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“Big” data
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Naively implemented full likelihood/Bayesian inference is expensive for large
problems, even when using Markovian stochastic PDE methods.
What are the needed boundary conditions for geographical blocks?
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Inhomogeneous Poisson point process with boundary effects
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Covariaces and stochastic PDEs

The Matérn covariance family on Rd

R(s) = Cov(u(0), u(s)) = σ2 21−ν

Γ(ν)
(κ‖s‖)νKν(κ‖s‖)

Scale κ > 0, smoothness ν > 0, variance σ2 > 0

Whittle (1954, 1963): Matérn as SPDE solution
Matérn fields are the stationary solutions to the SPDE(

κ2 −∇ · ∇
)α/2

u(s) =W(s), α = ν + d/2

W(·) white noise, ∇ · ∇ =
∑d

i=1
∂2

∂u2
i

, σ2 = Γ(ν)
Γ(α)κ2ν(4π)d/2

Important: If v(s) is a solution (for α = 2), then so is v(s) + eκs·n , for all unit
vectors n . We need to handle the null-space solutions eκs·n in a useful way.
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Spectrum and the continuous global Markov property
Markov condition and spectral densities

Global Markov propery on a manifold:
For any separating set S for A and B , u(A) ⊥ u(B) | u(S )

A

S

B

Solutions to(
κ2 −∇ · ∇

)α/2
u(s) =W(s)

are Markov when α is an integer.
(Rozanov, 1977)

Proof of the Matérn/Whittle equivalence
and the Markov connection:
S (ω) = FR(·) = 1

(2π)d (κ2+‖ω‖2)α

Key fact: For any finite-dimensional Gaussian random field, the non-zero
pattern of the precision matrix Q = Σ−1 defines a graph on which the global
Markov property holds. The reverse is also true.
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Computations via Markov models on bounded domains

Continuous Markovian spatial models (Lindgren et al, 2011)

Local basis: u(s) =
∑

kψk (s)uk , (compact, piecewise linear)

Basis weights: u ∼ N (0,Q−1), sparse Q based on an SPDE

Special case: (κ2 −∇ · ∇)u(s) =W(s), s ∈ Ω

Precision: Q = κ4C + 2κ2G + G2 (κ4 + 2κ2|ω|2 + |ω|4)

Conditional distribution in a Gaussian model

u ∼ N (µu ,Q
−1
u ), y |u ∼ N (Au ,Q−1

y|u) (Aij = ψj (s i))

u |y ∼ N (µu|y ,Q
−1
u|y)

Qu|y = Qu + ATQy|uA (∼”Sparse iff ψk have compact support”)

µu|y = µu + Q−1
u|yA

TQy|u(y −Aµu)
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Classic approaches to constraining boundary behaviour

Deterministic boundary conditions
u(s) = 0, s ∈ ∂Ω (Dirichlet)

∂nu(s) = 0, s ∈ ∂Ω (Neumann)

u(s) + γ∂nu(s) = 0, s ∈ ∂Ω (Robin)
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All deterministic boundary conditions are inappropriate
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In search of practical stochastic boundary conditions

Separate the domain into the interior D , the boundary region B and an
optional exterior extension E :

Q =

QEE QEB 0
QBE QBB QBD

0 QDB QDD


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In search of practical stochastic boundary conditions

Classical approach (see e.g. Rue & Held, 2005)

[
QBB QBD

QDB QDD

]
=

[
Σ−1

BB + QBDQ−1
DDQDB QBD

QDB QDD

]
Problem: Requires known ΣBB and solving with QDD

Extension elimination

[
Q̃BB QBD

QDB QDD

]
=

[
QBB −QBEQ

−1
EEQEB QBD

QDB QDD

]
Benefit: Solving with QEE is typically much cheaper.
Problem: Need to have an large enough initial extension.
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Implicit stationary extension

Near-boundary precision block structure

Q =



˜̃
Q00 Q̃01 Q02 0 · · ·

Q̃10 Q̃00 Q01 Q02

. . .

Q20 Q10 Q00 Q01

. . .
...

. . .
. . .

. . .
. . .


Solve for boundary (also Discrete Algebraic Riccati Equations):[ ˜̃

Q00 Q̃01

Q̃10 Q̃00

]
=

[
Q̃00 Q01

Q10 Q00

]
−
[
Q̃10

Q20

] ˜̃
Q
−1

00

[
Q̃01 Q02

]
Hidden problem: Need ∂Ω to be a straight line.
Approximate solution: Treat curved boundaries as if they were lines!
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Alternative solution: Stationary AR extension

Solve for stable matrix AR coefficients
AR(2): A0u t + A1u t−1 + A2u t−2 = et

Q00 = A>0 A0 + A>1 A1 + A>2 A2

Q01 = A>0 A1 + A>1 A2, Q02 = A>0 A2

Q̃00 = A>0 A0 + A>1 A1,
˜̃
Q00 = A>0 A0, Q̃01 = A>0 A1

Closed form solution (in terms of matrix square roots) for 1D and 2D.
Essentially equivalent to solving the Riccati equations.

No simple direct link between κ and the precision. Difficult to find good
sparse approximations.

Is there a more direct way of using the SPDE model itself? Let’s try to
eliminate an appropriate amount of null-space solutions.
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Stochastic boundary conditions

Stochastic null-space boundary correction
I Construct the unconstrained model, with singular precision Q0.
I Find the desired joint distribution for the field and its normal derivatives

along the boundary of Ω expressed via a bivariate SPDE model with
precision Qw .

I Remove the extra bits generated by the null space by modifying the
boundary precisions:

w =

[
u
∂nu

]
u>Qu = u>Q0u + w>P>(PQ−1

w P>)−1Pw

where P gives the projection onto the nullspace.

Need to find Qw and evaluate P>(PQ−1
w P>)−1P .
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Practical construction

Let H β be a discrete representation of (κ2 −∇∂ · ∇∂)β .

Projection and precision matrices

P =
[
H 1 H 1/2

]
Qw = 4

[
H 3/2 0

0 H 1/2

]
P>(PQ−1

w P>)−1P = 2

[
H 3/2 H 1

H 1 H 1/2

]

This looks promising, and with potential for extensions!
Direct sparse approximations are within reach via spectral
fractional-to-Markov approximation methods, e.g. Lindgren (2011, Authors’
discussion response)
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Covariances (D&N, Robin, Stoch) for κ = 5 and 1
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Derivative covariances (D&N, Robin, Stoch) for κ = 5 and 1
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Process-derivative cross-covariances (D&N, Robin, Stoch)
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Square domain, basis triangulation
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Square domain, stochastic boundary (variances)
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Square domain, mixed boundary (variances)
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Elliptical domain, basis triangulation
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Elliptical domain, stochastic boundary (variances)
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Elliptical domain, mixed boundary (variances)
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