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Introduction Big space Stochastic PDEs Markov models Boundaries

“Big” data
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Naively implemented full likelihood/Bayesian inference is expensive for large
problems, even when using Markovian stochastic PDE methods.
What are the needed boundary conditions for geographical blocks?
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Inhomogeneous Poisson point process with boundary effects

N
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Covariaces and stochastic PDEs

The Matérn covariance family on R¢

1—v

R(S)=COV(U(0)7U(S))=02§(V)(F»H s[)” K. (] sl)

Scale k > 0, smoothness v > 0, variance o2 > 0

Whittle (1954, 1963): Matérn as SPDE solution
Matérn fields are the stationary solutions to the SPDE

(52— V- V) u(s) =W(s), a=v+d/2

W(-) white noise, V - V = EZ 1 8u2; 0% = W

Important: If v(s) is a solution (for & = 2), then so is v(s) + €™, for all unit
vectors . We need to handle the null-space solutions ¢*'" in a useful way.
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Spectrum and the continuous global Markov property

Markov condition and spectral densities

Global Markov propery on a manifold:
For any separating set S for A and B, u(A) L u(B) | u(S)

Solutions to

(52 = V- V)™ u(s) = W(s)
are Markov when « is an integer.
(Rozanov, 1977)

Proof of the Matérn/Whittle equivalence
and the Markov connection:

S(w) = FR() = Gryae o=

Key fact: For any finite-dimensional Gaussian random field, the non-zero
pattern of the precision matrix Q = 3! defines a graph on which the global
Markov property holds. The reverse is also true.
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Computations via Markov models on bounded domains

Continuous Markovian spatial models (Lindgren et al, 2011)

Local basis: u(s) = >, ¥i(s)uy, (compact, piecewise linear)
Basis weights: u ~ A/ (0, Q'), sparse Q based on an SPDE
Special case: (k2 — V- V)u(s) = W(s), s€Q
Precision: Q = x*C +2k>G + Gy (8* + 2r%|w|? + |w|*)

Conditional distribution in a Gaussian model

uly ~ N (), Q)
Q.,=Q,+ AT Qy‘uA (~"Sparse iff 1, have compact support”)

uly —
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Classic approaches to constraining boundary behaviour

Deterministic boundary conditions

u(s) =0, sed (Dirichlet)
Onu(s) =0, se€d (Neumann)
u(s) +v0phu(s) =0, s 0 (Robin)

1.0

Covariance
1.0
Covariance
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All deterministic boundary conditions are inappropriate
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Process at boundary
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Stochastic boundaries Domains Basics Discrete Continuous

In search of practical stochastic boundary conditions

Separate the domain into the interior D, the boundary region B and an
optional exterior extension £
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In search of practical stochastic boundary conditions

Classical approach (see e.g. Rue & Held, 2005)

[QBB QBD:| _ [23}9 +Q5pQpp Qs QBD:|
Qps Qpp Qpp Qpp

Problem: Requires known X z5 and solving with @

y

Extension elimination

[QBB QBD:| — |:QBB - QBE QEEQEB QBD:|
QDB QDD QDB QDD

Benefit: Solving with @ 5 is typically much cheaper.
Problem: Need to have an large enough initial extension.
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Implicit stationary extension

Near-boundary precision block structure

500 éOl Q02 0
él() CNQOO Q(]l Q()Q
QQO Q 10 QOO QOl

Q=

Solve for boundary (also Discrete Algebraic Riccati Equations):
Qoo Qo — [@00 Qo1] _ {Qm} 571 00 0
lQlo Qoo Qo Qoo Qs *° { o 02}

Hidden problem: Need OS2 to be a straight line.
Approximate solution: Treat curved boundaries as if they were lines!
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Alternative solution: Stationary AR extension

Solve for stable matrix AR coefficients

AR(2): Apu; + Ajuy_q + Asuy_o = ¢
Qu=Aj Ao+ A A+ A, A,
Qo = AE)'—Al + AIA% Qo = AS—A2
éoo = Aj A+ A[ Ay, éoo = Aj Ao, Z?m = Aj Ay

Closed form solution (in terms of matrix square roots) for 1D and 2D.
Essentially equivalent to solving the Riccati equations.

No simple direct link between « and the precision. Difficult to find good
sparse approximations.

Is there a more direct way of using the SPDE model itself? Let’s try to
eliminate an appropriate amount of null-space solutions.
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Stochastic boundaries Domains Basics Discrete Continuous

Stochastic boundary conditions

Stochastic null-space boundary correction

» Construct the unconstrained model, with singular precision Q.

» Find the desired joint distribution for the field and its normal derivatives
along the boundary of €2 expressed via a bivariate SPDE model with
precision @,

» Remove the extra bits generated by the null space by modifying the
boundary precisions:

[

v Qu=u'Qyu+w P (PQ,'P") 'Pw

where P gives the projection onto the nullspace.

Need to find Q,, and evaluate P (PQ,,'P") ' P.

w
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Practical construction

Let H” be a discrete representation of (k% — V- Vj)~.

Projection and precision matrices

P=[H! H1/2]

H? 0
Q,=4 [ 0 H1/2}
PT(PlepT) 'P=2 [ H H1/2}

This looks promising, and with potential for extensions!

Direct sparse approximations are within reach via spectral
fractional-to-Markov approximation methods, e.g. Lindgren (2011, Authors’
discussion response)
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Covariances (D&N, Robin, Stoch) for k = 5 and 1
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Results 1D 2D

Derivative covariances (D&N, Robin, Stoch) for k = 5 and 1

Covariance
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Results 1D 2D

Process-derivative cross-covariances (D&N, Robin, Stoch)
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Square domain, basis triangulation
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Square domain, stochastic boundary (variances)
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Square domain, mixed boundary (variances)
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Elliptical domain, basis triangulation

()
TXDKPK

1
()
X
1
)
1
)

XX
X

DXDKDKDKPXDKDKKL

X

Finn Lindgren - f.lindgren@bath.ac.uk Boundary adjustment methods for SPDE models



Elliptical domain, stochastic boundary (variances)
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Elliptical domain, mixed boundary (variances)
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