



0
...
0
1
0
...
0


— row number j.

Here the steplength δ is a small positive number and ej is the j-th standard basis vector. If we
use this increment in a symmetric difference quotient, see (7), we get

∂f

∂xj
(x̄) ≈ f(x̄ + δej)− f(x̄− δej)

2δ
. (22)

Remember that the steplength δ should be small, but not too small.

0.5 Newton’s method for f(x) = 0

Consider a system of n equations with n unknowns:

f1(x1, . . . , xn) = 0,

...
fn(x1, . . . , xn) = 0.

If we define

x =

x1

...
xn

 , f =

f1

...
fn

 , 0 =

0
...
0

 ,
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then f : Rn → Rn, and we can write our system of equations in the compact form

f(x) = 0. (23)

Suppose that we have found an approximate solution x̄. We want to find a better approximation
x = x̄ + h. Instead of solving (23) directly, which is usually impossible, we solve the linearized
equation at x̄:

f̃x̄(x̄ + h) = f(x̄) + f ′(x̄)h = 0. (24)

We must solve for the increment h. Rearranging the terms we get

f ′(x̄)h = −f(x̄). (25)

Remember that the Jacobi matrix is of type n× n and the increment is of type n× 1. Therefore
we have to solve a linear system of n equations with n unknowns to get the increment h. It is of
the form Ah = b with A = f ′(x̄) and b = −f(x̄). Then we set x = x̄ + h.

In algorithmic form Newton’s method can be formulated:

while |h|>tol
evaluate the residual b=-f(x)
evaluate the Jacobian A=f’(x)
solve the linear system Ah=b
update x=x+h

end

You will implement this algorithm in the studio exercises. You will use the Matlab command

h=A\b

to solve the system. But later in this course we will study linear systems of equations of the form
Ah = b and we will answer important questions such as:

• Is there a unique solution h for each b?

• How do you compute the solution?

These questions can be answered for linear systems Ah = b, but not for the more general
nonlinear systems f(x) = 0. Thus, Newton’s method transforms the task of solving a difficult
equation to the task of solving an easier equation many times. The study of systems of linear
equations is an important part of the subject “linear algebra” which we will study in ALA-B.

90 Problems

Problem 90.1. Let

a =
[
1 2

]
, b =

[
1
2

]
, A =

[
1 2
3 4

]
.

Compute the products ab, ba, Ab, Aa, aA, bA.

Problem 90.2. Compute the Jacobi matrix f ′(x) (also denoted Df(x)). Compute the lineariza-
tion of f at x̄.

(a) f(x) =
[
sin(x1) + cos(x2)
cos(x1) + sin(x2)

]
, x̄ = 0; (b) f(x) =

 1
1 + x1

1 + x1e
x2

 , x̄ =
[
1
1

]
.

Problem 90.3. Compute the gradient vector ∇f(x) (also denoted f ′(x) = Df(x)). Compute the
linearization of f at x̄.

(a) f(x) = e−x1 sin(x2), x̄ = 0; (b) f(x) = |x|2 = x2
1 + x2

2 + x2
3, x ∈ R3, x̄ =

1
1
1

 .
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Problem 90.4. Here f : R → R2. Compute f ′(t). Compute the linearization of f at t̄.

(a) f(t) =
[
cos(t)
sin(t)

]
, t̄ = π/2; (b) f(t) =

[
t

1 + t2

]
, t̄ = 0.

Problem 90.5. (a) Write the system

u2

(
1− u2

1

)
= 0,

2− u1u2 = 0

in the form f(u) = 0. Find the all the solutions by hand calculation.
(b) Compute the Jacobi matrix Df(u).
(c) Perform the first step of Newton’s method for the equation f(u) = 0 with initial vector

u(0) =
[
1
1

]
.

(d) Solve the equation f(u) with your Matlab program newton.m.

Problem 90.6. (a) Write the system

u1

(
1− u2

)
= 0,

u2

(
1− u1

)
= 0,

in the form f(u) = 0. Find the all the solutions by hand calculation.
(b) Compute the Jacobi matrix Df(u).
(c) Perform the first step of Newton’s method for the equation f(u) = 0 with initial vector

u(0) =
[
2
2

]
.

(d) Solve the equation f(u) with your Matlab program newton.m.
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Answers and solutions

90.1. Use Matlab to check your answers.
90.2.

(a)

f ′(x) =
[

cos(x1) − sin(x2)
− sin(x1) cos(x2)

]
, f̃(x) = f(x̄) + f ′(x̄)(x− x̄) =

[
1
1

]
+

[
1 0
0 1

] [
x1

x2

]
.

(b)

f ′(x) =

 0 0
1 0

ex2 x1e
x2

 , f̃(x) = f(x̄) + f ′(x̄)(x− x̄) =

 1
2

1 + e

 +

0 0
1 0
e e

[
x1 − 1
x2 − 1

]
.

90.3.

(a)

∇f(x) =
[
−e−x1 sin(x2), e−x1 cos(x2)

]
,

f̃(x) = f(x̄) + f ′(x̄)(x− x̄) = 0 +
[
0 1

] [
x1

x2

]
= x2.

(b)

∇f(x) =
[
2x1 2x3 2x3

]
,

f̃(x) = f(x̄) + f ′(x̄)(x− x̄) = 3 +
[
2 2 2

] x1 − 1
x2 − 1
x3 − 1

 = −3 + 2x1 + 2x2 + 2x3.

90.4.

(a)

f ′(t) =
[
− sin(t)
cos(t)

]
,

f̃(t) = f(t̄) + f ′(t̄)(t− t̄) =
[
0
1

]
+

[
−1
0

]
(t− π/2).

(b)

f ′(t) =
[

1
2t

]
,

f̃(t) = f(t̄) + f ′(t̄)(t− t̄) =
[
0
1

]
+

[
1
0

]
t =

[
t
1

]
.

90.5. (a) The solutions are given by

f(u) =
[
u2(1− u2

1)
2− u1u2

]
=

[
0
0

]
.

We find two solutions ū =
[
1
2

]
and ū =

[
−1
−2

]
.
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(b) The Jacobian is

Df(u) =
[
−2u1u2 1− u2

1

−u2 −u1

]
.

(c) The first step of Newton’s method:

evaluate A = Df(1, 1) =
[
−2 0
−1 −1

]
and b = −f(1, 1) =

[
0
−1

]
solve Ah = b,

[
−2 0
−1 −1

] [
h1

h2

]
=

[
0
−1

]
{
− 2h1 = 0,

− h1 − h2 = −1,
h =

[
0
1

]
update u(1) = u(0) + h =

[
1
1

]
+

[
0
1

]
=

[
1
2

]
= ū

Bingo! We found one of the solutions.

90.6. (a) The solutions are given by

f(u) =
[
u1(1− u2)
u2(1− u1)

]
=

[
0
0

]
.

We find two solutions ū =
[
0
0

]
and ū =

[
1
1

]
.

(b) The Jacobian is

Df(u) =
[
1− u2 −u1

−u2 1− u1

]
.

(c) The first step of Newton’s method:

evaluate A = Df(2, 2) =
[
−1 −2
−2 −1

]
and b = −f(2, 2) =

[
2
2

]
solve Ah = b,

[
−1 −2
−2 −1

] [
h1

h2

]
=

[
2
2

]
,{

− h1 − 2h2 = 2,

− 2h1 − h2 = 2,
h =

[
−2/3
−2/3

]
update u(1) = u(0) + h =

[
2
2

]
+

[
−2/3
−2/3

]
=

[
4/3
4/3

]
Getting closer to one of the solutions ū!

2005-10-10 /stig

9


