TMVO035 Analysis and Linear Algebra B

Linearization. Jacobi matrix. Newton’s method.

Studio 1.2

Léraren gar igenom avsnitt 1.1-1.4 nedan. Du jobbar med Problem 1.1-1.5. (Huvudsakligen
handrékning.)

Studio 2.1

Du skriver ett program jacobi.m med anropet A=jacobi(f,x) som berdknar jacobimatrisen till
funktionen f i punkten z. Du skall anvinda programskalet jacobi.m. Testa programmet pa
Problem 1.2-1.5.

Studio 2.2

Lararen gar igenom avsnitt 1.5 nedan.
Du skriver ett program newton.m med anropet x=newton (f,x0,tol) som loser ekvationssystemet
f(z) = 0. Du skall anvinda programskalet newton.m. Testa programmet pd Problem 1.6-1.7.

Introduction
The fixed point iteration (and hence also Newton’s method) works equally well for systems of
equations. For example,
To (1 - xf) =0,
2 — I1X2 = 0,

is a system of two equations in two unknowns. See Problem [1.6 below. If we define two functions

fi(@y,m0) = 22(1 - 23),

folz1,22) =2 — 2122,

then the equations may be written

fi(z1,22) =0,
=0.

fo(z1,22)

With f = (f1, f2), z = (21,22), and 0 = (0,0), we note that f : R2 — R? and we can write the
equations in the compact form

f(z)=0.

In this lecture we will see how Newton’s method can be applied to such systems of equations.
Note that the bisection algorithm can only be used for a single equation, but not for a system
of several equations. This is because it relies on the fact the the graph of a Lipschitz continuous
function f: R — R must pass the value zero if it is positive in one point and negative in another
point. This has no counterpart for functions f : R? — R2.
Before we discuss Newton’s method we need to define derivatives of such functions, namely,
two functions of two variables, and more generally several functions of several variables.


http://www.math.chalmers.se/cm/education/courses/0607/ala-b/matlab/jacobi.m
http://www.math.chalmers.se/cm/education/courses/0607/ala-b/matlab/newton.m

1.1 Function of one variable, f : R - R
A function f: R — R of one variable is differentiable at a if the following limit exists:
fl(a) — lim f(.’L') — f(a‘)
T—ra Tr—a
We write this in an equivalent form:

o @) = @) - f@)@ - a)

z—a Tr—a

=0.

Therefore we can say that a function f : R — R of one variable is differentiable at a if there is a

function m(a), such that
o @) = f(@) = m(@)(z ~ a)

T—a r—a

=0. (1)
Of course the function m(a) is the derivative of f at a:

m(a) = @) = Df(@) = L (a).

This formulation will be useful when we define the derivative of a function of two variables later.
We also obtain the linearization formula

f(@) = f(a) + f'(a)(z — a) + E¢(x,a), (2)

where the linearization error Ey is smaller than the second term on the right side when z is close
to a.
It is convenient to use the abbreviation h = z — a, so that z = a + h and (1) becomes

fla+h) — f(a) —m(a)h

li =
K0 h 0 )
and (2) becomes
f(@) = fla+h) = f(a) + f'(a)h + Ey(z,a). (4)
Note that the first term on the right side, f(a), is constant with respect to z. The second term,
f'(a)h = f'(a)(z — a), ()
is a linear function of the increment h = x — a. These two terms form the linearization of f at a,
L(z) = f(a) + f'(a)(z — a). (6)

The straight line y = L(x) is the tangent to the curve y = f(z) at a.
Example 1. Let f(z) = 22. Then f'(z) = 2z and the linearization at a = 3 is

L(z) =9+ 6(z —3).

Numerical computation of the derivative

In a previous studio lecture Numerical computation of derivatives we learnt how to compute
the derivative numerically. We quickly repeat it here. If we divide (4) by h, then we get

fla+h)— f(a)
h

Here the remainder E¢(x,a)/h — 0 when h — 0. This suggests that we can approximate the
derivative by the difference quotient

= f'(a) + Ey(z,0)/h. ")

fl(a)%f(a-’-h"))/_f(a) (8)


http://www.math.chalmers.se/cm/education/courses/0607/ala-a/tex/numderivata.pdf

A better approximation is obtained by the symmetric difference quotient:

The difference quotients in (8) and (9) are of the form ”small number divided by small num-
ber”. If this is computed with round-off error on a computer, then the total error will be large
if the step h is very small. Therefore we must choose the step “moderately small” here, see
Numerical computation of derivatives. It can be shown that in Matlab a good choice for (8)

is h = 1072 and for (9) h = 107°.

1.2 Function of two variables, f: R2 - R

Let f(x1,2) be a function of two variables, i.e., f : R?> = R. We want to imitate the formula in
(3). We write x = (x1,22) and f(z) = f(x1,x2) and introduce the increment vector h = (hy, hs) =
(1 — a1, 72 — az) and its length |h| = \/h? + h2.

We now say that function f is differentiable at @ = (a1, as), if there are functions ms (a), m2(a),

such that L L L
lim L@t h) = fla) = mi(@)h —ma(@)hs _ (10)
|h|—0 |h]
The corresponding linearization formula is
f(@) = f(a+h) = f(a) + mi(a)hs + m2(a)hz + Ef(z,a), (11)

where the linearization error Ey is smaller than the second and third terms on the right side, more
precisely, E¢(z,a)/|h| = 0 as |h| — 0.
If we take h = (h1,0), then we get

f(z1,a2) = f(ar + h1,a2) = f(a) + mi(a)h1 + Ef(z,a).

By comparison with we see that this means that m1(a) is the derivative of the one-variable
function f(z1) = f(21,a2), obtained from f by keeping z» = ay fixed. By taking h = (0, hy) we
see in a similar way that ma(a) is the derivative of the one-variable function, which is obtained
from f by keeping z; = a; fixed. The functions m;(a), ma(a) are called the partial derivatives of

f at a and we denote them by
_of

n 61171

_of

h 65[32

(a), ma(a) = £;,(a) (). (12)

Now (11) may be written
f(@) = fla+h)=f(a) + fr,(@)h + fp,(a)h2 + Ef(x,0), h=z—a. (13)
It is convenient to write this formula by means of matrix notation. Let

a= [al,aQ], b= [22] .

We say that a is a row matrix of type 1 X 2 (one by two) and that b is a column matrix of type
2 x 1 (two by one). Their product is defined by

ab = [a1,a2] [z;] = a1b1 + azbs.

The result is a matrix of type 1 x 1 (one real number), according to the rule: (1x2)(2x1)=1x1.
Going back to (13) we define

f'(@)=Df(@) = [f.(a) fr,(@)], h= [”Z]


http://www.math.chalmers.se/cm/education/courses/0607/ala-a/tex/numderivata.pdf

The row matrix f'(a) = Df(a) = [f4,(a) f.,(a)] is called the derivative (or Jacobi matrix) of f
at a. Then (13) may be written

f@) = Ja+ D) =@+ £ L@)] 12| + B0

= f(a) + f'(a)h + Ef(z,a), h=z—a.

(14)

Note that the first term on the right side, f(a), is constant with respect to z. The second term,

f(@)h = f'(a)(z - a), (15)
is a linear function of the increment h =  — a. These terms are called the linearization of f at a,
L(z) = f(a) + f'(a)(z — a). (16)

The plane x3 = L(x1,z2) is the tangent plane to the surface z3 = f(z1,z2) at a.

Example 2. Let f(z) = z2x3. Then

of of _ 5 Of _ Of
83:1( T) = Bml ( 1552) = 22125, 8—1,2(5’7) = %(flflwz) = 55’715’72a

so that f'(z) = [2z125 baiz3] and the linearization at a = (3,1) is

L(z) =9+ [6 45] [m_‘;’]

1.3 Two functions of two variables, f : R? —+ R?

Let fi(z1,22), fo(z1,22) be two functions of two variables. We write © = (x1,22) and f(z) =
(fi(z1,22), fa(z1,22)), i-e., f : RZ = R2. The function f is differentiable at a = (a1, az), if there
are constants m1(a m12( ), ma1(a), maz(a), and Ky(a) such that

)s
fi(z) = fila+ h) = fi(a) + mi1(a)h1 + maz(a)hs + Ey, (z,a),
(@ (17)

f2(z) = fa(a+ h) = fa(a) + mai(a)h1 + maz(a)hs + Ey, (v, a),

where h = & —a and the linearization errors Ey; satisfy Ey, (x,a)/|h| = 0 when |h| — 0. As before
|h| = /h? + h3 denotes the norm (length) of the increment vector h = (h1, ha) = (z1 —a1, T2 —az).
From the previous subsection we recognize that the constants m;;(a) are the partial derivatives of
the functions f; at a and we denote them by

mi1(@) = fia, (@) = 52 @), mnala) = £, 0) = 51 @),
0fa 0fa

may(a) = f5 ,,(a) = 63:1( a), maa(a) = f5,,(a) = 69:2( a).
It is convenient to use matrix notation. Let

A= ail a2 _ b1
az a2’ ba]
We say that A is a matrix of type 2 x 2 (two by two) and that b is a column matrix of type 2 x 1
(two by one). Their product is defined by

Ab = [an 6112] |:b1:| _ [a11b1 +a12b2]
a1 azz2| |ba a21b1 + azba |’

The result is a matrix of type 2 x 1 (column matrix), according to the rule: (2 x2)(2x1) =2x1.



Going back to (17) we define

ofi . of
f1(:v) , 6—331(‘1) 8—372(a hy
f(w)z[ ] f'(a) = Df(a) = , hz[ ] (1)
fa(z) 8 df ha
6—x1(a) 8—932(@)

The matrix f'(a) = Df(a) is called the derivative (or Jacobi matrix) of f at a. Then (17) may be
written

gy 2L

[fl (95)] lfl (a+ h)] [h(a)] a1 Bpy [hl [Eh (iﬂaa)]
fa(z) f2(a+h) f2(a) %(a) %(a) ha Ey,(z,a)
6.’L’1 81’2
or in more compact form
f(z) = f(a+h) = f(a) + f'(a)h + Ef(z,a), h=z—a. (20)

Note that it is important that f,x,a, h are written as column vectors here.
Note that the first term on the right side, f(a), is constant with respect to . The second term,

f(a)h = f'(a)(z - a), (21)
is a linear function of the increment h = x — a. These terms are called the linearization of f at a,
L(z) = f(a) + f'(a)(z — a). (22)

z3z5
Example 3. Let f(z) = [ :1532]' Then
2

o, N,

ox ox 5 2,4
fl(m) — Df(.fl') — 1 2 — |:2$(1)m2 553551;52]

L@y L) :

63]1 63]2

and the linearization at a = (3, 1) is
9] , [6 45] [z, —3
=[]+ 5[

1.4 Several functions of several variables, f : R* — R™

It is now easy to generalize to any number of functions in any number of variables. Let f; be m
functions of n variables z;, i.e., f : R® = R™. As in (18) we define

I1 h1 Ir1 —ayp
T = , h= = ,
_mn hn Tn — Qn
of1 of1
_fl(.fL'l,...,.’L'n) 6—:E1(a) a—l_n(a)
flz) = : , f'(a) = Df(a) = : :
(1,00 20) Ofm Ofm
! i (a) ... B, (a)



The m X n matrix f'(a) = D f(a) is called the derivative (or Jacobi matrix) of f at a. In a similar
way to (20) we get

f(z) = fla+h)=f(a) + f'(a)h + Ef(z,a), h=2z-a. (23)

The linearization of f at a is

L(z) = f(a) + f'(a)(z — a). (24)

. . s : 0

Numerical computation of the derivative. In order to compute the j-th column —f(a) of
Ty

the Jacobi matrix, we choose the increment h such that h; = d and h; = 0 for ¢ # j, i.e.,

0 0 0
0 0 0
h= 10| =6 |1| =de;, ej=|1| < rowno.j.
0 0 0
10] 10 0]

Here the steplength ¢ is a small positive number and e; is the j-th standard basis vector. If we
use this increment in a symmetric difference quotient, see (9), we get

of . _ fla+de;) — fla—dey)
%(a)"‘ : 25 !

. (25)

Note that f is a column so the result is a column: the j*® column of the matrix f’(a). Remember
that the steplength ¢ should be small, but not too small.

1.5 Newton’s method for f(z) =0

Consider a system of n equations with n unknowns:

fl(xl;---;mn) = 0,

fn(1, ..., zn) =0.

If we define
It f1 0
z=|1|, f=|1|, 0=,
Ty In 0
then f: R™ — R"”, and we can write our system of equations in the compact form
flz)=0. (26)

Suppose that we have found an approximate solution a. We want to find a better approximation
x = a + h. Instead of solving (26) directly, which is usually impossible, we solve the linearized
equation at a:

L(a+h) = f(a) + f'(a)h = 0. (27)
We must solve for the increment h. Rearranging the terms we get
f'(a)h = —{(a). (28)



Remember that the Jacobi matrix is of type n x n and the increment is of type n x 1. Therefore

we have to solve a linear system of n equations with n unknowns to get the increment h. It is of
the form Ah = b with A = f'(a) and b = — f(a). Then we set £ = a + h.
In algorithmic form Newton’s method can be formulated:

while |h|>tol

evaluate the residual b=-f (x)

evaluate the Jacobian A=f’ (%)

solve the linear system Ah=b

update x=x+h
end

You will implement this algorithm in the studio exercises. You will use the MATLAB command
h=A\b

to solve the system. But later in this course we will study linear systems of equations of the form
Ah = b and we will answer important questions such as:

e Is there a unique solution A for each b?
e How do you compute the solution?

These questions can be answered for linear systems Ah = b, but not for the more general
nonlinear systems f(x) = 0. Thus, Newton’s method transforms the task of solving a difficult
equation to the task of solving an easier equation many times. The study of systems of linear
equations is an important part of the subject “linear algebra” which we study in ALA-B.

90 Problems

Problem 1.1. Let
1 1 2
a=[1 2], b= [2] A= [3 4].
Compute the products ab, Ab, Aa.

Problem 1.2. Compute the Jacobi matrix f'(z) (also denoted D f(z)). Compute the linearization
of f at Z.

. 1
m)fmo=sm““+‘“@ﬂy £=0;, (b)) fl@)=| 14m |, x=[1.

cos(z1) + sin(xz) 1+ z1e™2 !

Problem 1.3. Compute the gradient vector V f(z) (also denoted f'(z) = Df(x)). Compute the
linearization of f at Z.

1
(a) f(x) =e "tsin(z2), Z=0; ®) f@)=|z)* =2 +23+25, z€R?® z=|1
1

Problem 1.4. Here f : R — R2. Compute f'(t). Compute the linearization of f at .

cos(t)

@ s0= 0] T ® 0= L] =0

Problem 1.5. Compute the linearization of f at z:

s =[nme ] el

—X9 + X122



Problem 1.6. (a) Write the system

uz(1—uf) =0,

2—’LL1'LL2:0

in the form f(u) = 0. Find the all the solutions by hand calculation.
(b) Compute the Jacobi matrix D f(u).
(c¢) Perform the first step of Newton’s method for the equation f(u) = 0 with initial vector

1
(0) —
u nE
(d) Solve the equation f(u) with your MATLAB program newton.m.

Problem 1.7. (a) Write the system

’

Uy (1 - uQ)

0
U2(1 —Ul) 0

’

in the form f(u) = 0. Find the all the solutions by hand calculation.
(b) Compute the Jacobi matrix D f(u).
(c) Perform the first step of Newton’s method for the equation f(u) = 0 with initial vector

u© — B] ,

(d) Solve the equation f(u) with your MATLAB program newton.m.



Answers and solutions

Use MATLAB to check your answers.

1.2!
(a)

5

ab=5, Ab= [11

] , Aa = not defined.

flay =[Gt TS L) = @)+ @ - = |

—sin(z1)  cos(z2)

Vf(z) = [-e *'sin(zs), e ™ cos(z2)],

L(z)=f@) + f'(@)(z—2)=0+[0 1] [21]

Vf(z) = [221 223 23],

.731—].
Lz)=f@) + f(@)(z—-2)=3+[2 2 2] [wz—l
.733—].

ror= ]

wosoesoeo- ][

1O = |y
Mﬂ=ﬂﬂ+f®u—ﬂ:ﬁ}+[

1
0

2

xo.

] (t —/2).

|

t
1

|

] = =3+ 2z1 + 2z2 + 2z3.



o= )

L(z) = f(z)+ f'(@)(z — ) = [8] + 2

(a) The solutions are given by

~
~—~
S
N
Il
| ——— |

us (1 — uf)] _ '0] _

We find two solutions @ = [;] and @ = [_1] .
(b) The Jacobian is

—2uguz 1 —u?
Df(u) = |: _ulz 2 —U11:| -
(c) The first step of Newton’s method:
evaluate A=Df(1,1) = [:%
-2 0
solve Ah =0, [_1 _1]

—2h1=0,
—hi—hy = -1,

[

update u® =4 4 p = [1] + [(1)] = [1] =i

Bingo! We found one of the solutions.

(a) The solutions are given by

We find two solutions @ = [8] and @ = [ﬂ .
(b) The Jacobian is

Df) = |

(c) The first step of Newton’s method:

1- U2 —U1
—U2 1-— (/5% ’

evaluate A=Df(2,2) = [:; :ﬂ and b=-f(2,2) = [
_ -1 2] [m] _[2

solve Ah =0, [_2 _1] [h2] = [2] ,
—h1 —2hy =2, B [—2/3]
—2h —hy=2, = |-2/3

update u’ =u"Y +h= [2] + [_2/3 = |4/3

Getting closer to one of the solutions u!
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