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Week 1:

Problem 1. Use the expressions \,(z) = 2= and A\,(z) = Z=2 to show that

() + M(2) =1; ade(z) +bNp(z) = 2.

Give a geometrical interpretation by plotting A, (z), Ap(x), Aa(2) + Xp(2), a Ao(2), b Xp(2),
aA(2) + b Xp(z) in the same figure.

Solution: Direct calculation gives Ao(z) + Mp(2) = £ + 22 = 1 and a Xo(z) + b Mo(z) =
a 2:—2 + b 3= = x. The functions for the case a = 2 and b = 3 are plotted in Figure 1. [
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Figure 1: Problem 1 (Week 1). A plot of the functions.

Problem 2. Let 0 = 29 < 1 < 29 < 23 = 1, where z; = 1/6 and x5 = 1/2, be a partition
of the interval [0, 1] into three subintervals.

(a) Determine analytical expressions for the “hat-functions” g, 1, 2, @3 in V}, (the space
of continuous piecewise linear functions on this partition). Draw a figure.

(b) Which is the dimension of V},?

(c) Plot the mesh function A(x).

Solution:

(a) The “hat-functions” are given by the formula (with obvious modifications for ¢y and

©3):



0, x ¢ [%’—1, $i+1]

0i(2) = zoats TE[Tio1,Ti
ﬁ, T € (i, Tiy1]
This gives
Oa T ¢ [.'170,.’132]
0, T & T, T
QDO(‘%) = { 1—6x. =z gé L:O ,’Eﬂ ) (Pl(m) = 6$a VS [-’170,.’131]
’ 0 82 g€ (2, 2]
" ¢ [o1,23]
0 T & |z, T3
o ’ 0 x & |29, 13]
— 6x—1 — ) ;
pe) =] B aelnm] om0 ={ 5, TEE

2 -2z, x €z, 1z3)

where xy = 0, 21 = 1/6, o = 1/2 and x3 = 1. See Figure 2.
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Figure 2: Problem 2(a) (Week 1). A plot of the “hat-functions”.

(b) The dimension of V}, is equal to the number of basis functions which in this case is 4.
(c) See Figure 3. O

Problem 3. Let f: [0, 1] = R be a Lipschitz continuous function. Determine the linear
interpolant 7 f € P(0, 1) and plot f and 7f in the same figure, when

(a) f(z) = 2%,

(b) f(x) = sin(mz).

Solution: In general, the linear (nodal) interpolant = f € P(xq, 1) can be written as

mf(x) = f(20) po() + f(21) ¢1(2),

where ¢;(z) form a basis of the space P(xg, x1) of linear polynomials on I = [zg, z1]. The
x;’s are nodes where the interpolant’s value is the same as the function’s value. The basis
functions we use are the “hat functions” ¢;(x), i = 0,1. Remember that ¢o(z) =1 — =z
and ¢(x) =z, on I = [0, 1].
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Figure 3: Problem 2(c) (Week 1). A plot of the mesh function.

(a) Therefore, the linear (nodal) interpolant of f(z) = 2% on I can be written as

wf(z) = Y fl@)pi(@)

(b) With f(x) = sin(nz), we analogously get

nf@) = Y f@)ei)

F(0) po(z) + f(1) ¢1(2)
= sin(0) (1 — z) + sin(7) x
=0

Obviously, the interpolant we’ve computed here is a poor approximation of f(z) = sin(7x).
O

Problem 4. Let f : [0, 1] — R be a Lipschitz continuous function. Determine the
continuous piecewise linear interpolant 7, f € V3, with h(z) and V}, as in Problem 2 (Week
1), and plot f and 7, f in the same figure, when

(a) f(z) = 2%,

(b) f(x) = sin(mz).

Have we chosen a proper partition to approximate these functions? Can you think of a
better one in case (a) and (b) if we are restricted to three subintervals?

Solution: The interval is partitioned according to 0 = 2y < 1 < 29 < x3 = 1, with
x1 = 1/6 and zo = 1/2. On each subinterval we want the approximation, 7, f(z), of f(x)
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to be a straight line, ax + 3, and we want 7, f () to interpolate f(z) at the nodes {z;}>_,,
ie, mpf(z;) = f(z;), i = 0,...,3. (Note that this makes 7, f(z) continuous also at the
node-points.) This is accomplished by defining

mf(w) = f(x0) po(z) + f(21) p1(w) + f(22) p2(z) + f(3) p3(7)

where the “hat-functions” {(;}3_, have been computed in Problem 2 (Week 1).
(a) With f(z) = 2? we get

Thf(x) = f(w0) po(x) + f(x1) p1(x) + f(22) pa(z) + f(23) p3(x)

=0- po(z) + 36 o1 )"‘% pa(z) +1- p3(2)
( 0-(1—6z)+ & - 6z, z € [0, 1/6] \
=2 - 3=-3z)+;-(3z—3), z€[l/6,1/2]
%.(2—2$)+1-(2.’E—1), 336[1/2’1]
x/6, T e [O: 1/6]
={ —1/12+2z/3, z€[1/6,1/2]
\ -1/2+3z/2, ze€l[1/2,1] /

Remark. We are usually content with writing a function v € Vj in the form v(z) =
co po()+c1 p1(2)+c2 o) +c3 ps3(z) which tells us that the nodal values are (¢, ¢1, co, c3)
and that v is linear in between. Compare with plotting v in Matlab: >> plot([x0 x1 x2
x3], [cO cl c2 c3]) connects the four points (z;, ¢;) with straight lines. If we for some
reason need to know the analytical expressions on each subinterval, they may of course be
computed as above.

(b) For f(x) = sin(nz) we similarly get
mnf (@) = f(@0) o(z) + f(21) p1(z) + f(22) p2(2) + f(23) p3()

=0 @o(z) + 5 pi(z) +1- @a(z) +0- @3(7)

(1 — ) -6z, x €10, 1/6]
(3 —3z) + (315 3): T €[1/6,1/2]
(2-22)4+0- (22 — 1) x € [1/2, 1]

—
Il
b—kwl»—t O

3z, z € [0,1/6]
=4 3z/241/4, z€][1/6,1/2]
\ 2 — 2z, z €[1/2,1] )

O

Problem 5. Let h(x) be the mesh function for the partition defined in Problem 2 (Week
1). Compute [|f — 7nf[|Lo(0,1) and §|[A*f"||Lo(0,1), when
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(a) f(z) = 2%,
(b) f(x) = sin(nrz).
Hint: To compute ||f — 7, f||Loo(0,1) you need to maximize the function g(z) = |f(z) —
7 f(x)| on each subinterval and choose the largest of these three maxima. You can control
your answers by also doing the computations with Piecewise Polynomial Lab.

If you think you have found better partitions in the end of Problem 4 (Week 1), repeat
the computations for these. Utilize Piecewise Polynomial Lab!
Solution: We have the mesh function

1/6, 0<z<1/6
h(z) =< 1/3, 1/6 <z <1/2,
1/2, 1/2<z<]1,

and want to compute ||f — 7 f|| Lo (0,1) = MaXgeo, 1) | f(x) — mpf(z)| and %||h2f”||Lw(071) =

§ maXae, 11 [h(2)* " (z).
(a) From Problem 4(a) (Week 1), we have

|22 — z /6], 0<z<1/6,
|f(x) —mpf(z)| = |22 — (22/3 —1/12)|, 1/6<z<1/2,
122 — (3z/2 —1/2) |, 1/2<z<1.

Find maxima for each subinterval: (Note: Since f"(z) =2 >0, f(z) is a convez function and
the interpolant 7, f () will therefore always be greater than f(z). Further, since f(z)—mpf(z) =0
at the nodes, the local maxima will occur in the interior of the subintervals.)

0<x<1/6:

gla) = |o* = T | = 5 %
——
<0, z€10,1/6]
' 1 1 " , 1 1
g(x)=6—2x=0 = T =15 g'(r) =-2 = Ma:mmum:g(ﬁ):m.
1/6 <x<1/2:
o) =la - (F - L) 1= - -
) <0, z€[1/6,1/2] !
' 2 1 " , 1, 1
g(x):§—2x=0 = T =35 g'(r)=-2 = Mammum.‘g(g):%.
1/2<z<1:
o) =1a - (F-3) 1= -1
b <0, s€[1/2,1] ’
g'(x)z%—?xzo = xz%; J'(z) =-2 = Mazimum: g(%):%



By comparing the three local maxima we get:

1
I1f = ThfllLa(o,) = 6
Since ) )
836 — 144’ <z < 1/6,
1
@Rt @ = =% 1/s<a<1/,
& =1  1/2<z<],
we also get
1 1
- h2 " ——
8” F" Lo, 1) 16

Remark. The reason we have equality in this case is that f”(z) = 2 is constant.
(b) From Problem 4(b) (Week 1), we have

|sin(mz) — 3z|, 0<z<1/6,
[f(@) —mnf(z)| = § [sin(mz) = (Bz/2+1/4)|,  1/6 <z <1/2
|sin(rz) — (2 — 22) |, 1/2<z<1.
Find maxima for each subinterval: (Note: Since f”(z) = —n?sin(nz) < 0, for = € (0, 1), f(z)

is concave on this interval and the interpolant 7y, f(z) will therefore be lesser than f(z).)
0<x<1/6:
g(x) = |sin(rz) — 3z | = sin(nzx) — 3ux;
~——_————

>0, z€[0,1/6]

1 3
g(x) =mcos(nz) —3=0 = z = —arccos(—) ~ 0.096 € [0, 1/6];
™ ™

1 3
g"(z) = —m’sin(mz) <0 = Mazimum: g(- arccos(—)) ~ 0.009.
™ ™
1/6<z<1/2:
3 3z 1
olo) = lsintr) — (% + 1) | =snte) - (%47

-

N

-~

20, z€[1/6,1/2]

3 1 3
g'(z) = mcos(mx) — 5= 0 = z= —arccos(2—) ~ 0.342 € [1/6, 1/2];
™ ™

1 3
¢"(z) = —n’sin(mz) <0 = Mazimum: g(~ arccos(Q—)) ~ 0.116.
m m

1/2<zx<1:
g(x) = |§in(7ra:) :(2 = 2xl| =sin(nz) — (2 — 22) ;

>0, z€[1/2,1]




g"(z) = —n*sin(nz) < 0

1 2
g(x) =mcos(mrz) +2=0 = x= —arccos(——) =~ 0.720 € [1/2, 1];
7r m

By comparing the three local maxima we get:

1

2
=  Mazimum: g(— arccos(——)) ~ 0.211.
m

™

2 1 2
\|f = Thf||Lee(0,1) = sin(arccos(——)) — 2(1 — — arccos(——)) =~ 0.211.

Since
{

< |h(@)* f"(@)] = <

\

we get

T ™ T
72 sin(7x) n?sin(§) _ x2
58.36$ < 8-366 B 5%’ O<z< 1/6’
72 sin(7x) < WzSin(g) — w2 1/6 <zx< 1/2
8.9 > 8.9 727 ’
72 sin(wz 2 in(§) w2
o < D 1o,
1 m?
SR = — ~ 0.308.
8|| f ||Loo(071) 32



Week 2:

Problem 1. Let [ = (0,1) and f( y=a?forz€l.
(a) Compute (analytically) [, f(z) dz.

(b) Compute an approximation of J; f( ; f(z) dz by using the trapezoidal rule on the single
interval (0, 1).
(¢c) Compute an approximation of [, f( ; f(z) dz by using the mid-point rule on the single in-

terval (0,1).

(d) Compute the errors in (b) and (c¢). Compare with theory.

(e) Divide I into two subintervals of equal length. Compute an approximation of [, f(x) dx
by using the trapezoidal rule on each subinterval

(f) Compute an approximation of [, f( ; f(x) dx by using the mid-point rule on each subinter-
val.

(g) Compute the errors in (e) and (f), and compare with the errors in (b) and (c) respec-
tively. By what factor has the error decreased?

Solution:
1
1
/ ridr = =
0 3

(a)
1 2 2
0 +1 1
2
dr ~ = _
/Oa::v 5 5

(b)

(c) 1
0+1 1
2dp o () = =
/o‘” TR =

(d) The error for the trapezoidal rule is |3 — 3| = & and the error for the mid-point rule
is |— — 2| = . Both agree with the bounds for the error on a single interval of length h:
’112 maXye [0,1] If”(y)l = ¢ and hs - maxyep | f(y)| = 35 in Quadrature (1D).

Remark. The reason that we have equality between the error and the error bound in this
case is that f"(y) = 2 is constant.

(e)

(f)

9 2 16
3

(g) The trapezoidal rule gives |3 — 2| = 5, which means that the error decreases by a
factor 4 When the mesh size decreases by a factor 2. This agrees with the global error
bound =2 maxyeol] |h2(y)f"(y)| in Quadrature (1D). For the mid-point rule we get the
error |— - —| = .5 which shows a similar behaviour. O



Problem 2. Let I = (0,1) and f( y=zxtforzel.
(a) Compute (analytically) [, f(z) dz.

(b) Compute an approximation of f ; f(z) dz by using Simpson’s rule on the single interval
(0,1).

(c) Compute the error in (b). Compare with theory.

(d) Divide I into two subintervals of equal length. Compute an approximation of f fx)de
by using Sitmpson’s rule on each subinterval.

(e) Compute the error in (d), and compare with the error in (b). By what factor has the
error decreased?

Solution:

(a)

/If(x)dx:/01x4dx:é

/f(x)da:z (0) +4f(%+ )+f()=0+4(%)4+1:i
0 6 24

(b)

(c) Brrory = |t — 2| = | &5 — 25| = 135 From the theory we know that the error using
Sitmpson’s rule on a single interval of length h must be less than or equal to
h? 24 1
(4) — -
2880 o W = 3550 = 720

Remark. The reason that we have equality between the error and the error bound in this
case is that f(*)(y) = 24 is constant.

(d)
/f da:—/ f(z da:—i—/ f(z)dx

LSO+ +1G) 1 fQ+AFCEH + ) 1
6 2 6 2
_0HAG) + ) A+ T
12 12 384
(e) Errory = |t — IL| = [3257| = _L_ If we compare this error to the one computed

above in exercise (c):
Errory ﬁ 1920

Errory ﬁ 120

we see that the error has decreased by a factor 16 When the mesh size has decreased by a
factor 2! This agrees with the global error bound 2% maxycjo1) [h*(y) f™* (). O

= 16,

Problem 3. Let I = (0,1) and f(z) = 2? for z € I.
(a) Let V}, be the space of linear functions on I and calculate the L?-projection Py f € V,
of f.
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Remark. In this case h(y) = 1 and V}, = P(0,1).

(b) Divide I into two subintervals of equal length and let V}, be the corresponding space of
continuous piecewise linear functions. Calculate the L?-projection B, f €V}, of f.

(c) Nlustrate your results in figures and compare with the nodal interpolant 7, f.
Solution:

(a) The L2-projection P, f € V}, of f is the orthogonal projection of f onto Vj. Therefore
f — P, f must be orthogonal to all v € V},, that is

/(f—th)vda::(], Yv € Vp,

1

but from Problem 6 (Week 2) this is equivalent to

{ [;(f = Puf)podz =0
f[(f—th)SoldCU: 0

since the “hat functions” ¢y =1 — x and ¢; = x are a basis for V},.
Since P, f € V,,, we make the Ansatz

1
bof = Z ¢ p;(T),
=0

and inserting this Ansatz into the orthogonality relation gives

1
=0 JI I

which is a linear system with two equations and two unknowns: ¢y and ¢;. It is therefore
natural to state the system in matrix form, Mc = b, with the mass matrix M = (m;;),
mij = [;jpidz, ¢ = (co,c1)t and b = (by, by)" where b; = [, fo; dz. Now, we only have
to compute these integrals and solve for c¢. Note that m;; = mj; (the mass matrix is
symmetric).

Mpo = /SDOSDOdl"
I

= /01(1 —z)’dz

= 1/3

mipg = /900801d$
I

_ /01(1—$)xd:v

— 1/6

11



mn = /@1%01d33
I

1
= / 2% dx
0

- 1/3

by = /f@odﬂ?
I
1

_ /0 (1 — ) da

= 1/12
by = /f%dﬂ?
I

1
72

-,

= 1/4

-xdx

The system of equations we have to solve is then

1/3 1/6] [co] _ [1/12

e vs) o] = 1]
Hence, ¢y = —1/6 and ¢; = 5/6, which gives P, f(z) = copo(z) + c11(x) = —1/6 po(x) +
5/6p1(x) ==1/6-(1—z)+5/6-2=-1/6+ z.

Remark. We could in principle use any set (pair, in this case) of basis functions, for instance
{1, 2} C V},. This choice would lead to the orthogonality relation

(fu=nn =t
[;(f = Puf) -zdz =0

and the Ansatz
P.f(x)=a-1+b-z=a+ bz,
from which a (= —1/6) and b (= 1) can be computed.

(b) We now divide I into the two subintervals (0,3) and (3,1). As in (a), we choose the
“hat functions” as basis functions:

[ 1-2z, z€(0,3)
(‘00_{0, z € (3,1)
| 2z, z € (0,3)
(‘01_{2—233,336(%,1)
_lo z €(0,3)
W_{Qx—l, ze(3,1)
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Using the same technique as in (a), we obtain a 3 x 3 linear system of equations (since the
number of nodes is 3 when the number of intervals is 2). The elements of the mass matrix
are

Mmoo = /SOOSOOdl‘
I
1/2
:/ (1—22)*dx
0
= 1/6
myy = /9009016135
I
1/2
:/ (1—22)2zdx
0
= 1/12

Moy = /900902d$
I
= 0

mi; = /901901d$
I

1/2 1

= / (22)? dx+/ (2 —2z)*dx
0 1/2

= 1/3

mig = /‘1029016111C
I

1
= / 2z —1)(2—2z)dzx
1/2
= 1/12
Moy = /@2‘.02d$
I
1
= / (22 — 1)%*dx
1/2
= 1/6

Similarly, we get for the right hand side

by = /f¢0d$
I

1/2

= / 7*(1 —2z) dx
0

= 1/96

13



b1 = /ngl dl‘
T
1/2 1
= / r*2x dx + / 7%(2 — 27) dx
0 1

/2

b2 = fQDQ dl‘

The system we have to solve is

1/6 1/12 0 ] [co 1/96
1/12 1/3 1/12| |e| = | 7/48
0 1/12 1/6| |c 17/96

with the solution ¢y = —1/24,¢; = 5/24 and ¢, = 23/24. Hence,

Puf(z) = copolz) +cr1() + 2 pa(x)
= —1/24¢y(z) +5/24 p1(x) + 23/24 po(x)
[ =1/24-(1-2z) +5/24 - 2z, z € (0,1/2)
- { 5/24- (2 — 2z) +23/24 - (22— 1), = € (1/2,1)
_f -1/244+z/2, 2€(0,1/2)

= { ~13/24 + 32/2, x € (1/2,1)

Remark. Cf. the Remark at the end of Problem 4(a) (Week 1).

Remark. Also in this case one might try the Ansatz
a+bxr, rec(0,1
Pyf(z) = { ( 1 i)
2

using {1, z} as local basis functions on each subinterval. In addition to the orthogonality
requirement (against three global basis functions, for instance {;}% ;) we will in this case
need to enforce continuity at the point z = 1/2, and will therefore end up with 4 equations
instead of 3, from which a (= —1/24), b (= 1/2), ¢ (= —13/24), d (= 3/2), can be
computed. This, however, is disadvantageous since we have to solve a linear system of four
equations instead of three.

(c) See Figure 4 and Figure 5. O

Problem 4. Let I = (0,1) and 0 = xy < 21 < -+ < zy = 1 be a partition of I into
subintervals I; = (z;_1, ;) of length h;.

14
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Figure 4: Problem 3(a) (Week 2). Plots of f(z) = 2%, mf(x) and P, f(z).

(a) Assume h; = 1/N for all j. Calculate the mass matrix M.
(b) Calculate the mass matrix M in the general case.
Solution: The (N 4 1) x (N + 1)-matrix M = (m;);";—, with elements

mij = /1909' @; de, (4)

where {@;}¥, C V}, are the nodal basis functions (“hat-functions”), is called the mass
matriz.

(a) Look at the interval between say x3 and z4. On this interval there exist two non-zero
basis functions 3 and ¢,. For x € [x3, x4] we have the following analytical expressions:

r—2 r—22
p3(z) =1~ h3, @4(z) = hg-

15



Figure 5: Problem 3(b) (Week 2). Plots of f(z) = z?, m.f(x) and P, f(x).

This yields for the matrix elements mz4 and mys:

m=mas= [ o) o) e = [ o) ulo) de =

z3

T4 _ .
/ (1 7 x3> L hm?’ dx = {Make a change of variables: y =z — 23} =
z3

h
h
[ (-5) =g

since the integrand 3(z) @4(z) is non-zero only for x € [x3, x4).
The interval [z3, x4] also contributes to the matrix elements mg3 = fol v3(z) p3(z) dx

and myy = fol 04(x) pa(x) dx:

1

1 e
5 M3 = {By symmetry } = 5 "M = / ©4(z) pa(x) do =
3

16



h 2 h
y_dy:_a
0

h? h? 3

i.e., ms3 = mqs = 2h/3, where the factor 2 compensates for the fact that s is non-zero
on the interval [z5, x4] and ¢, is non-zero on the interval [x3, x5]. Thus, mgs3 and my, get
only half of their total value from the interval [z3, x4].

Due to symmetry we may generalize to my; = 2h/3, i =1,...,N — 1, mgy = myy =
h/3, mi;s1 = mip1; = h/6, i =0,...,N —1, and m;; = 0, otherwise. The exceptions for
mpo and myy are due to the fact that the basis functions ¢y and ¢y are just “half hats”.

We summarize:

U —xg)? ) o _
~————dz = {Make a change of variables: y =z — z3} =
Z3

(h/3 h/6 0 0 ... 0 0 0 0]

h/6 2n/3 h/6 O ... 0O 0 0 0

0 h/6 2n/3 h/6 ... 0 0 0 0
M =

0 0 0 0 h/6 2h/3 h/6 0

0 0 0 0 0 h/6 2h/3 h/6

|0 0 0 0 0 0 h/6 h/3

(b) We now look at the case where the interval I = [0, 1] is non-uniformly partitioned.
Consider once more the subinterval [x3, x4]. Simply replacing A by h, throughout in
the computations in (a) gives mss = mu3 = hy/6, and that the contribution from this
subinterval to mss and myy is hy/3. Adding the contributions from all subintervals now
immediately generalizes the mass matrix computed in (a): M =

—h1/3 h1/6 0 0 0 0 0 0
h1/6 (hl +h2)/3 h2/6 0 0 0 0 0
0 h2/6 (h2 +h3)/3 h3/6 0 0 0 0
0 0 0 0 hN_2/6 (hN_Q +hN_1)/3 hN_l/G 0
0 0 0 0 0 hN_1/6 (hN_1 +hN)/3 hN/6
L 0 0 0 0 0 0 hN/G hN/3_
O

Problem 5. Recall that (f,g) = [, fgdz and ||f||%2(1) = (f, f) are the L?-scalar product
and norm, respectively. Let I = (0,7), f =sinz, g = cosz for z € I.

17



(a) Calculate (f, g).

(b) Calculate || f||L2¢ry and ||g[L2(p)-
Solution:

(a) (f,9) = [, sinzcosxdr = 3[(sinz)?]§ = 0.
(b) Recall the relations

1 —cos2z 9 1+ cos 2z
— s = ——.

sin?z = ;
2 2

Using these, we get:

i 1 —cos2 1 [ 1 [7
1 f[lz2r) = / sin’ z dz = / S gy = —/ dx——/ cos 2z dx
0 0 2 2 0 2 0
1
= \/g - Z[sin 228 = \/g,
and, similarly,

v 7T1 2 1 T 1 T
gl L2y = / cos’ z dz = / Md$= —/ dx—i——/ cos2xd$:\/z

O

Problem 6. Show that (f — P,f,v) =0, Vv €V}, if and only if (f — P,f, ;) =0, i =
0,...,N; where {%}i]\io C V}, is the basis of hat-functions.

Solution:

= Follows immediately since ¢; € V}, for i =0,..., N.

< Assume that (f — Pyf, ;) =0 fori=0,...,N. Since v € V,, and {p;}X, is a basis for
V4, v can be written as v = Zi]\io a; ;. This gives (f — Pof,v) = (f — Pnf, Zfio a; pi) =
SV, i (f — Puf, i) = 0 which proves the statement. O

Problem 7. Let V be a linear subspace of R" with basis {vy,...,v,} with m < n.
Let Px € V be the orthogonal projection of @ € R”™ onto the subspace V. Derive a
linear system of equations that determines Px. Note that your results are analogous to
the L?-projection when the usual scalar product in R" is replaced by the scalar product
in L?(I). Compare this method of computing the projection Pz to the method used for
computing the projection of a three dimensional vector onto a two dimensional subspace.
What happens if the basis {v1,..., v} is orthogonal?

Solution: Let (u,v) denote the usual scalar product in R". Since Pz is the orthogonal
projection of * € R" onto the subspace V of R", we have

(x — Px,y)=0, forallyeV.
Since {v1, ..., v,,} is a basis for V' we may equivalently write (cf. Problem 6 (Week 2))

(¢ — Px,v;) =0, i=1,..m,
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which leads to
(Pz,v;) = (x,v;), i=1,...m

But since Px € V and {vy,...,v,,} is a basis for V, Px can be written as a linear com-
bination of elements in the basis, that is, Pz = 37" | a;v;, a; € R. Inserting this above
gives

E ajvj,v;) = (x,v;), i=1,...,m,

or, using the linearity property of the scalar product,
m
Z (vj,v:) = (z,v;), i=1,..,m,

which is a quadratic linear system of equations Ao = b, where a;; = (vj,v;) and b; =
(x,v;).

If the basis {vy, ..., vp, } is orthogonal, that is, (v;,v;) = 0if ¢ # j, the matrix A becomes
diagonal and the equations simplify to

a;(vg,v;) = (z,v;), i=1,...m,

which immediately gives

i x,v;)
= 'vj,v]

In the special case n = 3 and m = 2, which means computing the projection of a
three dimensional vector & onto a two dimensional subspace, i.e., onto a plane through the
origin, one usually computes Px = « — (n ng n, where n is a normal to the plane.

To compare the two methods, consider the case n = ez, i.e., the plane 3 = 0. Choosing
the standard basis v; = e; and vy = e, we get Px = © — (z,e3)es = ¢ — 13e3 =
T1€1 + Ies = (x,e1) €1 + (x, es) €.

(Cf. Applied Mathematics: BES, Part I, Section 21.17 Projection of a point onto a
plane.) O
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Week 3:

Problem 1. Let u be the solution to

—(av') +cu=f in (0,1), (5)
u(0) = u(1) =0, (6)

where a, c, and f are given functions.
(a) Show that u satisfies the variational equation

) dx = d 7
/O(auv + cuv) dz /fv x, (7)

for all sufficiently smooth v with v(0) = v(1) = 0.
(b) Introduce a partition of (0,1) and the corresponding space of continuous piecewise
linear functions Vo which are zero for x = 0 and x = 1. Formulate a finite element
method based on the variational equation in (a).

1/2
(c) Let |||lu]|] = (fol(au’u’—i-cuu) da:) . Verify that ||| - ||| is a norm if a(z) > 0 and

c(z) > 0 for all z € (0,1).
(d) Prove the a priori error estimate

[lu = Ul < [llu = lll, (8)

for all v € V.

(e) Assume that there are constants C, and C. such that ||a||z_0,1) < Ca and ||c||z_ 0,1) <
C., and that ||u"||72(0,1) is bounded. Show that |||u — Ul|| converges to zero as the meshsize
tends to zero.

Solution:

(a) Multiply both sides of the differential equation by v(z), such that v(0) = v(1) = 0, and

integrate from x = 0 to x = 1 to get the following equality:

1 1
/ (—(auv)'v + cuv ) dz = / fvdz.
0 0

Integrate by parts in the first term on the left-hand side, and use the fact that v(0) =
v(1) = 0 to see that the boundary terms vanish:

—[au'v]ﬁié+/ (auv' + cuv d:c—/ fodz;
0

1
/(au'v'-l—cuv) dxz/ fvdz.
0 0

(b) Let 0 = 29 < @1 < --- < oy < Tny41 = 1 be a partition of (0, 1) and let {¢;}Y, be
the “hat-functions” on this partition that are equal to one in an internal node. Define
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Vio = span{e1, a2, ..., N}, i-e., Vi is the vector space of continuous, piece-wise linear
functions v(z) that are zero at z = 0 and = 1. The Finite Element Method now reads:
Find U € V}( such that

1 1
/ (aU'V' + cUv) dx = / fodz for all v € Vi.
0 0

(c) To prove that ||| - ||| is a norm we must verify that:
(1) [+ ofll < llfulll +ll[ol|  for all u and v € Vo,
(ii) [[lewlll = laf[[[ufll if u e Vo and a € R,

(iii) [||ul|| =0 for u € V; implies u = 0,

where V[ denotes the vector space of functions that are zero at the boundary, and that are
smooth enough for the integrals in the definition of |||ul|| to exist.
Since

)1/2

[l = (u, u)g”

where

(4, v)p = / (a(@)! (@) (2) + c(z)u(z)v(z) ) dz,

is a scalar product between functions in Vj, property (i) follows from the Cauchy-Schwarz
inequality:

|||U+U|||2 = (U+’U, u+ U)E = (U, u)E +2(ua U)E + (Ua U)E
< Wulll® + 20l - [l + ol = el + ol

Property (ii) follows since

/0 (a(z)(aw ()2 + c() (ou(z))?) dz = o? /0 (a(o)(z)? + c(x)u(z)?) da.

To prove property (iii) we notice that a(z)u'(z)? > 0 and c(z)u(x)* > 0. This means
that f; Ju!(z)?dz > 0 and [ c(z)u(z)?dz > 0. If 0 = [||ul|]> = f, a )2 dx +
fo )2 dz, both these 1ntegrals must therefore be equal to zero. Slnce a(x) >0
this 1mphes u'(z) = 0, which means that u(z) = K where K is a constant. But since
u(0) = u(1) = 0 we must have K = 0.

Remark. If ¢(x) > 0 is (also) strictly positive then fol c(z)u(z)? dr = 0 immediately implies
that u(z) = 0 and we don’t need to use the boundary conditions.
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(d) Observe that, by using the definition of (u, v)g in (c), the variational equation in (a)
can be written

1
(u, v)E:/ fvdx for all v € Vj,
0

and the Finite Element Method in (b) can be written

1
(U, v)p = / fvdx for all v € Vjy.
0

Since Vj,o C Vi we get by subtracting:
(u—U,v)p =0 forall v € V.

The last equation expresses the Galerkin orthogonality. This shows that the Finite Element
approximation U(z) of u(z) is the orthogonal projection of u onto Vjo with respect to the
scalar product (-, -)g. This orthogonality, and the Cauchy-Schwarz inequality, implies that
for an arbitrary function v(z) € Vpo:

Nh—-UlP=w-Uu-Ug=@u-Uu—-U+ U —v))g

=w—=U, u=v)p <|[lu—Ulll-|Ju—=wvll,

since U — v € Vjo. Dividing both sides by |||u — U||| now completes the proof.

Remark. Observe the complete analogy between this proof and the corresponding proof
for the L2-projection.

(e) Assume for simplicity that the partition is uniform, i.e., that the mesh function h(z) = h
is a constant function. Choosing v in (d) to be the nodal interpolant mpu(z) € Vi of u,
we get:

llw = UI|* < flJw — mpul|*

B /o (a(@)(u — mpu)'(@)* + c(z) (u — mhu)(2)?) do

<C, /Ol(u — ) (2)? dx + C, /Ol(u — mpu)(z)? da

= Col|(u — 7Th“)l||%2(0,1) + Cellu — Wh““%%o,l)

< CaC7 (| ||z 0,1y + CeCF IR0 |2 0.1y
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272, 1|2 2141, 1|2
= CoCih7|lu ||L2(0,1) + CCih |lu ||L2(0,1)’
which tends to zero as h tends to zero. (C; denotes interpolation constants.) O

Problem 2. Let u be the solution to

—u" (J)) _

u(0)

1 in (0,1), (9)
u(1l) = 0. (10)

(a) Solve the problem analytically.

(b) Let I = (0, 1) be divided into a uniform mesh with h = 1/N. Calculate (by hand) the
finite element approximation U for N = 2, 3.

(c) Plot your solutions in a figure. Compare your results.

Solution:

(a) Integrating the differential equation twice gives:

W'(z)=-1 = dv@)=—-z2+C = ulz)=-2°/2+Ciz+Cs.

The boundary condition 4(0) = 0 then gives Co = 0, and u(1) = 0 gives —1/2+C1+C5 = 0,
ie, Cy =1/2; Cy=0. Therefore:

_ x(l—x)‘

+x
2 2

u(z) = —%

(b) The finite element approximation U(z) = Z]Nil &;¢;(z) can be computed by solving
the linear system of equations (see Applied Mathematics: BéS, Part D, equation 54.4, with
a=1):

M 1 1
Z@f w}wéd:rz/ fordr i=1,.... M,
j=1 70 0

which determines the unknown coefficients &1,...,&y. Here M is the number of internal
nodes, since we have homogeneous Dirichlet boundary conditions.

If the number of subintervals is N = 2, then there is only one internal node, M = 1,
and the equation above simplifies to:

1 1
51/ wiwﬁdx=/ ferde.
0 0

Since f(z) =1, ¢} =2 on [0, 3] and ¢} = —2 on [3, 1], we get

0.5 1 1 1
51(/ 22 dz +/ (—2)2 dﬁ) = 4/51 = / ¥1 dr = =,
0 0.5 0 2

which gives that & = g. That is: U(z) = § ¢1(z).
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Remark. The integral fol 1 dx is geometrically the area under 4, i.e., the area of a triangle.

If the number of subintervals is N = 3, then there are two internal nodes, M = 2, and
we get the following linear system of equations:

1 1 1
61/ 90'1S0'1d$+52/ so’gcp'ldw=/ [ dz,
0 0 0

1 1 1
51/ wiwédw+§2/ 90’2s0’2d93=/ feada.
0 0 0

Since f(xz) =1 and

, 0, z¢[0, 5], 0, z¢[g 1]
(Pl(x) = 3; S [Oa §]a 902(‘%) = 31 YIS [ga 3
-3, z €3, 3], -3, z €[5 1],

we get:

3 2 2 .

& (/0 32da:+/% (—3)2dx)+§2/% 3(—3)dx=6§1—3§2:/0 901da::%,
3 2 1 .

61/% (=3)3dr + & (/g 32dx+/_ (_3)2d$> =—3§1+6§2:/0 <P2da::%,

with solution & = & = 5. That is: U(z) = § ¢1(2) + § pa(2).
(c) See Figure 6. O

-
wln

Problem 3*.

(a) Show that the finite element approximations U that you have computed in Problem 2
(Week 3) actually are exactly equal to u at the nodes, by simply evaluating v and U at the
nodes.

(b) Prove this result. Hint: Show that the error e = u — U can be written

e(z) = /0 g (x)e'(z)dz, 0<2z<1,

where
(2) = (1-2)z, 0<z<z,
9z\T) = 2(1—x), 2<z<1,

and then use the fact the g,; € Vjo.

(c) Does the result in (b) extend to variable a = a(z)?
Solution:

(a) From Problem 2 (Week 3) with N = 2 we get

u(1/2) = S0~ 5)/2=1/8
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Figure 6: Problem 2 (Week 3). Plots of u(z) and U(z) for N = 2, 3.

and
U(1/2) = %%(1/2) ~1/8.

Hence, u(1/2) = U(1/2).
Using N = 3 we have for the first inner node

1 1
u(1/3) =31 -3)/2=1/9,
and 1 1 1 1
U(1/3) = 5901(1/3) + §(P2(1/3) = § -140= §

For the second inner node:

u(2/3)= S0~ 5)/2=1/9,

and
U2/3) = 502/ + 502/ =0+ 5 1=,
Hence, u(1/3) = U(1/3) and u(2/3) = U(2/3).

(b) To check the given formula for e(z) we must compute the integral. Before we can do
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that, we must calculate the derivative of g,(x):

gl(x):dgz(x): 1—2, 0§$<Z;
? dz -z, z<z<1.

Thus, we have:

/Olg;(x)e'(x) o = /Ozu () da +/: e (x) da

= e(2),

since the error e = u — U is equal to zero at the boundary points £ = 0 and = = 1. This
follows from the boundary conditions, u(0) = U(0) = 0 and u(1) = U(1) = 0.

To show that the error is zero also at all internal nodal points x;, we only need to show
that g,;, € V. The result then follows from the Galerkin orthogonality (cf. Problem 1(d)
(Week 3) with a =1 and ¢ = 0), fol e'v'dz = (e, v)p = 0 for all v € Vj, by taking v = g,,.
But from Figure 7 we see that g,, can be written as

9a;(7) = Z ¢ ¢i(2)

with weights ¢; = g;;(7;). Hence, g,; € V. Also note that g.(x) & Vio if 2z # z;, which
can be seen from Figure 8.
(c) No. As a counter-example, consider the case a(z) =1+ z:

The solution is u(z) = IOE)S(;") — z. Computing the Finite Element approximation U(x)

for N = 2 in the same way as in Problem 2(b) (Week 3) gives U(z) = & ¢1(z). We thus

have that U(1/2) = & # lﬁisé?) — 1 =u(1/2). O

Problem 4. Consider the system of ODE:

ME() + AE(t) = b in (0, T), (11)
£(0) = ¢&°. (12)

Assume that
o S I



Figure 7: Problem 3 (Week 3). g,(z) when z = z;.

Make a uniform partition of the time interval (0, 1) into two sub-intervals and compute an
approximation of (1) with the backward Euler method.

Solution: We divide the time interval: 0 = tq < t; < to = 1, with ¢; = 0.5, i.e., into two
subintervals with length At = 0.5. The Euler backward method approximates the time
derivative with a difference quotient in the following manner:

n _ ¢n—1
Mi—i—/lf”:b, n=1,2,

JAN
€% = £(0).
So to compute £2? = £(t,) we have to solve, in order, the equations:

é-l _ 50
At

M + AEt = b,

52 _ 61
At

M + A& =b.

Rearrangement of the first of these equations yields:

ME + At At =ME° + Atb;
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Figure 8: Problem 3 (Week 3). g,(x) when z # z;.

(M + At A)E =ME° + Atb;
(ERS S I R L
2 e -[]
=7

where the linear system of equations is solved by Gaussian elimination. Similarly, we get
for the second equation:

ME* + Nt AE? =ME' + At b,
(M + At A)E =MEH + At b;

(b 22 §)e=lo 7))
B g] i i :11];

The vector &2 = [_71 7] is thus an approximation of the solution £(t) at time ¢ = 1 (and
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&= [_12} at time ¢ = 0.5). O

Problem 5. Show that, for the time dependent reaction-diffusion problem with Robin
boundary conditions,

u—(au) +cu = f(z,t), ZTmin<T<Tpax, 0<t<T,

a(xmin)ul(xmina t) = 7($min) (u(-rmina t) — 49D (-rmin)) + gN(xmin)a 0<t< Ta
_a(xmax)ul(xmaxa t) = ’y(xmax)(u(xmaxa t) - gD(xmax)) + gN(xmax); 0<t< T7

w(@,0) = u(x), ZTmin < T < Tmax,

semi-discretization in space leads to the following system of ODE:

ME®) + (A+ M, + R)E(H) = b(t)+ v, 0<t<T.

Solution: Hint: To derive the variational formulation, first multiply both sides of the
differential equation by a function v = v(z). Then integrate both sides from x = Ty, to
T = Tmax- Integrate by parts in “the diffusive term” f;;‘:"( —(au')'v) dz. Finally use the
boundary conditions to replace au’ in the boundary terms at © = Tmin, Tmax- Lhis gives
the variational formulation:

Find u(z,t) such that for every fixed ¢: u(z,t) € V, and

Tmax Tmax Tmax
/ wdr + Yuv|p—s,,, + VUV|p—z. + / av'v' dr + / cuvdr =
T T

min Tmin min

Imax
(YD — 9N)V|e=emax T (YID — 9N)V]e—amin T / fodz, 0<t<T, forallveV,

Zmin

where V' is the vector space of functions v = v(z) that are smooth enough for the integrals
in the variational formulation to exist.
The corresponding Finite Element Method reads:

Find U(z,t) such that for every fixed t: U(z,t) € V}, and

TN

TN TN
/ Uvdr + YU|pezy + YUV|pmg, + / aU'V' dx + / cUvdx =

1 1 T1

TN
(’YgD - gN)U|$=wN + (fygD - gN)/U‘SCZIM + / f?) d:ra 0<t< Ta for all v S Vha
1

where V}, is the vector space of functions v = v(z) that are continuous and piecewise linear
on a partition Tmyin = 21 < o < ... < TN = Tmax Of [Tmin, Tmax)-
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Finally, insert the Ansatz
N
Ulz,t) =) &(t)p;(x),
7=1

into the Finite Element formulation and choose v = ¢; fori=1,... N.
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Week 5:

Problem 1. Consider the triangulation of the unit square Q = [0, 1] x [0, 1] into 8 triangles
drawn in Figure 9.

N,

0.5

Figure 9: Problem 1 (Week 5). The triangulation of (.

(a) Compute the length of the largest side hg;, and the smallest angle 7k, of the triangles.
(b) Determine the point matriz p that describes this triangulation in Matlab. Hint: Since
node 1 is located at the origin, the first column in p is [0; 0].

(c) Determine the triangle matriz t that describes this triangulation in Matlab. Hint:
Since triangle 1 has corners in node number 1, 2 and 4, the first column in t can e.g.
be [1; 2; 4]. It is not important which node comes first, but they must be listed in a
counter-clockwise order.

(d) Verify your results by creating p and t in Matlab:

>>
>>
>>
>>
>>

>>

pC:, 1)
pC:, 2)
p(:, 9)
t(:, 1)
t(:, 2)
t(:, 8)

[0; 0]

[1 2; 4]
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and plot the triangulation by the Matlab-command:
>> pdemesh(p, [1, t)

Solution:
(a) Pythagoras’ theorem and simple trigonometry gives that h,, = 1/ V2 and Ty, = m/4
for all triangles K.

(b)

o051 0 05 1 005 1
P=10 0 00505 051 1 1

(c) For example:

12234556
t=12 5365869
44557788
(d) - O

Problem 2. Consider the same triangulation as in Problem 1 (Week 5).
(a) The continuous piecewise linear function o (z, y) is defined by:

(;02(N2) =1 QDQ(N]') =0 for j # 2.

Compute the analytical expression for ¢y. Hint: The analytical expressions on K, Ko
and K3 may be determined by solving linear systems of equations as you have seen in the
lecture. On the other triangles, o = 0. Why?
(b) Plot ¢, in Matlab by giving the command:

>> pdesurf(p, t, [0; 1; 0; 0; 0; 0; 0; 0; 01)
or
>> pdemesh(p, [1, t, [0; 1; 0; 0; 0; 0; 0; 0; 01)

Try both! The argument [0; 1; 0; 0; 0; 0; 0; 0; 0] is a column vector containing
the nodal values of ¢y. Try also to plot some other “tent functions” ;!

(c) Since an arbitrary continuous piecewise linear function v can be written as a linear
combination of “tent functions”:

v(z, y) =v(Ny) pr(z, y) + ... +v(Ng) po(z, y)

the “tent functions” {cpi}?:l form a basis for the vector space V}, of continuous piecewise
linear functions on the triangulation in Figure 9. What is the dimension of V7

(d) Try plotting some different functions in V}, using the Matlab commands pdesurf and
pdemesh. Hint: Cf. how you plotted (.
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Solution:

(a) The analytical expression for ¢, is different on each triangle. Since ¢ is equal to one
at node N, and zero at all other nodes, it is only non-zero on triangles K;, Ky and Kj,
and therefore ¢y(z, y) =0 on Ky U K5 U Kg U K7 U K.

On each triangle @, is a linear function ¢y (z, y) = ¢y + 12 + ¢y, where ¢y, ¢1, and ¢y
are constants to be determined for the three triangles K7, K5 and K3. These constants can
be computed by solving the linear system of equations (see Applied Mathematics: BES,
Part D, page 815):

1 1 1,1
1 a; ay Co pa(ay, az)

2 3 _ 2 2
1 a5 a3 e | =1 ¢aai, a3

3 3 3 3
I ay ay C2 902(%:“2)

where (al,ad), (a?,a2) and (a3, a3) are the node coordinates of the triangle. On triangle

K, with nodes Ni, N, and N, (in that order), we get:

1 0 0 Co 0
1 05 0 ca | =11
1 0 0.5 Co 0

which has the solution ¢y = 0, ¢; = 2 and ¢ = 0. That is: on K7, ps(z, y) = co+c1x+coy =
2.
Similarly, on triangle K5, with nodes Ny, N5 and N, (in that order), we get:

1 05 0 Co 1
1 05 0.5 ca | =10
1 0 0.5 Co 0

which has the solution ¢y = 1, ¢; = 0 and ¢; = —2. That is: on Ky, ps(z, y) = 1 — 2y.
Finally, on triangle K3, with nodes Ny, N3 and N5 (in that order), we get:

1 05 0 Co 1
1 1 0 a =10
1 0.5 0.5 Co 0
which has the solution ¢y = 2, ¢; = —2 and ¢ = —2. That is: on K3, ¢o(x, y) =

co+c1x+ oy =2—2(x+y).

(b) -

(c) The dimension of V}, is 9, since there are 9 nodes and therefore 9 basis functions.
(d) To plot v(z, y) = 2¢1(x, y) + 3 ps(x, y):

>> pdesurf(p, t, [2; 0; 0; 0; 0; 0; 0; 3; 0])
or

>> pdemesh(p, [I, t, [2; 0; 0; 0; 0; 0; 0; 3; 0])

Comment: [] is an empty matrix. We don’t need to use this argument but we still have to
pass something to the function pdemesh, which expects an argument (actually the “edge
matrix” e) between p and t. See >> help pdemesh O

33



Week 6:

Problem 1. Calculate || f||z.. ) where = [0,1] x [0, 1] and

(a) f(z1, z2) = 23 (21 — 2/3)%. Hint: To compute max(,, z.)eq |f(21, 2)|, maximize the
absolute value of each factor of f separately.

(b) f(z1, z2) = 11/36 — 2?3 + z1 — 23 + 8z5/3. Hint: Compute both max(y, z.)en f(21, Z2)
and min(l‘l,l‘z)EQ f(xla -772)'

Solution:

(a) Since || f|| Lo () = MaX (g, z0)cq | f (21, 22)| we want to find the maximum of the absolute
value |f(x1,22)| of f(x1,22). From the hint we start by maximising the xo-dependent factor
over the interval [0, 1]: The result is trivially 1 (for zo = 1). The maximum of the absolute
value of the z;-dependent factor is 8/27 for 2y = 0. This means that || f||z. ) = 8/27.
(b) We complete the squares to get:

f(zy,m9) =11/36 — 2] + 11 — 25 + 823 /3 = 7/3 — (x1 — 1/2)* — (x5 — 4/3)?

We can now determine the maximum by minimising the two negative terms over 2: Maxi-
mum of f thus occurs for #; = 1/2 and x = 1 which gives us that max(,, g,)cq f(71,72) =
7/3—1/9 =20/9. In the same way minimum occurs when the last two terms are maximal,
ie., for 2y =0 or ; =1 and 2, = 0. Hence ming, z.)cq f(21,22) = 7/3 —1/4—16/9 =
11/36. Since the minimum is positive, f(x1, x2) = |f(z1, 22)| in ©, and we conclude that
[ fl|Lo(0) = maX(zy,z0)e0 f(21, T2) = 20/9. [

Problem 2. Calculate || f||12(q) where Q= [0,1] x [0,1] and

(a) f(z1, 22) = 21 23

(b) f(x1, x2) = sin(nmzxy) sin(mmzy) with n and m arbitrary integers.
Hint: sin?u = 71%0; (2u)

Solution: The L?(Q2)-norm of f is defined by: || f|lz2) = ([ fo, f(@1, %2)? day dao)?.
(a)

1 p1 1 1
1
e = [ [ tebdndrs= [ atdn [ obde = L/sh- sl = 5

SO ||f||L2(Q) = ﬁ
(b) If n and/or m is equal to zero then f is identically equal to zero implying that || f||,2) =
0. Otherwise we get:

1 p1
||f||%2(9) = /0/0 sin®(nmz,) sin® (mmz,) doy dx,

_ /1 1 — cos(2nmay) d, /1 1 — cos(2mmzy) iz,
0 0

2 2
_ [x1/2 B sin(2n7r:v1)] ! _ [x2/2 _ sin(2mma,) !
dnm 0 dmm 0
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= I/Q—M . 1/2—M =1/4,
(27 | )

Admm

and thus || f[[2) = 1/2 if n # 0 and m # 0.

Problem 3. Let P(K) = {v(x) = ¢o + 121 + o229, ¢; € R, 1 =1,2,3; & = (21,22) € K}
be the space of linear polynomials defined on a triangle K with corners a', a2, and a3.
Derive explicit expressions (in terms of the corner coordinates a' = (a}, a}), a®> = (a2, a3),
and a® = (a3, a3)) for the basis functions \;, Ay, A3 € P(K) defined by

i J =1,
Aia’) = {0 i (14)
with 4,5 = 1,2,3. Hint: set up the linear system of equations which relates ¢y, ¢1, and co
to the values at the corners v(a'), v(a?), and v(a®) of a function v € P(K). Solve for the
coefficients corresponding to corner values of the basis functions.

Solution: Look at the basis function A; first. Since \; is linear on K we make the Ansatz
A (1, T2) = ¢o + 121 + 2. According to the definition A; has the value one in a' and
zero in a? and a®. (See Figure 10.) Hence, we have in these corners respectively:

— 1 1
1=cy+cia; + cay

— 2 2
0 =co + cra] + ca;

0=cy+ c1a3 + cal

Or in matrix form:

1 1 al ai\ [eo

0 =11 &2 2| |«

0 1 a3 a3) \c
~—_——

b A c

We have three equations and three unknowns (cy, ¢; and ¢y). We can solve the linear
system of equations above by Gaussian elimination. The result is

2.3 3.9
a709 — G710y

det A

2 3
ay — Qg

det A
al —a?

det A

Chy =

cT =

Cy =
where det A = adal + a?a3 — a?al — adal — alad + ajas.
For the basis function Ay we get the same matrix A as above, but here b = (0, 1, 0)”
(since Ap is one in the node a? and zero in the other two nodes). Solving the system of
equations gives
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atay — aja;
Ch, = ——F———F—
det A
a3 — ay
cT =
det A
al — a’
Cy =
det A

And similarly for A3 with b = (0, 0, 1)T gives the coefficients

ata3 — a?ad
O = ——F———

det A
1 2
al —
o = o — Uy
det A
2 1
ay —a
o = 4 1
det A

Remark. Note that det A equals 2 u(K) where p(K) is the area of K. See Problem 4 (Week
6). Note further that it might not be necessary to actually compute Ay and A3. Given the
expression for A; it is possible to make a permutation of the node indices.

U
Problem 4. Derive an expression for the area of the triangle K in Problem 3 (Week 6)

: : U (ol 1Y 12 — (n2 2 3 _ (o3 3
in terms of the corner coordinates a' = (ay, a5), a® = (a3, a3) and a° = (af, a3).
Solution:

al a a?

Figure 10: Problem 3 and Problem 4 (Week 6).

From Figure 10 we calculate the area pu(K) as follows.

u(K) = L |alh = 1 |a|[b|sin® = Lla x b| (15)
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Now, clearly the vectors a and b are given by

Explicitly the area is thus given by

_1 _
p(K) = 3la x bl ‘al—a} a —al

= 3l(a1 — a1)(a3 — a3) — (a3 — a3)(a} — ay)]. (19)

Note that the cross-product between vectors in two dimensions is a number.

az—a} ag-a;‘|

Remark. With a and b oriented as in Figure 10 the cross-product a x b is positive and
thus u(K) = 1(a x b).

0
Problem 5. Consider the triangulation of Q = [0, 2] x [0, 1] into 3 triangles drawn in
Figure 11.

K
K,

N, 1 Mo 9 N3 %

Figure 11: Problem 5 (Week 6). The triangulation of 2.

(a) Compute the mass matrix M with elements m;; = [, ¢;(z, y) pi(z, y) dzdy, i,j =
1,...,5.

Hint: The easiest way is to use the quadrature formula based on the value of the
integrand, ¢,(z, y) ¢i(z, y), at the mid-points on the triangle sides, since this formula
is exact for polynomials of degree 2. It is also possible to write down explicit analytical
expressions for the “tent-functions” on each triangle (cf. Problem 3 (Week 6)) and integrate
the products analytically. This, however, is a much harder way. Observe that, using
quadrature, we don’t need to know the analytical expressions, only the values at some
given points which are much easier to compute.

37



(b) Compute the “lumped” mass matrix M , which is the diagonal matrix with the diagonal
element in each row being the sum of the elements in the corresponding row of M.
(c*) Prove that, using nodal quadrature, the approximate mass matrix you get is actually
the “lumped” mass matrix.

Hint: 22:1 iz, y) =1
Solution:
(a) We start to compute the area u(K;) of the triangles, i = 1,2, 3:

1-1 1
K)=—-=-=
lu’( 1) 2 2’

1-1 1
Ky) = —— ==

2-1

Then, we compute a few elements of M: my;, mi2, mi3, and mos. Note that the integrands
w1 1 and @y ¢, are non-zero only over K7, and @5 (9 is non-zero over K; and Ks. On the
other hand 3 ¢ is nowhere non-zero and therefore m3 = 0.

iy ://Q(p1 o dzdy = (¢1(5,0))° + (£1(0,3))* + (¢1(5,5)) (KL

3
1.1 ,1.1
Llyl 14000 1
_ 227533 K = = WK = —
1.1, 1 1
L.lylog40-1 1 1
— (M tricl) = my;, = 22 2 2 (K = — p(Ky) = —
miz = (M symmetric!) = mgy; 3 p(Kq) 12#( 1) 21’
1.1, 1.1 101,11
Llyl.1ag Llyl140 1
Mgy = EE e G + 22— u(IG) = o (u() + p(Ks)) = ¢
Continuing analogously gives:
5oz 0 0 3
T 1 1 %
24§ 24
M=10 5 37 13 3
00 5 ¢ 1
1 1 1 1 1
24 12 8 12 3
(b) From m,-,:zjzlmij, i=1,...,5, we compute:
1 1 1 1
= — 4 — +0+04 — = .
mi1 12+24+ + +24 6

Analogously:
1 1 1 2

Moo = g; mga3 = 5; mgy4 = g; Mss = g
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Thus:

<

I
o O O ool
OO OoOwr O
O OO O
QwrroO O O
won O O O O

(c*) Hint: Adding the elements in row number i gives:

m=//Q (iw(x, y)) ei(z, y) dxdy://Q pi(z, y) dv dy.

Now use the formula for the volume of a pyramid, and compare the result to what you get
when using nodal quadrature. O
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Week 7:

Problem 1. Compute Vu, n - Vu, and Au for
(a) u(z, y) =zy; n=(1,0),
(b) u(z, y) =sin(z)cos(y); n=(1,1),

(c) u(z, y) = log(r) where r = /22 +y%2 (r#0); n=(z,y).

Solution:

(a )Vu—(%,gZ) (y,x),son-Vu=y, andAu—ai’Q‘-f-%:%-i-g—Z:O-

(b) Vu = (52, 55) = (cos(z) cos(y), — sin(z) sin(y)), so

n - Vu = cos(z) cos(y) — sin(z) sin(y) = cos(z + y), and

Ay = e gzcos(y)) a(sm(‘gysm(y)) —sin(x) cos(y) — sin(z) cos(y) = —2sin(z) cos(y).

(© V= (8.8) = (s st0) = (5.0, 01+ Vu = 36 +47) = 1, and

Nu=2 (52n) + 2 () =0 O

Problem 2. Consider the triangulation of Q = [0, 2] x [0, 1] into 3 triangles drawn in
Figure 12. (It is the same triangulation as in Problem 5 (Week 6).)

)

N5 N4
1  J

®
N LN g N3 ©

Figure 12: Problem 1 and Problem 4 (Week 7). The triangulation of €.

Compute by hand the stiffness matrix A with elements a;; = [[, Vo, - Vo, dzdy, i,j =
1,...,5.

Hint: Since @;(z, y) is linear on each triangle, the gradient V; will be a constant vector

on each triangle. As an example, consider triangle K. On this triangle, it is easy to show
that ¢1(z, y) =1 — (z +y), po(z, y) = z, and ¢s(z, y) = y (cf. how you did in Problem
2(a) (Week 5)). Therefore, on Ki: Vo; = (=1, —1), Vs = (1, 0), and Vs = (0, 1).
Thus, a1 = [[, V1 Vo dedy = fle Vo, -Voidody = fle 2dx dy = 1. Observe that
some matrix elements will get contributions from more than one triangle.
Solution: The matrix A with elements a;; = [[ Vy;-V; dzdy is clearly symmetric. One
easily sees which elements in A that are zero. For example, since ¢; only is non-zero on
triangle K; and ¢, only is non-zero on triangle K3, we know that a4 = a4; = 0. Similarly
we see that a;3 = az; = @91 = aq9 = 0.
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Since ;(z,y) is linear on each triangle, the gradient V; will be a constant vector on
each triangle.

We now calculate ass. The function @5 is non-zero on all triangles. By solving a linear
system of equations on each triangle (cf. Problem 2(a) (Week 5)), we get that ¢5(x,y) =y
on triangles K and Ky, and ¢5(z,y) = 1—2/2 on triangle K3. So Vs = (0, 1) on triangles
K, and Ky, and Vs = (—1/2,0) on triangle Kj3. Thus,

a55:// Vgog,-V(pg,dxdy:// 1dxdy+// 1/4 dzdy
Q K1UK» K3

1
= n(EL U Ks) + u(Ks) =1+1/4=5/4,

where (K7 U Ks) =1 and p(K3) = 1 denote the areas of K7 U Ky and K3 respectively.

We now calculate a;2 = ag;. Since @1 (z,y) only is non-zero on triangle K; it is enough
to integrate over triangle Ky, where Vi, = (=1, —1) and Vi, = (1,0) (see the given Hint
in the exercise):

G129 = Q91 = // Vg Vo dedy = / Vo - Vi dedy
Q K

- //Kl —ldzdy = —p(Ky) = —1/2.

Similarly we now calculate asy. Since @o(z,y) only is non-zero on triangles K; and K,
it is enough to integrate over these triangles. On K, @s(z,y) = x so there Vo = (1,0),
and on Ky, ps(z,y) = 2 — (z + 2y) so there Vo = (=1, —2). This gives that

oy = / Vs - Vo drdy +/ Vi, - Vg dady
K; K>

:// 1d:vdy+// Sdrdy =1/2+5/2 = 3.
K1 K2

In the same way as above one gets that a;; = 1, azs = 2, ay = %, O43 = Q34 = —1,
a5 = Q51 = —%, ags = az2 = —1, ags = azg = —%, Q35 = Q53 = % and ay5 = asy = —i-
Thus:

1 -1/2 0 0 —1/2

-1/2 3 —3/2 0 -1

A= 0 -3/2 2 -1 1/2
0 0 -1 5/4 —1/4

~1/2 -1 1/2 -1/4 5/4
O

Problem 3. Let P(K) = {v(z) = co + 121 + 229, ¢; € R, 1 =1,2,3; z = (x1,22) € K}

be the space of linear polynomials defined on a triangle K with corners a', a?, and a3.

Derive explicit expressions (in terms of the corner coordinates a' = (al, a}), a® = (a2, a2),
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and a® = (a3, a3)) for the gradients VA1, Vg, V3 of the basis functions A;, Ay, A3 € P(K)

defined by
. 1 2=1
Ma)y=4 T
0 t#7,
with 7,7 = 1,2,3. Compare with the corresponding expressions in your Matlab-function
MyFirst2DPoissonAssembler.
Hint: Use the result from Problem 3 (Week 6).
Solution: Since v(x) = ¢o + 121 + c2x2, we have Vv(z) = (c1,c2). All we have to do
to determine the gradients is then to identify the coefficients ¢; and ¢o. From Problem 3
(Week 6), we get

1

V)‘l = detA(ag - aga a? - a%)a
1

V)‘Q = detA(a’g - a’%a a} - LL?),
1

Vh = (d-d @ -d),

where det A = a3aj + aad — a?as — a3a3 —ajad +aja3 = 2 u(K), where p(K) is the area of

K. (Cf. Problem 4 (Week 6).) Note that the gradients are constant, which is a property
of a plane. O

Problem 4. Consider once more the triangulation of = [0, 2] x [0, 1] into 3 triangles
drawn in Figure 12. Let ' = 9Q denote the boundary of 2. Assuming that v(z, y) = 1,
gp(z, y) =1+ z+vy, and gy(z, y) = 0, compute by hand:
(a) The “boundary matrix” R with elements r;; = [,y @j¢ids, i,j =1,...,5.
(b) The “boundary vector” rv with elements rv; = [.(ygp — gn) pids, i =1,...,5.

Hint: You can either compute the curve integrals analytically or use Simpson’s formula
which is exact in this case.
Solution: Start by dividing and numbering the boundary I' into five segments I';, ¢ =
1,...,5 according to Figure 13.
(a) The first row of the “boundary matrix” is now computed using Simpson’s rule. When
doing this we have to keep track of where the basis functions are non-zero. For instance,
1 is identically equal to zero on the boundary except on the segments ['; and I's. Further,
the value of ¢; at the midpoints of I'y and I'; is % Since v =1 this gives:

1 1
rllszfds:/ gofds—i—/ w%ds:/ ¢1(0, y)Qdy‘i‘/ o1(z, 0)* dx
I I's I'y 0 0

1-1+4-1-L40-0 1-1+4-L.140-.0
= {Simpson’s rule} = 2 -1+ -1

1, 1
2 2
6 6
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Nj L4 Ny

{
Ny

N,

I 1 T, 2

Figure 13: Problem 4 (Week 7). The five segments of I'.

Since ¢; and ¢, are non-zero simultaneously only on I'; we get:

L 0-1+4-1-241.0 1
7“12:/ €02<P1d8:/ pa(z, 0)p1(z, 0) dz = é. 2 '1:6,
N 0
and analogously:
! 0-1+4-L.141.0 1
7"15:/ 905§01d3:/ 0500, 1)e1(0, y) dy = é 2 1=
I's 0

The matrix element 73 = 0 since ¢; and ¢3 don’t overlap on any boundary segment.
The same reasoning leads to 74 = 0. Similar computations give the rest of the matrix
elements (also note that R is symmetric), we just have to remember how long the boundary
segments are. (Be careful with the integrals over T'y; don’t forget that this segment has
length 2!) The final result is:

WIND |+

Wi = O
—ol- O O

symm.

—wli= O ool

(b) We start by computing the first component rv; of the “boundary vector” rv. Since
v=1,9p =142z +y and gy = 0 the integrand becomes (1 + z + y) ¢1(z, y). Note that
since ¢y is non-zero only on I'; and I's we need only integrate over these two boundary
segments. Further note that y = 0 on I'y and that x =0 on I'5:

rV1=/F(1—|—33+y)§01(l“, y)ds=/F (142 +0) @i (z, 0)d3+/ (1+0+9)01(0, y)ds

T's
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1 1
={ds=dronTy;ds=dyonTs}= | (1+z)¢i(z,0)dx —|—/ (1+1y) (0, y)dy
0 0

1-1+4-3.142.0 1-1+4-2.142.0
={Simpson’s rule} = é 2 214 é 2 1
_4+4_4
6 6 3

Continuing in the same way gives the rest of the elements:

rvzz/r(l—i—x—i-y)gag(x, y)ds=/

I'

(142 +0) s, 0)ds—|—/ (142 +0) po(z, 0) ds

1)

2
={ds=dronT; Uy} = (1 + ) po(x, 0) dx —I—/ (14 z) pa(z, 0)dz
10+4§ 1421 2:1+4-2.243.0
={Simpson’s rule} = é 2 14+ (23 2 1
5 7
=4 -=9
6 * 6 ’

rv3=/r(1+x+y)<,03(m, y)ds=/

(14+2+0) p3(z, 0)d8—|—/ (1+2+y)ps(2, y)ds
I'»

T3

2 1
={ds=dronTy;ds=dyonT3}= [ (1+z)ps(z, 0)dz —i—/ 3+ vy) v3(2, y) dy
1 0

2:0+4-3-143.1 3-1+4-7-144.0
={Simpson’s rule} = é 2 14+ (23 2 1
8 10
= — _— = 3
6" 6 ’

rio= [0t e s = [

(14 2+ y) pa(2, y)d8—|—/ (1+z+4+1)ps(x, 1)ds
Ts

Ty

1 2
={ds=dyonTs;ds=dronTs} = [ 3+vy)ws2, y)dy+ / (2+ ) pa(z, 1) dx
0 0

3-04+4-2.144.1 2-04+4-3-244-1
={Simpson’s rule} = ha é 2 " -1+ ha 5 2 -2
_11+20_51
6 6 6

rv5:/r(1+x+y)g05(x, y)ds:/

I'g

14z +1)@s(z, l)ds—i-/ (1+04+y)ps5(0, y)ds

Ts

2 1
={ds=dr onTy; ds =dy on I'5} = (2+ z) ps(z, 1) dz —I—/ (1+1vy) es(0, y) dy
0 0
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2:1+4-3-144-0 1-04+4-3-142.1
={Simpson’s rule} = G 2 £2 4 é 2 -1
16 5 1
=—42=3.
6 + 6 2
U
Problem 5. Show that the equation:
// VU - Vuvdx dy :/ fvdxdy for all v € Vy, (20)
Q Q
is equivalent to
//VU-Vgpidxdyz/ foidedy fori=1,... N, (21)
Q Q

where N is the number of internal nodes (“nintnodes”) and {¢;}¥ | is the basis of “tent-
functions” in V.

Solution:

=: We assume that (20) is true:

// VU - Vv dxdy:/ fvdxdy Vv € Vi,
Q Q
and want to show that this implies that (21) is true:
//VU-Vgoidxdy:/ foidxedy 1=1,...,N.
Q Q
But since (20) holds for all v € Vjg and ¢; € Vo, @ = 1,..., N, it’s for sure that (20)

implies (21).
<: We now assume that (21) is true:

//VU-Vgoidxdy:/ foidedy 1=1,..., N,
Q Q

and want to show that this implies that (20) is true:

// VU - Vvdxdy—// fvdzdy Vv e Vi

Since {p;} Y, is a basis for Vjg, every v € Vo can be written:
N
= Z Ci i (33, y)
i=1
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for some constants ¢;, i = 1,...,N. Multiply (21) with arbitrary constants ¢; for all
1=1,...,N. If we add it all together, we get:

/ VU - V(c1¢1) dedy + / VU -V (copy) dedy + - - - + / VU - V(cnen) dzdy
Q Q Q

Z// f01S01d~’Udy+/ f02¢2d$dy+"'+/ fenen dxdy,
Q Q Q

and hence:
N N
// VU‘V(Z cip;) dzdy = // f(z cip;) dzdy, (22)
Q2 i=1 & =1
for arbitrary constants ¢;, i = 1,..., N. Since (22) holds for every set of constants {¢;}Y ,,
we conclude that (20) holds for all v € Vj. O

Problem 6*. Show that the problem: find U € V} such that

// VU - Vwdz dy = / fwdzdy for all w € Vi, (23)
Q Q

is equivalent to the minimization problem: find U € V}4 such that

%// VU-VUd:Edy—// fUdzxdy = Igln—// Vv Vudzdy — // fvdzdy. (24)
(o) vEVpo

Solution:
U
Problem 7*.
(a) Consider the quadratic equation
at’ + bt +c =0, (25)

Investigate under what condition on the coefficients a, b, ¢ equation (25) does not have two
distinct real roots.
(b) Prove the Cauchy-Schwarz inequality:

|// vw dz dy| < ||U||L2(Q)||w||L2(Q) (26)
Q

Hint: start from the fact that ||1)—Hﬁw||L2(Q > 0. Expanding ||v+tw||%2(m gives a quadratic

polynomial which can not have two distinct real roots (why?). Use (a) to prove the Cauchy-
Schwarz inequality.
Solution:
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Problem 8. Calculate ||V f||12q) where Q = [0,1] x [0,1] and

(a) f = 2173

(b) f = sin(nz;)sin(mas) with n and m arbitrary integers. What happens when n,m
tends to infinity?

Solution:

(a) Recall that the gradient, V f, of a scalar function f(z1,z2) is a vector with the partial
derivatives of f as components:

af o
Vf= (a—jl, a—i) = (22, 2z122).

Now, using the definition of the L?-norm we get:

IV flIZ2 0 =//Q|Vf|2dx1da:2://QVf-Vfdxldxg://Qx;l+4xfx§d:r1dx2

1 1 1
= / / (x5 + 42222) doods, = / [La5 + %xfxg]é dz,
o Jo 0
! 29

_ 1, 4.2 _TL 431_1 4_
_/O(g+§$1)d$1—[5$1+§£E1]0—5+§—4—5,

i.e. we have the answer ||V f|2@) = /2.
(b) First note that if n = 0 and/or m = 0 we have f = 0 and therefore Vf = (0, 0) and

IV fllz2@@) = 0. If n # 0 and m # 0 we first, as in (a), compute the gradient vector V f of
the function f(z1,zs):

V f = (ncos(nxq) sin(mxsy), msin(nw) cos(mas)).

As above, we then compute:

IV fll720) = //Q (n? cos®(nx1) sin®(mas) + m? sin’(na1) cos®(mas)) didzs.

This looks a bit nasty but using the well known trigonometric formulas

sin” @ = § (1 —cos2a), cos’a =3 (1+cos2a)

we can rewrite the integral, which then equals:

2 2
// (%(1 + cos2nxq)(1 — cos 2mz,y) + mT(I — cos 2nx1)(1 + cos 2mx2)) dxidzxs.
0
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Since the factors in the integrand are independent of each other we can break the
integral into four separate and simple parts. We thus have:

n? [l 1
||Vf||%2(9) = Z/o (1 + cos2nzx;) dxl/o (1 — cos 2mxs) dzs
m2 [ 1
+ T/‘ (1 — cos2nxq) dxl/ (1 + cos 2mus) dao
0 0
n? sin 2nz, 1" sin2mz; 1t m?2 sin 2nz, 1" sin 2may "
= o+ | oy - T | - | [ 2
4 2n 0 2m 0 4 2n 0 2m 0
n

_ 2 1+sin2n 1 sin 2m +m2 1 sin 2n 1+sin2m
4 2n 2m 4 2n 2m )

If we let n, m tend to infinity the terms involving sine tend to zero because of the big
terms in the denominators and we are left with

2 2
9 n m
||Vf||L2(Q) ~ 1 + e — 00 n,m — OQ.

This can be understood if we consider the effect of n in the expression sinnz;. The
integer n determines how fast the function will oscillate, i.e., the frequency. As n tends
to infinity the function will oscillate increasingly faster, causing its derivative to become
large. And since the norm is a measure of the gradient’s size, it will become infinite in the
limit. O

Problem 9. Let u = z172 and a = 1 + x3. Calculate
(a) Vu.

(b) Au.

(c) V-aVu.

Solution:

(a)

8301’ 6—3:2

Vu = <% 8u> = (23, 22129)

(b)
o 9

A s . = _ —
u=V-Vu (83:1’8:162

) (22, 22179) = 0 + 211 = 214
o 0
V- (aVu) = (8—331’ 8—962) - (1+ 23) (23, 22125)

g 0
- (aT’ 57) (@ + 23, 2mzy + 2ma))
1 2
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= 2z, + 67,23

U
Problem 10. Consider the problem: find u such that
—Au+cu=f in Q, (27)
U =gp onI'p, (28)
—n-Vu =gy on I'y, (29)

where ¢ = ¢(z, y) > 0, with the usual notation.

(a) Derive a finite element method for this problem using approximation of the Dirichlet
boundary condition.

(b) Prove that the finite element solution is unique when 1. ¢ > 0 and 2. I'p is non-empty.
Solution:

(a) We approximate the Dirichlet boundary condition (28) by

—n-Vu=7(u—gp) onTp, (30)

where v >> 0.
Multiply the differential equation (27) by a function v = v(z, y) and integrate over Q:

_//sz(Au)vdxdy—k//gzcuvdxdy://vadivdy-

Integrate by parts in the first term:

—/(n-Vu)vds+// Vu-Vvd:vdy+//cuvd:vdyz//fvdxdy.
r Q Q Q

Use the boundary conditions (29) and (30) to replace —(n - Vu) in the boundary integral:

/ ngds+/ ’Y(U—QD)Ud8+// Vu-Vvda:dy+//cuvdxdy://fvdxdy.
I'n T'p Q Q Q

We now state the variational formulation: Find u € V such that

/ fyuvds—l—// Vu-Vvda:dy+//cuvd:rdy:
T'p 9} 9)

/ ’ygDvds—/ ngds+// fvdxdy forallv eV, (31)
'p 'y Q

where V' is the space of functions that are smooth enough for the integrals in (31) to exist.
The corresponding Finite Element Method reads: Find U € V), such that

/ fyUUds+//VU-Vvdxdy-l—//chd:cdy:
T'p 9} 9}
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/ Ygpv ds—/ ngds+// fvdxdy for all v € Vj, (32)
T'p I'n Q

where V}, is the space of continuous, piece-wise linear functions on a given triangulation of
Q.

(b) Assume that there are two solutions Uy, Uy € V}, to (32):

/ 7Ulvds+// VUl-Vvdxdy+// clvdzdy =
I'p Q Q

/ VgDvds—/ ngds+// fvdxdy for all v € V,
I'p I'n Q

/ ~yUsv d8+// VU, - Vv d:vdy-l—// cUsv dzdy =
T'p Q Q

/ 'ygDvds—/ ngds+// fvdxdy for all v € Vj,.
T'p I'n Q

Subtraction gives:

/ v(Uy — Us)vds + // V(U; = Us) - Vodzdy + // c(Uy — Uy)v dzdy = 0,
T'p Q

Q

for all v € V},. Now choose v = U; — Uy € Vj:

/FD (U, — Us)*ds + //Q V(U — Uy) [* dady + //Q c(Uy — Uy)? dxdy = 0. (33)

Since all three terms on the left-hand side are non-negative they must all be equal to 0:

/r y(U;, — Us)?*ds = 0, (34)
/meg—@wmw:m (35)

/ﬂdw-@fmwza (36)

We now consider the two cases separately:

1. If ¢ > 0 equation (36) immediately implies that U; — Uy = 0 in Q, i.e., U; = Uy in Q.
2. If we only know that ¢ > 0, but I'p is non-empty, we can first use (35) to conclude that
\V(U; — U)| = 01in Q, ie., Uy — Us is constant in ). Then we use (34) to conclude that
Ui — U; =0 on I'p, but then the constant must be 0 and we have that U; — Uy = 0 in €2,
i.e., U1 = U2 in Q.
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Remark. Since existence and uniqueness is equivalent for quadratic linear systems of equa-
tions, we have also proved existence of a solution to our Finite Element Method.

]
Problem 11. Let K be a triangle with corners (0, 0), (0,1), and (1,0), and let f(x1, 22) =

7?2 + 5. Calculate
// f(:cl, .TQ) dﬂ?ld.TQ,
K
using

(a) one-point (“center of mass”) quadrature,

(b) corner (“node”) quadrature,

(c) mid-point (of the triangle sides) quadrature.

Also compute the integral analytically and compare with your results above.
Solution: Denote the area of K by pu(K), i.e., u(K) = 3.
(a) The co-ordinates for the center of mass of a triangle, (zcur, your), are the mean values
of the co-ordinates of the corners:

0,004+ (0, 1)+ (1,0) 11

($CM, yCM) = 3 = (5’ §)
Thus:
2
/ Kf(mla .’Ez) dxld-TZ ~ f(.’ECM, yCM) /,L(K) = ((%) + %) . % — g
/ f(x1, 22) dzrdy ~ £, 0 +f(0?: D+7L9) u(K) = . :13 = ' % - %
K

_1/2+1/4+3/4 1 _ 1

3 2 4
We know that the quadrature rule in (c) should give the exact result in this case, since
f is a polynomial of degree 2. We check:

1—x1
// f(x1, ) dx1dxy = / (/ (x% + 552) dxg) dxq
ro=1—x1 1 ° 1
= / [xlxg + 3:2] dr, = / (x%(l —z1)+ (1 — x1)2) dxy
0 2 22=0 0 2
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1 r1=1
1 3 1 1 1 1 1 1 1 1 1

Problem 12. Let K be a triangle with corners (0,0), (0,1), and (1,0).

(a) Calculate the three basis functions J);, i = 1,2, 3, for the space P(K) of linear functions
defined on K.

(b) Calculate the 3 x 3 element mass matrix with elements m;; = [[, A\;\; dz dy approxi-
mately using corner quadrature.

(c) Calculate the 3 x 3 element stiffness matrix with elements a;; = [[, VA; - VA dz dy.
Solution: Denote the area of K by u(K), i.e., u(K) = 3. We also introduce the node
numbering N; = (0,0), No = (0,1), and N3 = (1,0).

(a) You can compute the basis functions in the same way as you did in Problem 2(a)
(Week 5). An alternative is to argue as follows: The basis function A3(z, y) is equal to 1
in (1,0) and is equal to 0 for z = 0. It therefore has to be A3(z, y) = z, since this is a
linear function that obviously satisfies these two requirements. (And linear functions are
uniquely determined by their nodal values.) By the same argument we have \o(z, y) = y.
Finally we know that A;(x, y) + Aa(z, y) + A3(z, y) = 1 since the sum is a linear function
that is equal to 1 in all three nodes. Therefore A\ (z, y) = 1—A3(z, y) —Ao(z, y) = 1—z—y.
(b) With corner (node) quadrature we approximate:

j i\Y, j :]- ) 51 ']-a ila
mij://KAindxdy%AJ(o, A0, 0) A0 N0, 1)+ 5 ML Oy

If 7 # j at least one of the factors A; and ); is zero in each corner and therefore m;; = 0.
If i = 5 we get:

)\i ) /\z P )\Z s 1 /\Z , 1 AZ 1’ )\Z 1,
mii:// i dz dy ~ (0, 0)Ai(0, 0) + Ai(0, 1)Ai(0, 1) + As(1, 0)Ai( O)M(K)
K
12 1 1

3

=337
since \; is equal to 1 in one node and equal to 0 in the other two nodes.
The final result is therefore:

[1/6 0 0 1
0 1/6 0
[ 0 0 1/6J

(c) Since the gradient of a linear function is constant we can move the integrand outside
the integral:

1
K N
H(K)
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From (a) we can compute: VA, = (-1, —1), VAy = (0, 1) and VA3 = (1, 0). We thus
get: VA - VA =2, VA - VA =1, VA3 - VA3 =1, VA - VX = VXA - VA = -1,
V/\l : V/\g = VAg . V/\l = —1 and VAQ . V)\g, = V)\g, : V/\g =0.

The final result is therefore:

1 —1/2 —1/2

—-1/2 1/2 0
—-1/2 0 1/2
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