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A) Data usually exhibit certain features like asymmetries ...
B) so we need models that can reproduce these features...
C) and then we need some characteristics/statistics that
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Gaussian models not always sufficient

Some good reasons for using Gaussian models:

Fully characterized by the first two moments

Likelihood accessible

Conditional expectation is linear

Stability under linear combinations, marginalization and conditioning

Some good reasons for NOT using Gaussian models:

Always symmetric since they depend solely on their covariance function

Have difficulty accounting for unusually extreme values in the data

So we need to go beyond the Gaussian world!



Introduction of the problem Stochastic processes build upon Laplace distribution Model fitting, estimation

Gaussian models not always sufficient

Some good reasons for using Gaussian models:

Fully characterized by the first two moments

Likelihood accessible

Conditional expectation is linear

Stability under linear combinations, marginalization and conditioning

Some good reasons for NOT using Gaussian models:

Always symmetric since they depend solely on their covariance function

Have difficulty accounting for unusually extreme values in the data

So we need to go beyond the Gaussian world!



Introduction of the problem Stochastic processes build upon Laplace distribution Model fitting, estimation

Gaussian models not always sufficient

Some good reasons for using Gaussian models:

Fully characterized by the first two moments

Likelihood accessible

Conditional expectation is linear

Stability under linear combinations, marginalization and conditioning

Some good reasons for NOT using Gaussian models:

Always symmetric since they depend solely on their covariance function

Have difficulty accounting for unusually extreme values in the data

So we need to go beyond the Gaussian world!



Introduction of the problem Stochastic processes build upon Laplace distribution Model fitting, estimation

Gaussian models not always sufficient

Some good reasons for using Gaussian models:

Fully characterized by the first two moments

Likelihood accessible

Conditional expectation is linear

Stability under linear combinations, marginalization and conditioning

Some good reasons for NOT using Gaussian models:

Always symmetric since they depend solely on their covariance function

Have difficulty accounting for unusually extreme values in the data

So we need to go beyond the Gaussian world!



Introduction of the problem Stochastic processes build upon Laplace distribution Model fitting, estimation

Gaussian models not always sufficient

Some good reasons for using Gaussian models:

Fully characterized by the first two moments

Likelihood accessible

Conditional expectation is linear

Stability under linear combinations, marginalization and conditioning

Some good reasons for NOT using Gaussian models:

Always symmetric since they depend solely on their covariance function

Have difficulty accounting for unusually extreme values in the data

So we need to go beyond the Gaussian world!



Introduction of the problem Stochastic processes build upon Laplace distribution Model fitting, estimation

Gaussian models not always sufficient

Some good reasons for using Gaussian models:

Fully characterized by the first two moments

Likelihood accessible

Conditional expectation is linear

Stability under linear combinations, marginalization and conditioning

Some good reasons for NOT using Gaussian models:

Always symmetric since they depend solely on their covariance function

Have difficulty accounting for unusually extreme values in the data

So we need to go beyond the Gaussian world!



Introduction of the problem Stochastic processes build upon Laplace distribution Model fitting, estimation

Gaussian models not always sufficient

Some good reasons for using Gaussian models:

Fully characterized by the first two moments

Likelihood accessible

Conditional expectation is linear

Stability under linear combinations, marginalization and conditioning

Some good reasons for NOT using Gaussian models:

Always symmetric since they depend solely on their covariance function

Have difficulty accounting for unusually extreme values in the data

So we need to go beyond the Gaussian world!



Introduction of the problem Stochastic processes build upon Laplace distribution Model fitting, estimation

Gaussian models not always sufficient

Some good reasons for using Gaussian models:

Fully characterized by the first two moments

Likelihood accessible

Conditional expectation is linear

Stability under linear combinations, marginalization and conditioning

Some good reasons for NOT using Gaussian models:

Always symmetric since they depend solely on their covariance function

Have difficulty accounting for unusually extreme values in the data

So we need to go beyond the Gaussian world!



Introduction of the problem Stochastic processes build upon Laplace distribution Model fitting, estimation

Gaussian models not always sufficient

Some good reasons for using Gaussian models:

Fully characterized by the first two moments

Likelihood accessible

Conditional expectation is linear

Stability under linear combinations, marginalization and conditioning

Some good reasons for NOT using Gaussian models:

Always symmetric since they depend solely on their covariance function

Have difficulty accounting for unusually extreme values in the data

So we need to go beyond the Gaussian world!



Introduction of the problem Stochastic processes build upon Laplace distribution Model fitting, estimation

Leaving the Gaussian world, but not too far...

Playing with Gaussian RMs

Transforming

Thresholding: Excursion sets

Truncating: Truncated Gaussian or transformed Gaussian RMs

Conditioning: Skew-normal RMs

does not produce all types of asymmetries met in the real world.

Laplace moving average models are formulated as convolutions of
Laplace noise and some deterministic kernel

Flexible and rich: 4 parameters + kernel
Can account for both geometrical asymmetries and
occasional highly extreme events
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Moving averages through stochastic integration

Standard construction of stochastic integrals with deterministic
kernels :

X (τ) =

∫
R

f (τ − x)dΛ(x).

Λ(x)- Laplace motion has 4 parameters for location (δ usually
set to zero), symmetry (µ), scale (σ) and shape (ν)

Covariance :

r(τ) =
σ2 + µ2

ν

∫
f (x − τ)f (x)dx

Spectral density:

R(ω) =
σ2 + µ2

ν
F f (ω)F f (−ω)
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Laplace moving average trajectories
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Fitting the model

The problem of fitting the model is two folded:

Fit the kernel
Fit the Laplace noice
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Symmetric kernel case

A non-parametric approach is to estimate f̂ by

f̂ (x) = F−1
√

Ŝ(ω),

where Ŝ(ω) is an estimate of spectrum
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Non-symmetric kernels – measures of asymmetries

There is no general non-parametric approach to the problem.

Various parametrized families of kernels are available

But what measures/ methods can we use?
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Measures of asymmetry

A non-linear model for sea surface in space and time
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Measures of asymmetry in observed records

Measures of asymmetries through crossing distributions of the
characteristics:

λMK = L′/L”, λNLS = Lcb/Lcf

or if Lx is a derivative at the mean water level:

λAL = −Lx(xdown)/Lx(xup)
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Tilting of trajectories
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Tilting of trajectories
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So measures of asymmetry should involve moments of joint
distribution of the process and its derivative
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Measuring tilting using Rice’s formula

N(T ,A) – “number” of times the field X takes value u in [0,T ]
and at the same time has a property A

For ergodic stationary processes

lim
T→∞

N(T ,A)

N(T )
=

E
[
{X ∈ A}|Ẋ (0)|

∣∣X (0) = u
]

E
[
|Ẋ (0)|

∣∣X (0) = u
] ,

The right hand side represents the biased sampling distribution
when sampling is made over the u-level contour
Cu = {τ : X (τ ) = u}
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Measures of tilting

Measures of tilting should involve derivatives of the LMA process. We
propose:

ρ3 =
EẊ 3

E3/2Ẋ 2
,

- skewness of the derivative process. If process has symmetric
distribution, this measure fails to capture any asymmetries in the
records!

ρ3,1 =
E(Ẋ 3X )

E3/2Ẋ 2E1/2X 2
or r3,1 =

E(Ẋ 3X )

E2X 2
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The Gamma kernel

f (x ; τ, β) =
2τ−1/2√

Γ(2τ − 1)βτ−1/2
xτ−1e−x/β x ≥ 0, τ > 0, β > 0,

- for τ = 1 exponential for τ →∞ Gaussian case.

r31 = 3ν
42(2−τ)(τ − 1)Γ(4τ − 6)

β4Γ2(2τ − 1)
, τ > 3/2 .

τ E(τ̂) Std(τ̂)
2 2.0245 .0549
4 4.1367 .4636
10 11.628 4.364

Monte-Carlo estimation of τ , for ν = 1 and µ = 0. Hundred
Monte-Carlo replicates of sample size of 300000, with step 0.1.
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The Gamma kernel , cont.
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Tilting o LMA with odd kernels, (always symmetric
marginals)
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Marginal distribution of LMA always symmetric, but trajectories may exhibit some asymmetric features due to
asymmetry of kernel which may be captured by the third moments of the derivative.
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Distributional parameters

Method of Moments

Maximum Likelihood Estimation

Maximum Likelihood Estimation through EM algorithm
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Highlights

Non-Gaussian stochastic fields are proposed that can be suitable for
modeling environmental data.

The models are introduced by means of integrals with respect to
independently scattered stochastic measures that have generalized
Laplace distributions.

Resulting stationary second order processes have, as opposed to their
Gaussian counterpart, a possibility of accounting for asymmetry and
heavier tails.

Despite this greater flexibility the discussed models still share a lot of
spectral properties with Gaussian processes having the latter as a
special case.

The models extend directly to random fields.

Spatio-temporal characteristics including asymmetries in the records
can be studied by the means of generalized Rice’s formula.

Model fitting can be obtained by utilizing: a) Method of Moments
(simpler) or b) Maximum Likelihood (more accurate)
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Baxevani, A., Podgórski, K. and Wegener, J. (2014). Sample Path Asymmetries in Non-Gaussian Random
Processes. Scandinavian Journal of Statistics
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Kotz, S., Kozubowski, T.J., Podgórski, K. (2001). The Laplace distribution and generalizations: A revisit with
applications to communications, economics, engineering and finance. Boston: Birkhaüser.
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