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Variational crimes in the Localized orthogonal decomposition method
TIM KEIl
Department of Mathematical Sciences
Chalmers University of Technology

Abstract

This thesis deals with solving multiscale elliptic problems with perturbed coe�cients. In
this context, the Localized orthogonal decomposition (LOD) method for solving multiscale
partial equations is presented and the main results of the error analysis are demonstrated
and improved. Moreover, the thesis proposes a method, deduced from the LOD, to solve
the variational crimes of perturbations by e�ciently taking advantage of the underlying
reference con�guration. For this method, the numerical analysis and several experiments
are presented. Furthermore, numerical experiments for perturbations are discussed and
the novel method is assessed. Lastly, the deduced method is applied to weakly random
problems as a special instance of perturbations.
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1 Introduction

The amount of composite materials used in today’s industries and engineering has risen
dramatically. They combine various materials to a heterogenous material with the in-
tention to attain better properties than each component on its own. Advantages in
robustness or strength, for instance, are achieved, while the weight reduces signi�cantly.
Roughly, those materials contain a matrix and a reinforcement, mostly in the form of
�bers, depending on the desired properties. A popular example is the utilization in air-
plane industries. Nowadays, an airplane contains approximately 50% composite materials
to make use of lightness and stability properties. Further examples that use composite
materials are aerospace engineering, automotive and marine industries or bridge construc-
tion. Certainly, each component of the composite material maintains its own chemical,
physical and mechanical properties. This might produce rapid changes, high variations
and discontinuities in terms of the behavior of the heterogenous material in special situa-
tions. In practice, due to the high variations, such materials raise new challenges when it
comes to mathematical modeling of processes like �ow and di�usion (see [9]). Moreover,
those materials produced in industries, potentially have small perturbations, for instance
caused by machine failures or unexpected compositions. These circumstances increase
the challenge for investigations. Modeling physical processes on such media with or
without perturbations usually ends in a partial di�erential equation that requires vast
complexity for computations in order to yield an accurate approximation of the problem.
Other examples that produce the same e�ects are di�usion in porous media, groundwater
�ow or signal transduction in cell biology.

Partial di�erential equations that are governed by rapid changes or high variations, as
described above, are called multiscale problems. These are problems in which several
inherent scales are involved and a�ect the resulting solutions. Those scales might be non
separable, but can be distinguished into the macroscale and microscales. The macroscale
indicates the global behavior of the solution, a course average over strong changes,
whereas the microscales are responsible for those changes. Consequently, analyzing
multiscale processes requires a ’microscopic’ accurate investigation, in order to capture
every feature correctly. This thesis solely deals with multiscale di�usion problems
and methods to resolve the issue of a multiscale setting. In general, the elliptic partial
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1 Introduction

di�erential equation for di�usion processes can be formulated as

−∇ · (A∇u) = f , in Ω,

u = 0, on ∂Ω,

on a bounded Lipschitz domain Ω ⊂ �d . The di�usion coe�cient A contains informa-
tion concerning the substance or the media the problem is subjected to. Whereas f is
responsible for outer forces that have in�uences on the process. For su�ciently strong
assumptions on each component of the di�usion, the classical �nite element method
(FEM) is applicable and achieves good approximations (see [7]). The FEM is a Galerkin
method, based on a discretization of the domain into a non-overlapping mesh with, de-
pending on the dimension of the domain, di�erent but consistent shapes of elements. This
procedure yields a �nite dimensional space, containing �nitely many local basis functions.
In order to capture every microscopic e�ect, the mesh size has to be chosen su�ciently
small and consequently a high amount of elements is required. This produces a large
computational complexity and might reach the limits of today’s computer technology.
To bypass this issue, a lot of research has been conducted in order to develop and apply
novel methods, based on the FEM. Among others, [5], [4], [21], [22] and [14] achieved
�rst promising results and provided the groundwork for further improvements. Most of
the methods mainly intend to use the high resolution mesh on only small subdomains
and use the received information to incorporate the �nescale e�ects to the method. This
adjustment is made by correcting the FE-basis of a Galerkin-method with a coarser
mesh. The heterogeneous multiscale method (HMM) in [11] and the multiscale �nite
element method (MsFEM) in [21] represent two popular examples for methods that follow
the exact same strategy as described above. They have been successfully applied and
improved in recent research. Both of them as well as several other methods assume
periodicity in error analysis or a speci�c scale separation. Thus, they are applicable only
in a limited way. Certainly, further research is also devoted to methods that do not neces-
sitate strong assumptions to be able to deal with non-periodic, discontinuous and rapidly
oscillating coe�cients, but to still generate a su�ciently accurate solution. Moreover,
those methods intend to be most e�cient and cheap in terms of computational complexity.

This thesis is devoted to a method that does not make any assumption like the one
mentioned above. It is called the localized orthogonal decomposition method (LOD)
and was invented by Målqvist and Peterseim (see [28]). This method is based on the
variational multiscale method (VMM) in [22] as it decomposes the solution space in a
�ne and a coarse part. The �nescale information that is lost in the coarse FE space can
be recaptured by the kernel of an interpolant that maps a function from the in�nite
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space to the FE space. Thus, it is possible to identify a �nescale space on which the
subdomain problems for the �nescale basis correctors can be computed and subsequently
incorporated to the coarse Galerkin method. In the ideal version of the LOD, these utilized
correctors have global support. In fact, �ne mesh computations get increased instead
of avoided which implies that the ideal LOD has no bene�t yet. However, Målqvist and
Peterseim proved that these correctors decay exponentially outside an area away from
the node with which they are associated with. This justi�es to compute the correctors
solely on a patch around the node which converts the LOD into a feasible method with
high practical use. In the recent years, the LOD has been improved and generalized
in [16], [18], reviewed in [30] and applied in [26], [15], [29], [17], [27], [1] and [19].
Furthermore, the LOD provided further work in similar approaches such as [23]. In order
to achieve a less expensive version, a Petrov Galerkin formulation (PG-LOD) has been
proposed in [12]. This method has computational advantages and furthermore, a similar
stability and convergence behavior can still be reached. Concerning the implementation
of the LOD, a detailed overview has been given in [13]. The �rst aim of this thesis is
to explain the LOD, its improvements as well as the PG-LOD in detail and derive an
error estimate for the approximation that proves a su�cient convergence result. This
derivation also contains the proof of the exponential decay and hereof, we stress and
summarize the improvements which have been built on the classical proof in recent years.

The second part of this thesis deals with variational crimes. Applications of Galerkin
methods, such as the �nite element method, might violate standard results and the accu-
racy might get a�ected. This could be caused by inexact quadrature rules for integrals
or inaccurate triangulations of the domain. Gilbert Strang (see [32]) �rst mentioned
these issues in 1973 and developed estimates that work as a replacement for standard
inequalities like Céa’s lemma. One variational crime is a perturbation of the di�usion
coe�cient, which basically signi�es the same e�ect like the one caused by the quadrature
rule. In case of a high loss of accuracy, the original FEM has to be recomputed entirely
for the new coe�cient and no utilization of the old coe�cient is available. Thus, there is
no potential to save the computational cost. We show that this issue can be solved by the
PG-LOD. For this purpose, a novel method based on approaches in [15] that contains the
original as well as the perturbed coe�cient is deduced and investigated analytically.

In the last part of this thesis, we apply this method to weakly random problems. These
problems are deterministic di�usion problems, governed by randomly distributed per-
turbations in the di�usion coe�cient. They have recently been introduced and studied
by Legoll, Thomines and Le Bris in, among others, [24] and [25]. To achieve stochastic
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1 Introduction

simulations, they derived a novel method that is based on the MsFEM and saves compu-
tational complexity in order to be able to apply Monte Carlo methods. Therefore, their
analysis is restricted on periodic assumptions for the deterministic problems as well as
the randomness. We clarify that our novel method also results in su�ciently accurate
and relatively cheaply computed approximations and covers non periodic instances. For
this purpose, we perform various numerical experiments and assess them afterwards.

This thesis is organized as follows: Chapter 2 introduces the mathematical background
and presents the original form of the �nite element method and the problems that arise
with multiscale data. Chapter 3 is devoted to the LOD method, as it stresses the main
components, the method itself and improvements such as the PG-LOD. Chapter 4 aims to
reveal an overview of the classical numerical analysis, containing error bounds and the
exponential decay, while Chapter 5 stresses the issue of variational crimes and proposes
the novel PG-LOD method. Chapter 6 presents the error analysis that follows from the
proposed method in terms of the required stability and error results for the PG-LOD and
Chapter 7 sketches implementation details for the LOD and the PG-LOD method. Chapter
8 contains the application of the novel method and presents the numerical experiments,
followed by a conclusion in Chapter 9.

4 Variational crimes in the Localized orthogonal decomposition method



2 Problem formulation and
mathematical background

This chapter presents mathematical background information and formulates the problem
this thesis is devoted to. The reader is supposed to be familiar with basic linear functional
analysis (see [2]) and the �nite element method (see [7]). Nevertheless, we give a brief
introduction to �nite element methods. A short insight in the error analysis of the
standard method emphasizes the problems of the FEM regarding multiscale scenarios.
Furthermore, we demonstrate two multiscale problems, approximated with the standard
FEM.

2.1 The weak formulation

Let Ω ⊂ �d be a bounded Lipschitz domain with polygonal boundary and dimension
d = 1, 2, 3. The underlying problem is a di�usion boundary value problem which can be
described as {

−∇ · (A(x)∇u(x)) = f (x), for x ∈ Ω,
u(x) = 0, for x ∈ ∂Ω.

Here, f denotes a function in L2(Ω) and furthermore, we assume the di�usion coe�cient
A ∈ L∞(Ω,�d×d) to be uniformly elliptic such that

0 < α := ess infx∈Ω inf
v∈�d\{0}

(A(x)v) · v

v · v
, (2.1)

∞ > β := ess supx∈Ω sup
v∈�d\{0}

(A(x)v) · v

v · v
. (2.2)

The function A may be non-periodic as well as subjected to high variations, such as
rapidly oscillating scales or discontinuities. Moreover, we assume homogenous Dirichlet
boundary conditions. With standard arguments, this problem can be reformulated into a
weak formulation. We de�ne V := H 1

0 (Ω), the Hilbert space with homogenous boundary
conditions that belongs to the scope of Sobolev spaces (see [2])

H 1
0 (Ω) :=

{
u ∈ L2(Ω)

���� ∂u∂xj ∈ L2(Ω), j = 1, . . . ,n,u = 0 on ∂Ω
}
.

Variational crimes in the Localized orthogonal decomposition method 5



2 Problem formulation and mathematical background

For the weak formulation, we use the symmetric, coercive and bounded bilinear form a

such that
a(u,v) :=

∫
Ω
(A∇u) · ∇v, ∀u,v ∈ V

and the bounded linear functional

F (v) :=
∫
Ω
f v, ∀v ∈ V .

The weak formulation is also called a Galerkin method and can be stated as follows.

2.1.1 Definition (Exact solution of the di�usion problem) For V , a and F de�ned as
above, the weak formulation of the di�usion problem is to �nd u ∈ U := V such that, for
all v ∈W := V , it holds that

a(u,v) = F (v). (2.3)

In general, the space U called the trial space andW the test space.

Clearly, the trial space U and the test spaceW are chosen to be the high resolution space
V as this approach results in the exact solution for the underlying problem. The choice
of the trial and test space could possibly deviate in order to gain novel Petrov Galerkin
methods. However, this requires new conditions on the bilinear form a, since coercivity
is not ful�lled anymore. Further details are given in Chapter 3. In the following, we call
the solution of (2.3) the exact solution, as we want to approximate it with the methods
throughout this thesis. In terms of the existence of a unique solution, we apply the
Lax-Milgram Theorem.

2.1.2 Theorem (Lax-Milgram, see [7] ) Let X be a real Hilbert space, B : X × X → � a
bounded bilinear form, i.e.,

∃C > 0 : ∀x ,y ∈ X : |B(x ,y)| ≤ C ‖x ‖X · ‖y‖X .

Furthermore, B is coercive, which means by de�nition

∃ c0 > 0 : ∀x ∈ X : B(x ,x) ≥ c0‖x ‖
2
X

and F : X → � is a bounded linear functional (F ∈ X ′). Then there exists a unique
solution u ∈ X such that, for all φ ∈ X ,

B(u,φ) = F (φ).

Since V = H 1
0 (Ω) is a Hilbert space and a and F satisfy the required assumptions for the

theorem, we conclude that the exact solution of (2.3) exists uniquely. This also holds true

6 Variational crimes in the Localized orthogonal decomposition method



2.2 The Finite Element Method

for closed subspaces of V , since they are still Hilbert spaces. Now, we want to focus on
the approximation of (2.3).

2.2 The Finite Element Method

The �nite element method (FEM) and its variations are developed to approximate a
solution for problems of the form (2.3). The method is roughly speaking a Galerkin
method with speci�ed trial and test space. We de�ne a Finite Element mesh (FE mesh)
and introduce the Finite Element space (FE space) VH as a �nite dimensional subspace of
V . Let TH be a family of coarse, shape regular, conforming triangulations of the domain
Ω such that ⋃

T∈TH

T = Ω.

These triangulations contain, for instance, intervals in one dimension, triangles in two
dimensions, and tetrahedrons or hexahedrons in three dimensions. We denote the max-
imum diameter of an element in TH with H and the shape regularity is ful�lled by the
existence of a ρ independent on H such that

max
T∈TH

diam(T )
B(T )

≤ ρ and max
T1,T2∈TH

diam(T1)

diam(T2)
≤ ρ.

B(T ) denotes the largest ball that lays inT . WithN , we denote the set of all corresponding
interior nodes of the mesh TH , which means they are not part of the boundary ∂Ω. A
typical �nite element space is

P1(TH ) :=
{
v ∈ C0(Ω)

��v ��
T

is a linear polynomial of degree ≤ 1, for every T ∈ TH
}
,

containing all TH -piecewise linear functions that are continuous on the domain Ω. Other
typical �nite element spaces like P2(TH ) are also conceivable, but they are not considered
further. We set

VH := V ∩ P1(TH ).

The spaceVH is clearly �nite-dimensional and thus, we can �nd a basis (λx )x∈N ⊂ P1(TH )

such that the property

λx (x) = 1 and λx (y) = 0, for every other node x , y ∈ N

is satis�ed. Since, for every x ∈ N , we have λx ∈ P1(TH ), the corresponding basis
contains ’hat’-functions that form a partition of unity. We call them nodal basis functions.
Importantly, these basis functions have a small support as they vanish outside of a vertex
patch. The corresponding method is a so-called Galerkin approximation and we call it

Variational crimes in the Localized orthogonal decomposition method 7



2 Problem formulation and mathematical background

the standard �nite element method.

2.2.1 Definition (Standard FEM approximation) The Galerkin approximation for the
standard FEM is to �nd uH ∈ VH ⊂ V such that

a(uH ,v) = F (v), ∀v ∈ VH . (2.4)

This solution is unique, according to Lax-Milgram.

Several choices for the trial space and the test space yield various types of methods,
which will be seen later on. For the standard FEM, the trial space equals the test space,
which enables the application of the Lax-Milgram uniqueness theorem. The main idea of
the FEM is to gain an approximation of the exact solution u with

uH =
∑
x∈N

UH (x)λx ,

where UH denotes a vector of size |N |. Inserting this into (2.4) results in a system of
linear equations

S · UH = L, (2.5)

where each entry of the sti�ness matrix S is determined by

Sx ,y = a(λx , λy), ∀x ,y ∈ N ,

and the load vector L is similarly de�ned by

Lx = F (λx ), ∀x ∈ N .

As a consequence of the small support of the nodal basis functions, the resulting matrix
S is sparse and, just as the load vector, due to linearity, easy to compute. This is a great
advantage of the method, since the linear system of equations with a sparse matrix can
be solved e�ciently. The size of the sti�ness matrix and hence, the size of the load vector
increase for smaller H . This implies a bigger amount of elements in TH . Thus, the smaller
H , the greater the e�ort to compute the components of (2.5) and to solve the linear system
of equations, subsequently.

2.3 Error bounds for finite element methods

The error analysis for the standard FEM emphasizes the space for developing more
Galerkin methods that circumvent the drawbacks of the FEM. For this chapter, we omit
the proofs, since we state standard results that can be found in [7]. Throughout the whole

8 Variational crimes in the Localized orthogonal decomposition method



2.3 Error bounds for �nite element methods

thesis, we use the energy norm

|||.||| = a(·, ·)1/2 = ‖A1/2∇·‖L2(Ω),

induced by a, and the Cauchy Schwarz inequality for a Hilbert space X

|(x , y)X | ≤ ‖x ‖X ‖y‖X , ∀x ,y ∈ X .

In terms of error bounds for the FEM, Céa’s lemma is crucial and is formulated in the
following.

2.3.1 Lemma (Céa’s lemma, see [7]) For u, the exact solution of (2.3) in De�nition 2.1.1,
and uH , the FEM approximation in De�nition 2.2.1, the estimate

‖u − uH ‖V ≤
C

c0
inf

vH ∈VH
‖u −vH ‖V

holds true. Here, C and c0 denote the continuity and the coercivity constants. Moreover,
we have Galerkin orthogonality, i.e., for all vH ∈ VH ,

a(u − uH ,vH ) = 0.

On the basis of Céa’s lemma, standard approaches for error bounds of the FEM can be
deduced. The following error bound is one of them. It follows from an interpolation
estimate.

2.3.2 Theorem (Error bound for the FEM, see [7]) The exact solution u ∈ H 2(Ω) of (2.3)
and uH , the standard FEM approximation in (2.4), underlay the error estimate

|||u − uH ||| ≤ CH ‖D2u‖L2(Ω),

where C is a constant independent of H .

This error emphasizes the demand of multiscale methods. The convergence of the method
(2.4) is therefore linear, according to the mesh size H , which can be chosen appropriately
small and close to 0. Nevertheless, this convergence result works just as long as the
solution satis�es su�ciently well smoothness conditions. It might occur that the solution
of the di�usion problem has rapid variations on multiple scales, which could, for instance,
be induced by high variation in the di�usion coe�cient. If we assume that, regardless of
the cause, u has such oscillations with at least a frequency of ε−1, for a small ε > 0, then
‖∇2u‖L2(Ω) would produce a factor in the estimate which is approximately of the same size.
Hence, to oppose this e�ect, we would have to choose H � ε in order to capture every

Variational crimes in the Localized orthogonal decomposition method 9



2 Problem formulation and mathematical background

e�ect on each scale. This would imply a vast growth of the computational complexity
for the method, if ε is tiny or even goes to zero. Next, we visualize the multiscale setting
with examples in one and two dimensions.

2.4 Examples

This section presents two examples for multiscale problems that emphasize the need to
develop novel methods.

2.4.1 One dimension

As mentioned above, the considered multiscale problems are subjected to high variations
on microscopic scales. For instance, we can describe them with a small ε , in the sense that
it represents the length of each periodic oscillation. The following is a standard example
and has been introduced in [30]. Consider the partial di�erential equation{

− ∂∂xAε(x)
∂
∂xuε(x) = 1, for x ∈ (0, 1)

uε(0) = uε(1) = 0,

where, for ε > 0,
Aε(x) := (2 + cos(2πx/ε))−1 .

In Figure 2.1, the coe�cient is displayed for ε = 2−5 and ε = 2−6. The exact solution can

0.0 0.2 0.4 0.6 0.8 1.0
x

0.000

1.333

y

A (x)

(a) ε = 2−5. (b) ε = 2−6.

Figure 2.1: Periodic variations of Aε (x) on Ω = (0, 1) for ε = 2−5 and ε = 2−6.

be stated explicitly with

uε = 4(x − x2) − 4ε
(

1
4π

sin(2π
x

ε
) −

1
2π

x sin(2π
x

ε
) −

ε

4π 2 cos(2π
x

ε
) +

ε

4π 2

)
.
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2.4 Examples

In the sequel, we use ε = 2−5. In fact, the oscillations for Aε(x) are rather low, but
nevertheless, it already emphasizes the problem quite well. Figure 2.2 shows the FEM

1/H= 2

u (x)
u_H(x)

1/H= 4

u (x)
u_H(x)

1/H= 8

u (x)
u_H(x)

1/H= 16

u (x)
u_H(x)

1/H= 32

u (x)
u_H(x)

1/H= 64

u (x)
u_H(x)

1/H= 128

u (x)
u_H(x)

1/H= 256

u (x)
u_H(x)

Figure 2.2: FEM approximation for various choices of H .

approximation for several mesh sizes H in comparison to the exact solution uε . It turns
out that the macroscopic trend of the FEM approximation lays distinctly underneath the
macroscopic trend of the exact solution as long as H is chosen too large. Remarkably,
the macroscopic approximation failure stays on the same level until 1/H = 64 = 26.
This can also be noticed in the error plot in Figure 2.3, which displays the energy error
|||uε − uH |||. Clearly, mesh sizes H ≥ ε are not suitable to capture the microscopic e�ect.
Only for H = 27, the solution slowly begins to adapt its macroscopic behavior. Figure
2.3 emphasizes this approach. The error decreases linearly with respect to H , once the
microscopic e�ect is captured. This error behavior of the solution is not accessible, which
was already explained in the previous section. The macroscopic trend is correct for a
su�ciently small choice of H and thus, it has to ful�ll H � ε .
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2 Problem formulation and mathematical background
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Figure 2.3: Energy error |||uε − uH ||| for various choices of H .

2.4.2 Two dimensions

In two dimensions, the same e�ects can be observed. Figure 2.4 displays the di�usion
coe�cient as well as the desired �nescale solution of the problem. For this example, we
drop the ε periodicity, as it is no required assumption for the approaches and methods in
this thesis. However, the coe�cient is still subtracted to some periodicity. This is not
an essential assumption, but it makes it easier to follow the accuracy of the solutions.
The channels in the coe�cient are noticeable in the �nescale solution. Obviously, the

(a) Coe�cient. (b) Finescale solution.

Figure 2.4: A(x) and u(x). Black is 1 and white is 0.01.
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2.4 Examples

di�usion has the largest impact inside the black channels which produce the arcs. Figure
2.5 displays di�erent FEM approximations and Figure 2.6, once again, shows the energy
error |||u − uH |||. Although, the coe�cient consists of only 16 channels, for 1/H = 16, the
channels are not discernible at all. Furthermore, the macroscopic behavior is rather low.
The arcs get recognizable for 1/H = 32 but they are still not equally high and the solution
has only slight accuracy. Figure 2.6 stresses these results as the error �rst behaves almost
constant and, starting from 1/H = 32, decreases almost linearly.

Figure 2.5: FEM approximation for various choices of H .
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Figure 2.6: Energy error |||u − uH ||| for various choices of H .
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2 Problem formulation and mathematical background

Both examples in this section emphasize the need for methods that do not have to
cover the microscopic e�ects with a su�ciently small H , as this might produce too high
complexity. The variations for uε(x) and u(x) have been intentionally chosen rather
small. The e�ect clearly gets worse for vast variations. We get to know a lot of examples
throughout Chapter 8. Especially for randomly perturbed problems, we have to compute
many problems of the same type, which might become impossible for too high variations.
This is the motivation for the development of multiscale methods that resolve this issue.
Their aim is to derive an approximation ums

H that satis�es an error bound of the form

|||u − ums
H ||| ≤ C fH ,

whereC f is only dependent on the right hand side and also on the bounds for A. Further-
more, H does not resolve the variations of the coe�cient A. As stated in the introduction,
there are plenty of di�erent multiscale methods that have been developed in the past.
The tool for this thesis is the Localized orthogonal decomposition method. We present it
in the next chapter.
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3 The Localized Orthogonal
Decomposition Method

This chapter presents the Localized orthogonal decomposition (LOD). It was �rst intro-
duced by Målqvist and Peterseim in [28]. They show the existence of a (quasi-) optimal
basis such that the resulting solution uLOD

H satis�es

‖u − uLOD
H ‖H 1(Ω) ≤ C f ,α ,βH ,

with a constant C f ,α ,β , depending on the right hand side and the global bounds of the
di�usionA. Furthermore, this constant is independent of the variations ofA which allows
for the method to solve multiscale problems. In particular, the aim of the LOD is to
construct correctors for the basis functions by solving only local problems on coarse
element patches. Målqvist and Peterseim justi�ed this by proving that the constructed
basis functions decay exponentially in an area outside of their associated node. This
chapter explains the multiscale splitting into a �ne and coarse part of the solution space
and focuses on the interpolation that enables this approach. Subsequently, we formulate
the standard LOD method and present old and new approaches for localizations. On top
of that, we mention variations of the LOD such as the right hand side correction and the
Petrov Galerkin formulation.

3.1 Multiscale spli�ing

The standard FE space VH is a �nite-dimensional subspace of the space V = H 1
0 (Ω).

Finescale features that might occur in the di�usion coe�cients and that are hidden in
V are no longer captured in the space VH . Therefore, we would like to characterize
the �nescale intricacies in V . For this purpose, we introduce a linear surjective (quasi-)
interpolation operator

IH : V → VH

that maps a function v ∈ V to a function vH ∈ VH in the coarse FE space. Thus, we regain
the �nescale space with

V f = ker(IH ) = {v ∈ V | IH (v) = 0}.
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3 The Localized Orthogonal Decomposition Method

This procedure allows us to cover all features of V that are no longer covered in VH and
we yield the multiscale splitting

V = V f ⊕ VH .

Figure 3.1 displays a two dimensional function in V , decomposed into the FE- and the
�nescale space. The sum of Figure 3.1(b) and Figure 3.1(c) yields the high resolution
function v in Figure 3.1(a). Importantly, the choice of the interpolant is not unique and

(a) v ∈ V ,v = vH +v f. (b) vH ∈ VH . (c) v f ∈ V f.

Figure 3.1: Multiscale splitting.

each choice yields another method. However, each interpolation operator needs to satisfy
determined properties. These properties and possible di�erent choices are thematized in
Section 3.6. First of all, we formulate the method.

3.2 The standard method

We aim to derive an orthogonal decomposition with respect to the bilinear form a, the
inner product of the energy norm ||| · |||. For this purpose, we de�ne a corrector operator
Q, for a given vH ∈ VH , to be the solution QvH ∈ V f such that

a(QvH ,w) = a(vH ,w), ∀w ∈ V f.

Therefore, Q : VH → V f denotes a �nescale projection toV f. Further, we use this �nescale
part to de�ne the LOD space

V LOD
H := (VH − QVH ).

Obviously, the dimension does not change, i.e., we still obtain dim(V LOD
H ) = dim(VH ). For

any v f ∈ V f and vLOD
H ∈ V LOD

H , we observe

a(vLOD
H ,v f) = a(vH − QvH ,v

f)

= a(vH ,v
f) − a(vH ,v

f)

= 0.
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3.2 The standard method

This leads to the orthogonal decomposition with respect to the a-scalar product,

V = V LOD
H ⊕a V

f.

In fact, every v ∈ V can be decomposed into two parts,

v = vLOD
H +v f.

With this approach, we achieve a space V LOD
H that also contains �nescale features of V ,

as a modi�cation of the standard FE space VH . We are now prepared to formulate the
ideal Galerkin approach of the LOD Method.

3.2.1 Definition (Ideal LOD approximation) The ideal LOD approximation of the exact
solution u in (2.3) is to �nd uLOD

H ∈ V LOD
H that satis�es

a(uLOD
H ,v) = F (v), ∀v ∈ V LOD

H . (3.1)

As mentioned above, various multiscale methods di�er in terms of choice of the trial
and test space. In the standard LOD-method, we choose both to be equal to V LOD

H , which
keeps the coercivity of the bilinear form a and thus, (3.1) has a unique solution, according
to Lax-Milgram. In order to form the LOD approximation into a feasible Galerkin method,
we need to derive a basis for the new test and trial space V LOD

H . Since V LOD
H and VH have

equal dimensions, it su�ces to apply the �nescale corrector Q on every single basis
function and incorporate it to the underlying basis function. Therefore, for every node
x ∈ N , we de�ne ϕx := Qλx ∈ V f, which means that ϕx ∈ V f solves the following
equation

a(ϕx ,w) = a(λx ,w), ∀w ∈ V f. (3.2)

Due to the de�nition of V LOD
H , we consequently conclude a basis

{λx − ϕx | x ∈ N}.

Clearly, (3.2) requires an additional �nite element method to compute the correctors for
each node. We furthermore realize that the correctors ϕx have a global support. With
respect to Section 2.2, the corresponding sti�ness matrix S is no longer a sparse, but a full
matrix. These ingredients show that the LOD, in the presented form, does not facilitate
the issue of too high computational complexity and hence, it has no practical use. Due
to that, Målqvist and Peterseim investigated the behavior of these globally supported
correctors and they presented a proof in [28] that shows that the correctors indeed have
an exponential decay outside an area of their node. This fact is the justi�cation for cutting
of the corrector and compute it on only a patch around the a�ected node x ∈ N . Thus,
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3 The Localized Orthogonal Decomposition Method

we achieve a method that is localized on every coarse grid patch. In recent years, it
turned out that several strategies of localization imply various results in terms of the
error estimates. We now explain both localizations.

3.3 Localization

In this section, we present the localization that turns the LOD into a feasible method.
First of all, we de�ne coarse grid patches for arbitrary sets in Ω.

3.3.1 Definition (Patches for sets in Ω) For k = 1, we setU (ω) := U1(ω). If ω = {x}, for
a node x ∈ N , we call Uk(x) a k-layer nodal patch. For ω = T , where T ∈ TH , we call
Uk(T ) a k-layer element patch. In the sequel, we often use the notation Uk for Uk(T ).

The �nescale spaceV f can also be restricted on these patches with the intuitive de�nition,
for ω ⊆ Ω and k ∈ �,

V f(Uk(ω)) :=
{
v ∈ V f

���v ��Ω\Uk (ω)
= 0

}
.

These local �nescale patches enable the ’cut-o�’ of the corrector in order to avoid the
global support for each of them. Functions inV f(Uk(ω)) vanish outside of the patchUk(ω)

and therefore, they have local support. Two major strategies for patches are possible,
either nodal patches or element patches. In the subsequent, we review both of them.

3.3.1 Classical nodal patch localization

In the classical paper [28], Målqvist and Peterseim proposed a localization for patches
around nodes and hereof, they de�ned

ωx ,1 := U (x) = supp λx ,

ωx ,k := Uk(x), k = 2, 3, . . . .

Figure 3.2 visualizes the nodal patches for several k on a quadrilateral mesh. We denote
the locally supported corrector for the node x ∈ N by ϕx ,k ∈ V f(ωx ,k) and let it be the
solution of

a(ϕx ,k ,w) = a(λx ,w), ∀w ∈ V f(ωx ,k).

Moreover, we gain a corresponding classical localized LOD space V lod
H ,k

de�ned by the
basis {

λx − ϕx ,k
}
x∈N
.
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3.3 Localization

Figure 3.2: Patches around a certain node x ∈ N in white.

Note that we intentionally use the small letters to distinguish between the classical
nodal patch localization and the element patch localization. Figure 3.3 displays this
decomposition. Figure 3.3(b) is a coarse basis function prolonged on the �ne mesh in
order to gain a better comparison. In the following, we formulate the corresponding
localized method.

3.3.2 Definition (nodal patch localized LOD approximation) The classical localized
LOD approximation of the exact solution u in (2.3) is to �nd u lod

H ,k
∈ V lod

H ,k
that satis�es

a(u lod
H ,k ,v) = F (v), ∀v ∈ V lod

H ,k , (3.3)

with k ∈ �.

(a) λx − ϕx,k . (b) λx . (c) ϕx,k .

Figure 3.3: Basis function of V lod
H,k and its decomposition for an x ∈ N and k = 4.

The error analysis that is related to this method is stated in Chapter 4. On top of that, we
see that this localization strategy indeed has a disadvantage that also a�ects the resulting
error bound of the method. The alternative localization that reaches a better result is
presented now.
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3 The Localized Orthogonal Decomposition Method

3.3.2 Element patch localization

The classical proof is based on patches ωx ,k that are dependent on a node x ∈ N . Now,
we use element patchesUk(T ) forT ∈ TH (see Figure 3.4). This is related to a new desired
de�nition for the correctors on elements instead of nodes and it has been proposed in,
among others, [26]. For v ∈ V , we can decompose the element corrector operator Q with

Figure 3.4: Patches for a certain coarse mesh element T ∈ TH in the middle.

Qv =
∑
T∈TH

QTv,

where QTv ∈ V f are the solutions of

aΩ(Q
Tv,w) = aT (v,w) ∀w ∈ V f, (3.4)

where
aM (u,v) :=

∫
M
A∇u · ∇v,

for an arbitrary set M ⊆ Ω. For k ∈ �, we therefore de�ne the element patch localized
corrector operators QT

k
: V → V f(Uk(T )) by the solution of

aUk (T )(Q
T
kv,w) = aT (v,w), ∀w ∈ V f(Uk(T )), (3.5)

and the corresponding full localized corrector

Qkv :=
∑
T∈TH

QTkv .

The correctors act on an arbitrary v ∈ V . Due to this novel correctors, we get a slightly
di�erent de�nition for the multiscale space V lod

H ,k
in Section 3.3.1, which we call V LOD

H ,k
,

de�ned by
V LOD
H ,k = VH − QkVH .
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3.4 The Petrov Galerkin formulation

This space is obviously spanned by {λx − Qkλx }x∈N and leads to the following Galerkin
method.

3.3.3 Definition (Element localized LOD approximation) The localized LOD approxi-
mation, based on element patches, is to �nd uLOD

H ,k
∈ V LOD

H ,k
such that

a(uLOD
H ,k ,v) = F (v), ∀v ∈ V LOD

H ,k . (3.6)

The only di�erence between this LOD approximation and the classical one is the choice
of the space V LOD

H ,k
instead of V lod

H ,k
. Further, we get to know another method that accrues

directly from the LOD approach and is called the Petrov Galerkin formulation.

3.4 The Petrov Galerkin formulation

The Petrov Galerkin formulation of the LOD has been proposed in [12] and is directly
related to the standard method, since it uses the same LOD �nescale space and therefore,
the same correctors. Its ideal formulation reads as follows.

3.4.1 Definition (Ideal PG-LOD approximation) The ideal Petrov Galerkin LOD (PG-
LOD) approximation of the exact solution u in (2.3) is to �nd u

pg
H ∈ V

LOD
H that satis�es

a(u
pg
H ,v) = F (v), ∀v ∈ VH . (3.7)

Once again, we use the small letters to emphasize that we de�ne a di�erent method later
on. Due to the same arguments, we also need a localized version. The localization for
our PG-LOD is based on element patches.

3.4.2 Definition (Localized PG-LOD approximation) The localized LOD approximation
of the exact solution u in (2.3) is to �nd u

pg
H ,k
∈ V LOD

H ,k
that satis�es

a(u
pg
H ,k
,v) = F (v), ∀v ∈ VH , (3.8)

with k ∈ �.

Clearly, the standard LOD and the PG-LOD only di�er in terms of the test space. We no
longer use the LOD space V LOD

H respectively, V LOD
H ,k

, but the FEM space VH . In practice,
this approach has advantages regarding the computational complexity, which is discussed
in Chapter 7. Moreover, the PG-LOD still ful�lls similar convergence results (see [12]). It
is important to notice that the coercivity of a is not valid anymore, since the trial space
and the test space are not equal. Thus, the well-posedness of the PG-LOD is not yet
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3 The Localized Orthogonal Decomposition Method

justi�ed. We have to revert to a more general version of coercivity that is the inf-sup
stability, de�ned as follows.

3.4.3 Definition (Inf-sup condition, see [6]) The continuous bilinear forma : V×W → �
satis�es the inf-sup stability, if there exists a γ > 0 such that

inf
v∈V

sup
w∈W

|a(v,w)|

|||v ||| |||w |||
≥ γ .

This inf-sup condition is also related to the Babuška-Brezzi condition, named after Babuška
[3] and Brezzi [8]. We also refer to [6] for further details. Once a satis�es this inf-sup
condition for the given trial and test space, we conclude well-posedness of the method.
This justi�es the use of the PG-LOD. The inf-sup stability and the resulting error estimates,
as well as the advantages and details, will be focused on later on. In order to gain
advantages in the error analysis of especially the PG-LOD, we now present an additional
correction tool, which is called ’the right hand side correction’. It has been presented in
[26], in order to consider high contrast problems regarding the standard LOD.

3.5 Right hand side correction

To deal with high contrast problems in [26], the right hand side correction is crucial.
Although this thesis does not discuss the problem of high contrast, the correction is a
key tool in our approaches in Chapter 6. We therefore introduce it and explain the usage
in the sequel. We de�ne the right hand side correction, for every v ∈ V , with Rv ∈ V f

such that, for all v f ∈ V f,

a(Rv,v f) = F (v f).

Furthermore, we de�ne the corresponding localized operator

Rkv =
∑
T∈TH

RTkv,

where, for every T ∈ TH , the operator RT
k

: V → V f(Uk(T )) denotes the solution such
that, for all v f ∈ V f(Uk(T )),

aUk (T )(R
T
kv,v

f) = FT (v
f).

This corrector has an application in the classical LOD as well as the PG-LOD.
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3.5 Right hand side correction

3.5.1 Application to the LOD

The classical LOD method makes use of the orthogonal decomposition of the exact
solution u = uLOD

H + uf, where uf denotes a function in the �nescale space V f and
uLOD
H ∈ V LOD

H . For the error analysis in Chapter 4, it is necessary to derive an estimate for
|||uf |||, in order to prove an estimate for |||u − uLOD

H ||| and moreover, for |||u − uLOD
H ,k
|||. The

obtained result has the form

|||u − uLOD
H ,k ||| ≤ C1k

d/2 θk ‖ f ‖L2(Ω) + |||u
f |||.

Here, the contrast is hidden in C1 and θ . Målqvist and Hellman used the right hand side
correction to additionally enable a contrast dependency for the second term and thus, to
consolidate both terms. Implied by the de�nition of the right hand side correction, the
standard LOD changes to an alternative formulation.

3.5.1 Definition (Standard localized LOD approximation with right hand side correction)

The localized LOD approximation of the exact solution u in (2.3) with right hand side is
to �nd uLOD,rhs

H ,k
∈ V LOD

H ,k
that satis�es

a(uLOD,rhs
H ,k

,v) = F (v) − a(Rk f ,v), ∀v ∈ V LOD
H ,k , (3.9)

with k ∈ �. The whole solution is then given by urhs
H ,k
= uLOD,rhs

H ,k
+ Rk f .

3.5.2 Application to the PG-LOD

The error bounds in Chapter 4 show that already the ideal LOD method generates an error.
The right hand side ensures a formulation of the PG-LOD that is only a reformulation
and hence, no error occurs in its ideal version. First of all, due to the �nescale splitting,
we know that we can assume u = uH + u

f with uH ∈ VH and uf ∈ V f. Thus, the weak
formulation in De�nition 2.1.1

a(uH + u
f,vH +v

f) = F (vH +v
f), ∀vH ∈ VH ,v f ∈ V f

can be rewritten for all v = vH +v f ∈ VH ⊕ V
f such that

a(uH + u
f,vH ) = F (vH ), (3.10)

a(uf,v f) = F (v f) − a(uH ,v
f). (3.11)

We intend to reinsert (3.11) into (3.10) but lose v f as a test function. For this purpose, we
apply the right hand side correction and use linearity in order to replace uf. According
to (3.10) and due to linearity, we can actually write uf = −QuH + R f . Inserting uf into
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(3.10) concludes, for all vH ∈ VH ,

a(uH − QuH ,vH ) = F (vH ) − a(R f ,vH ). (3.12)

Finally, the LOD spaceV LOD
H = VH − QVH provides the trial space for the Petrov Galerkin

formulation with right hand side correction. As we have already mentioned before, the
resulting Petrov Galerkin formulation provides no error compared to the exact solution,
since we know

u = uH + u
f

= uH − QuH + R f

= uPG
H + R f .

(3.13)

The resulting Petrov Galerkin method is formulated in the sequel.

3.5.2 Definition (Ideal PG-LOD approximation with right hand side correction) The
ideal PG-LOD approximation with right hand side correction of u in (2.3) is to �nd
uPG ∈ V LOD such that, for all v ∈ VH , it holds that

a(uPG,v) = F (v) − a(R f ,v). (3.14)

Due to (3.13), the full solution is given by u = uPG + R f .

Furthermore, we get the following localized version.

3.5.3 Definition (Localized PG-LOD approximation with right hand side correction)

The localized PG-LOD approximation of u in (2.3) is to �nd uPG
k
∈ V LOD

k
such that, for all

v ∈ VH , it holds that
a(uPG

k ,v) = F (v) − a(Rk f ,v), (3.15)

where uk = uPG
k
+ Rk f represents the full approximation.

In the following, the PG-LOD with right hand side correction plays an important role,
since it provides the main tool for the novel method that is derived in Chapter 5. Moreover,
the right hand side is essential for the numerical analysis in Chapter 6. Before we start
with the numerical analysis for the standard LOD, we �rst want to point out details
concerning the interpolation, which is the key tool for the multiscale splitting in the
LOD.
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3.6 Interpolation

3.6 Interpolation

In the beginning of this chapter, we used a linear surjective (quasi)-interpolation operator
IH that maps the high resolution space V to the �nite element space VH and enables the
de�nition of the �nescale space V f. Therefore, this interpolant forms the key tool to
provide the setting for the LOD. It has the general form

IHv =
∑
x∈N

(IHv)(x)λx ,

where IHv(x) is a function that is zero for x < N and whose value for x ∈ N depends on
the choice of the interpolant. Throughout this thesis, we use interpolations that satisfy
the following assumptions, stated in [31]:
(AI1) IH : V → VH is linear and continuous,
(AI2) the restriction on VH is an isomorphism,
(AI3) the stability estimate

H−1
T ‖v − IHv ‖L2(T ) + ‖∇IHv ‖L2(T ) ≤ CIH ‖∇v ‖L2(U (T )), (3.16)

holds for every v ∈ V and T ∈ TH , with a generic constant CIH > 0,
(AI4) there exists a generic constant C′IH > 0, which only depends on ρ, but not on the

local mesh size H , such that, for all vH ∈ VH , there exists v ∈ V with the properties

IH (v) = vH ,

‖∇v ‖L2(Ω) ≤ C′IH ‖∇vH ‖L2(Ω), and

suppv ⊂ suppvH .

These assumptions are, at least in the classical formulation, required for the numerical
analysis of the LOD and hence, they need to be satis�ed for the chosen interpolant.
Assumptions (AI2) and, more importantly, (AI4) are trivially satis�ed if IH is a projection.
We will make use of this later on. This thesis uses two di�erent choices of the interpolant.
Firstly, we focus on the choice in the classical version. Målqvist and Peterseim chose a
Clément-type interpolation. This interpolant has been introduced and analyzed in [10,
Chapter 6].

3.6.1 Definition (Clément-type interpolant, see [10, Chapter 6]) For the Clément-type
interpolation JH , the function (JHv)(x) is de�ned by

(JHv)(x) :=

(∫
Ω
vλx

)(∫
Ω
λx

) .
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Thus, the Clément-type interpolant consists of weighted averages over the nodal patches
U (x) = supp λx . We refer to [10] and [31] for further details and for a proof for assump-
tions (AI1)-(AI3). Assumption (AI4) has been proven for example in [28] or [16]. In the
classical error analysis, (AI3) and (AI4) is applied a couple of times, whereby the latter
is only necessary, because JH is not a projection operator. The second choice of the
interpolant that is discussed throughout this thesis is the L2-projection interpolant.

3.6.2 Definition (L2-projection, see [20]) For every v ∈ V , we de�ne the L2-projection
IH : V → VH by

IHv =
∑
x∈N

(IHv)(x)λx ,

where we de�ne, for every node x ∈ N ,

(IHv)(x) = (Pxv)(x).

The operator Px de�nes a projection Pxv ∈ VH
��
U (x)

such that∫
U (x)

PxvwH =

∫
U (x)

vwH ,

for all wH ∈ VH
��
U (x)

.

Due to IH (vH ) = vH , IH de�nes a projection onVH . We conclude that (AI2) and (AI4) are
satis�ed automatically, since we can choosev = vH for the latter. Assumption (AI1) holds
by de�nition. The stability estimate in assumption (AI3) has been proven in [31]. The
advantage that arises with the help of a projection interpolant is discussed and presented
in the following chapter. For other choices of the interpolant, we recommend for instance
[26]. Now, we are prepared to dedicate ourselves to the numerical analysis.

26 Variational crimes in the Localized orthogonal decomposition method



4 Error analysis for the standard LOD

This chapter deals with the error bound for the standard LOD method, presented in
Chapter 3. To attain this error bound, the proof for the exponential decay of the �nescale
correctors is crucial and is also the justi�cation for the localization. Basically, we intend
to summarize the progress that has been made, starting from the classical up until the
most recent knowledge. Recently, various suggestions for the proof have been made. In
the �rst part of this chapter, we state the main approaches of the classical proof, made
by Målqvist and Peterseim in [28]. Furthermore, we point out the main details of the
proof so that the reader gets an idea which assumptions have been used. Subsequently,
we discuss improvements proposed by Målqvist and Peterseim themselves as well as
Henning and Hellman (see [16], [30] and [26]). At the end of the chapter, we present a
complete proof based on the most recent knowledge.

4.1 Classical proof

This section is based on [28]. The goal is to describe the main results for the proof of
Theorem 4.1.5, an error bound of the type

|||u − u lod
H ,k ||| ≤ C‖H f ‖L2(Ω) +C

′H−1θk ‖F ‖H−1(Ω),

where u lod
H ,k
∈ V lod

H ,k
is the standard LOD approximation in De�nition 3.3.2. To accomplish

this, we �rst of all observe an error bound for the ideal method, formulated in the
following lemma. This lemma provides an overview about the techniques that are used
in the whole numerical analysis. Moreover, we introduce an overlapping constant Col,
which constitutes an important tool in the classical proof.

4.1.1 Lemma (see Lemma 3.1 in [28]) Let u ∈ V be an exact solution of (2.3) and let
u lod
H ∈ V

lod
H be the solution of the approximation of the ideal LOD method (3.1). Then we

have
|||u − u lod

H ||| ≤ C1/2
ol CJHα

−1/2‖H f ‖L2(Ω), (4.1)

where CJH is related to the interpolation estimate and α to the boundedness of A. The
constant Col > 0 arises from an overlap.
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Proof: First of all, and representative for the sequel of this thesis, we want to note that
the uniformity bounds α and β in (2.1) and (2.2) enable to deduce the estimates

‖A∇v ‖L2(Ω) ≤ β ‖∇v ‖L2(Ω),

‖∇v ‖L2(Ω) ≤ α
−1‖A∇v ‖L2(Ω),

(4.2)

for every v ∈ V . In order to prove the lemma, we recall the interpolation estimate (3.16)
for the interpolation operator JH . From the orthogonal multiscale splitting, we know
that the exact solution u ∈ V can be decomposed in

u = u lod
H + u

f.

Therefore, we can write u −u lod
H = u

f. Furthermore, we know that JHuf = 0, since uf ∈ V f.
This allows the observation

|||u − u lod
H |||

2
= |||uf |||

2

= a(uf,uf)

= F (uf)

=

∫
Ω
f uf

=
∑
T∈TH

∫
T
f uf

C.S.
≤

∑
T∈TH

‖ f ‖L2(T )‖u
f − JHu

f︸︷︷︸
=0

‖L2(T )

(3.16)
≤

∑
T∈TH

‖ f ‖L2(T )CJHH ‖∇u
f‖L2(U (T )).

(4.3)

Remember Young’s inequality

ab ≤
ap

p
+
bq

q
,

where 1 < p < ∞ and q such that 1
p +

1
q = 1. This inequality can easily be deduced by

using the concavity of the logarithm function. In particular, setting p = q = 2, a′ := a√
ε

and b′ :=
√
εb, for any ε > 0, reveals

ab ≤
1
2ε
a2 +

ε

2
b2. (4.4)
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Applying this to (4.3) implies

|||u − u lod
H |||

2
(4.3)
(4.2)
≤

∑
T∈TH

CJH
α1/2 ‖H f ‖L2(T )︸            ︷︷            ︸

=a

‖A1/2∇uf‖L2(U (T ))︸               ︷︷               ︸
=b

(4.4)
≤

C2
JH

2εα
‖H f ‖2L2(Ω) +

ε

2

∑
T∈TH

‖A1/2∇uf‖2L2(U (T )),

(4.5)

for any ε > 0. With respect to the sum in the right hand side, we realize that the proof is
done by replacing U (T ) by T . This can be achieved by setting ε appropriately. We know
that our �nite element mesh TH is regularly shaped with factor ρ. Thus, we can extract a
constant Col which is able to control the number of elements, covered by U (T ), such that
it is bounded by Col. Setting ε = C−1

ol implies

|||u − u lod
H |||

2 (4.5)
≤

C2
JH
Col

2α
‖H f ‖2L2(Ω) +

1
2Col

∑
T∈TH

‖A1/2∇uf‖2L2(U (T ))

≤
C2
JH
Col

2α
‖H f ‖2L2(Ω) +

1
2

∑
T∈TH

‖A1/2∇uf‖2L2(T )

=
C2
JH
Col

2α
‖H f ‖2L2(Ω) +

1
2
‖A1/2∇uf‖2L2(Ω).

Hence, we obtain the assertion,

|||u − u lod
H ||| ≤ C1/2

ol CJHα
−1/2‖H f ‖L2(Ω).

�

This proof makes use of the features of the mesh since the existence of the overlapping
constant Col is necessary. Målqvist and Peterseim used this constant a couple of times in
their proofs in order to control the domain of the norms. For further observations, we
introduce the so called cut-o� functions ηm,Mx , de�ned in the following.
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4.1.2 Definition (Cut-o� functions) For x ∈ N and m < M ∈ �, let ηm,Mx : Ω → [0, 1]
be a continuous, weakly di�erentiable function which satis�es

(ηm,Mx )

���
ωx,m
= 0,

(ηm,Mx )

���
Ω\ωx,M

= 1, and

∀T ∈ TH , ‖∇ηm,Mx ‖L∞(T ) ≤ Cco(M −m)
−1H−1

T , (4.6)

for some constant Cco dependent on only the shape parameter ρ.

We omit a detailed de�nition for the constants that arise in the next statements. The im-
portant aspect is that the constants only depend on Cco,Col,CJH ,C

′
JH
,α , β and ρ that are

related to the cut-o� in De�nition 4.1.2, the overlap in Lemma 4.1.1, the assumptions for
the interpolant (AI3) resp. (AI4), the boundaries for the di�usion and the shape of the ele-
ments. Clearly, every constantCk (k ∈ �) has the formCk = C(Cco,Col,CJH ,C

′
JH
,α , β, ρ).

Most importantly, the constants do not depend directly on |N |,x ,k, l or H . The next
lemma states the exponential decay, which contains the main work for the classical proof
and leads to the desired error bound.

4.1.3 Lemma (Målqvist and Peterseim in [28]) For all x ∈ N , k ≥ 2 ∈ � and l ≥ 3 ∈ �,
the estimate

|||ϕx − ϕx ,lk ||| ≤ C2(C1/l)
k−2

2 |||ϕx |||ωx,l
(4.7)

holds with constants C1, C2, where ||| · |||ω := ‖A1/2∇·‖L2(ω).

Proof: See Lemma 3.4 in [28]. �

The lemma is crucial for the localization and for the derivation of error bounds. However,
the proof is very technical in its classical version. Appropriated cut-o� functions and
their properties build the groundwork for the conclusions and the interpolation estimate
(3.16) plays an important role. Furthermore, the overlap constant Col aims to control the
domains. The used Clément type interpolant JH , de�ned in De�nition 3.6.1, is not a
projection, which constitutes a disadvantage. Assumption (AI4) is crucial and utilized
multiple times. In particular, some observation require an element of V f. If v < V f,
assumption (AI4) provides the existence of a b such that JH (b) = JH (v). The procedure
is to de�ne v′ := b − v ∈ V f and to take advantage of the support property as well as
the given estimate to continue the proof. These observations become quite technical. If
the interpolant IH is a projection, i.e, IH (vH ) = vH , for all vH ∈ VH , we can easily de�ne
v′ := v − IH (v) for v < V f. This automatically yields IH (v′) = 0 and therefore v′ ∈ V f.
This approach avoids a lot of technical estimates and, moreover, no workaround like
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assumption (AI4) is necessary. The following lemma is also required to prove the main
result.

4.1.4 Lemma (Målqvist and Peterseim [28]) There exists a constant C3 such that

|||
∑
x∈N

v(x)(ϕx − ϕx ,lk)|||
2
≤ C3 (lk)

d
∑
x∈N

v2(x)|||ϕx − ϕx ,lk |||
2. (4.8)

Proof: See Lemma 3.5 in [28]. �

Once again, assumption (AI4), overlapping results and a cut-o� function are applied to
attain the assertion. The observations are quite similar to the ones in Lemma 4.1.3 and
Lemma 4.1.1. Now, we formulate the main result of the classical proof.

4.1.5 Theorem (Målqvist and Peterseim in [28]) Let u ∈ V be a solution of (2.3) and
let 2 ≤ k ∈ � and 3 ≤ l ∈ �. Let u lod

H ∈ V lod
H be the solution of the localized LOD

approximation (3.3). Then

|||u − u lod
H ,lk ||| ≤ C4‖H

−1
T ‖L∞(Ω)(lk)

d/2 (C1/l)
k−2

2 ‖F ‖H−1(Ω)

+C1/2
ol CJHα

−1/2‖H f ‖L2(Ω).

Proof: See Theorem 3.6 in [28]. �

This proof clearly unites Lemma 4.1.1, Lemma 4.1.3 and Lemma 4.1.4. The achieved
estimate contains a factor H−1. This issue can be �xed by choosing the parameter k large
enough, for instance, proportional to log(1/H ). We conclude that for l such that C1 < l

and su�ciently big k the method allows for a good approximation. However, we also
recognize that there is still room for improvements to yield a better convergence rate.
Hereof, the cause of H−1 needs to be ascertained. An insight in the proof reveals that
especially the application of Lemma 4.1.4 induces problems. The reason why we have to
apply this lemma is naturally hidden in the very beginning of the proof, the de�nition of
u lod
H ,

u lod
H :=

∑
x∈N

u lod
H (x)(λx − ϕx ).

This representation is due to the nodal patch localization in the standard LOD. In Chapter
3, we have already mentioned that the element patch localization yields a better result
in terms of convergence. It is also helpful to avoid the overlapping constant as well as
to simplify several observations. In the following section, we present a proof which is
based on the most recent improvements of the classical proof.
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4.2 New formulation

In the previous section, we brie�y demonstrated the room for improvements of the
classical LOD localization, interpolation and its numerical analysis. Besides, we have
already suggested alternatives in terms of the interpolant and the localization. In the
following, we collect all new ideas, to formulate a new theorem for the convergence rate
and moreover prove it with novel techniques. The main result of these new approaches
is formulated in the next theorem. It can be understood as an improvement of Theorem
4.1.5. This result and the proof are mainly based on [26].

4.2.1 Theorem (Error bound for the LOD approximation with element patch localization)

Let uLOD
H ,k
∈ V LOD

H ,k
be the solution of (3.6) and u ∈ V the exact solution of (2.3). Then the

estimate
|||u − uLOD

H ,k ||| ≤

(
C1k

d/2θk + HC2

)
‖ f ‖L2(Ω)

holds, where C1, C2 and 0 < θ < 1 are positive constants, independent of H and k .

Most of the steps are proven similarly to Theorem 4.1.5. For the sake of completeness,
we show every statement in this proof, even though they are similar to the ones in the
previous section. We have already seen that the key tool for the method is provided by
the interpolant that maps a function from the entire space V to the coarse �nite element
space VH . Hence, the interpolant is responsible for the de�nition of the �nescale space
V f = ker(IH ). For this purpose, the classical LOD uses the Clèment-type interpolant JH
satisfying assumptions (AI3) and (AI4). From now on, we use the L2-projection inter-
polant IH , de�ned in De�nition 3.6.2. Clearly, IH satis�es the projection property, which
means that IH (vH ) = vH . Assumption (AI4) is no longer necessary for our approaches,
since the projection property enables to drop this assumption, whenever it was necessary
in the classical proof. This improvement was already explained above. Certainly, the
stability estimate (3.16) in assumption (AI3) is still crucial for our observations. Regarding
this assumption, we want to remark that we will use (3.16) not just on a singleT ∈ TH , but
also on arbitrary sets ω ⊆ Ω that are a union of arbitrary manyT ∈ TH (T -union), or even
the whole space Ω. For this purpose, we need to use a sum over all T ⊆ ω. According to
(3.16), we get the corresponding patch for every singleT ∈ TH . Therefore, an overlapping
e�ect occurs. This overlap is clearly dependent on ω and on the triangulation TH , but it
is just linearly. It gets the worst for ω = Ω and it does not exist for ω = T . We will hide
this e�ect by setting CIH such that Cω

IH
≤ CIH , for all ω ⊆ Ω. Note that this constant has

not the same usage as the overlapping constant Col in the classical proof. This constant
helped out in order to decrease the patch size, whereas using only CIH omits the sake
of reducing the patch patch size . In terms of the localization, we choose the element
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patch localization, introduced in Section 3.3.2. Clearly, we use the LOD approximation
uLOD
H ,k
∈ V LOD

H ,k
, de�ned in De�nition 3.3.3. Motivated by the element patch localization,

we de�ne novel cut-o� functions.

4.2.2 Definition (Cut-o� functions for elements) For T ∈ TH and 0 < k ∈ �, we de�ne
ηT ,k such that the following properties are satis�ed

ηT ,k(x) = 0, ∀x ∈ Uk−1(T ),

ηT ,k(x) = 1, ∀x ∈ Ω \Uk(T ),

‖∇ηT ,k ‖L∞(Ω) ≤ Cco H
−1. (4.9)

These cut-o� functions are slightly di�erent to the ones we used in the classical proof.
They are de�ned for every T ∈ TH and no longer for every node x ∈ N . We separate the
proof of Theorem 4.2.1 in several lemmas. The �rst lemma contains an estimate that can
be understood as a Poincaré-type inequality.

4.2.3 Lemma (Poincaré-type inequality for finescale elements) Forv f ∈ V f and for every
T -union ω ⊆ Ω, it holds that

‖A1/2v f‖L2(ω) ≤ C3 H ‖A
1/2∇v f‖L2(U (ω)), (4.10)

where C3 = β
1/2α−1/2CIH .

Proof: By de�nition, we have IH (v f) = 0, for any v f ∈ V f. Using (3.16) yield

‖A1/2v f‖L2(ω) ≤ β1/2‖v f‖L2(ω)

≤ β1/2‖v f − IH (v
f)‖L2(ω)

(3.16)
≤ β1/2CIH H ‖∇v

f‖L2(U (ω))

≤ β1/2α−1/2CIH H ‖A
1/2∇v f‖L2(U (ω))

= C3 H ‖A
1/2∇v f‖L2(U (ω)).

�

The next lemma states two other inequalities that are very helpful for further observations.
We state and prove them in the following.

4.2.4 Lemma (Energy of interpolation for v f a�er cut-o�) Let η be a cut-o� function
with the same properties like ηT ,k , de�ned in De�nition 4.2.2, or even 1 − ηT ,k . Then, for
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any �xed T ∈ TH , 0 < k ∈ �, v f ∈ V f and for every T -union ω ⊆ Ω, it holds that

‖A1/2∇(ηv f)‖L2(ω) ≤ C′4‖A
1/2∇v f‖L2(U (ω)), (4.11)

‖A1/2∇IH (ηv
f)‖L2(ω) ≤ C4‖A

1/2∇v f‖L2(U2(ω)), (4.12)

where C′4 = β
1/2α−1/2(CIHCco + 1) and C4 = C

′
4CIH .

Proof: First, we want to emphasize that the property (4.9), stated in De�nition 4.2.2
and ‖η‖L∞(Ω) = 1 is satis�ed for η = ηT ,k as well as for η = 1 − ηT ,k .
For (4.11), we derive, for every ω ⊆ Ω,

‖A1/2∇(ηv f)‖L2(ω) ≤ β1/2‖∇(ηv f)‖L2(ω)

≤ β1/2
(
‖∇ηv f‖L2(ω) + ‖η∇v

f‖L2(ω)

)
≤ β1/2

(
‖∇η‖L∞(Ω)‖v

f‖L2(ω) + ‖η‖L∞(Ω)‖∇v
f‖L2(ω)

)
(4.9)
≤ β1/2

(
Cco H

−1 ‖v f − IH (v
f)‖L2(ω) + ‖∇v

f‖L2(U (ω))

)
(3.16)
≤ β1/2(CIHCco + 1)‖∇v f‖L2(U (ω))

≤ β1/2α−1/2(CIHCco + 1)‖A1/2∇v f‖L2(U (ω))

= C′4‖A
1/2∇v f‖L2(U (ω)),

Starting again from the second step in the previous estimate concludes

‖A1/2∇IH (ηv
f)‖L2(ω) ≤ β1/2‖∇IH (ηv

f)‖L2(ω)

(3.16)
≤ β1/2CIH ‖∇(ηv

f)‖L2(U (ω))

(4.11)
≤ C4‖A

1/2∇v f‖L2(U2(ω)),

which shows the assertion. �

For a particular case of ω, such as a ring with the form Uk \Uk−1, we are able to make
use of the properties of the cut-o� functions. The resulting improvement is essential for
the estimates below and enables a better convergence rate than the one we would reach
with using the more rough estimate (4.12). We formulate and proof it in the sequel.

4.2.5 Lemma (Energy of interpolation for v f a�er cut-o� on rings) Let η := ηT ,k be a
cut-o� function, de�ned in De�nition 4.2.2, for one �xed T ∈ TH and 0 < k ∈ �. Then it
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holds for every v f ∈ V f that

‖A1/2∇IH (ηv
f)‖L2(Uk+1\Uk−2)

≤ C4 min
{
‖A1/2∇v f‖L2(Uk+2\Uk−2)

, ‖A1/2∇v f‖L2(Uk+1\Uk−3)

}
,

(4.13)

where C4 is de�ned as in Lemma 4.2.4.

Proof: We proceed analogously to Lemma 4.2.4, but this time, we use every feature of
η. We obtain

‖A1/2∇IH (ηv
f)‖L2(Uk+1\Uk−2)

(3.16)
≤ β1/2CIH ‖∇(ηv

f)‖L2(Uk+2\Uk−3)

≤ β1/2CIH

(
‖∇ηv f‖L2(Uk+2\Uk−3)

+ ‖η∇v f‖L2(Uk+2\Uk−3)

)
(∗)
= β1/2CIH

(
‖∇ηv f‖L2(Uk\Uk−1)

+ ‖η∇v f‖L2(Uk+2\Uk−1)

)
≤ β1/2CIH

(
‖∇η‖L∞(Ω)‖v

f‖L2(Uk\Uk−1)
+ ‖η‖L∞(Ω)‖∇v

f‖L2(Uk+2\Uk−1)

)
(4.9)
≤ β1/2CIH

(
Cco H

−1 ‖v f − IH (v
f)‖L2(Uk\Uk−1)

+ ‖∇v f‖L2(Uk+2\Uk−1)

)
(3.16)
≤ β1/2CIH

(
CIHCco‖∇v

f‖L2(Uk+1\Uk−2)
+ ‖∇v f‖L2(Uk+2\Uk−1)

)
≤ β1/2α−1/2(C2

IH
Cco +CIH )‖A

1/2∇v f‖L2(Uk+2\Uk−2)

= C4‖A
1/2∇v f‖L2(Uk+2\Uk−2)

.

(4.14)

In (∗), we used the support properties of the cut-o� function η. In particular, supp(η) =
Ω \Uk−1 and supp(∇η) = Uk \Uk−1. Using IH (v f) = 0 yields

‖A1/2∇IH (ηv
f)‖L2(Uk+1\Uk−2)

= ‖A1/2∇IH ((1 − η)v f)‖L2(Uk+1\Uk−2)
.

Proceeding analogously to (4.14), but using the properties of 1− η instead of η, concludes

‖A1/2∇IH (ηv
f)‖L2(Uk+1\Uk−2)

≤ C4‖A
1/2∇v f‖L2(Uk+1\Uk−3)

,

which attains the assertion. �

The following lemma is an improvement of Lemma 4.1.3. It is the replacement for the
most di�cult part in the classical proof.

4.2.6 Lemma (Energy of the operator QT outside of a patch with size k) For anyT ∈ TH ,
v ∈ V and for k ≥ 3, the correction qT := QTv ∈ V f, de�ned in Section 3.3.2, ful�lls

‖A1/2∇qT ‖L2(Ω\Uk (T )) ≤ θ
k ‖A1/2∇qT ‖L2(Ω), (4.15)
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where 0 < θ < 1.

Proof: Choose m := k − 1 ≥ 2. To keep clarity, we de�ne Um := Um(T ) and η := ηTm.
We start with the left hand side and derive

‖A1/2∇qT ‖2L2(Ω\Um)
=

∫
Ω\Um

A∇qT · ∇qT

Def.
η
≤

∫
Ω\Um−1

A∇qT · η∇qT

=

∫
Ω\Um−1

A∇qT · η∇qT +

∫
Ω\Um−1

A∇qT · qT∇η −

∫
Ω\Um−1

A∇qT · qT∇η

=

∫
Ω\Um−2

A∇qT · ∇(ηqT )︸                       ︷︷                       ︸
=I

−

∫
Ω\Um−1

A∇qT · qT∇η︸                     ︷︷                     ︸
=I I

.

For the �rst term, we take advantage of the circumstance that IH is a projection and
therefore, v′ := ηqT − IH (ηq

T ) ∈ V f. Due to the interpolation in v′ and supp(ηqT ) =
Ω \Um−1, we know supp(v′) = Ω \Um−2. Settingm ≥ 2 implies that v′ has no support in
T ⊆ Um−2. This is also the reason why we changed the domain for the integral in I from
Ω \Um−1 to Ω \Um−2. This procedure makes no di�erence because of the de�nition for η
and ∇η. With respect to the de�nition of the corrector QT , we know

I =

∫
Ω\Um−2

A∇qT · ∇(ηqT )

=

∫
Ω\Um−2

A∇qT · ∇v′ +

∫
Ω\Um−2

A∇qT · ∇(IH (ηq
T ))

=

∫
Ω
A∇qT · ∇v′ +

∫
Ω\Um−2

A∇qT · ∇(IH (ηq
T ))

(3.4)
=

∫
T
A∇v · ∇v′ +

∫
Ω\Um−2

A∇qT · ∇(IH (ηq
T ))

=

∫
Ω\Um−2

A∇qT · ∇(IH (ηq
T )).

We are also able to restrict the domain of the resulting integral, since qT ∈ V f, we get
supp(IH (ηqT )) = Um+1 \Um−2. Using Cauchy-Schwarz derives

|I | = |

∫
Um+1\Um−2

A∇qT · ∇(IH (ηq
T ))|

C.S.
≤ ‖A1/2∇qT ‖L2(Um+1\Um−2)‖A

1/2∇IH (ηq
T )‖L2(Um+1\Um−2)

(4.13)
≤ C4‖A

1/2∇qT ‖L2(Um+1\Um−2)‖A
1/2∇qT ‖L2(Um+1\Um−3).
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For the term I I , we have to recall a few inequalities from above and that, by de�nition,
supp(∇η) = Um \Um−1. We observe

|I I | = |

∫
Um\Um−1

A∇qT · qT∇η |

C.S.
≤ ‖A1/2∇qT ‖L2(Um\Um−1)‖A

1/2qT∇η‖L2(Um\Um−1)

≤ ‖A1/2∇qT ‖L2(Um\Um−1)‖A
1/2qT ‖L2(Um\Um−1)‖∇η‖L∞(Ω)

(4.9)
≤ CcoH

−1‖A1/2∇qT ‖L2(Um\Um−1)‖A
1/2qT ‖L2(Um\Um−1)

(4.10)
≤ CcoC3 ‖A

1/2∇qT ‖L2(Um\Um−1)‖A
1/2∇qT ‖L2(Um+1\Um−2).

With c := C4 +CcoC3, I and I I add up to the estimate

‖A1/2∇qT ‖2L2(Ω\Um+1)
≤ ‖A1/2∇qT ‖2L2(Ω\Um)

I&I I
≤ c‖A1/2∇qT ‖2L2(Um+1\Um−3)

= c
(
‖A1/2∇qT ‖2L2(Ω\Um−3)

− ‖A1/2∇qT ‖2L2(Ω\Um+1)

)
,

which results in

‖A1/2∇qT ‖2L2(Ω\Uk )
≤

c

1 + c
‖A1/2∇qT ‖2L2(Ω\Uk−4)

. (4.16)

This estimate gives some information about the decay within 4-layers. Starting from
k ≥ 4 and applying (4.16) correspondingly often yield

‖A1/2∇qT ‖2L2(Ω\Uk )
≤

( c

1 + c

) k
4
‖A1/2∇qT ‖2L2(Ω). (4.17)

The assertion follows with θ :=
( c

1+c
) 1

8 . �

We now use this lemma and see the advantage of the novel corrector operator. The
following lemma is more or less the replacement for Lemma 4.1.3 and Lemma 4.1.4.

4.2.7 Lemma (Truncation error for correctors) Let q := Qv be the corrector operator
and qk := Qkv the element patch localized corrector operator, de�ned in Section 3.3.2.
Then for k ≥ 3 ∈ � and v ∈ V , it holds that

‖A1/2∇(q − qk)‖L2(Ω) ≤ CQk
d/2 θk ‖A1/2∇q‖L2(Ω), (4.18)

where 0 < θ < 1 are de�ned in Lemma 4.2.6. CQ = 2(C4 +C
′
4)Cdθ

−3 contains previously
used constants and Cd dependent on the dimension d .
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Proof: Let qT
k

:= QT
k
v and

w := q − qk =
∑
T∈TH

(qT − qTk ).

Our purpose is to involve the interpolation and therefore, the de�nition of the correctors.
Set, for all T ∈ TH ,

w̄ := ηTk+2w − IH (η
T
k+2w).

As in the previous lemma, we make use of IH being a projection and conclude w̄ ∈ V f =

ker(IH ). The index k + 2 makes sure that the support of w̄ and the support of qT − qT
k

have an empty cut set. Hence, we use∫
Ω
A∇w̄ · ∇(qT − qTk ) = 0.

We observe

‖A1/2∇w ‖2L2(Ω) =
∑
T∈TH

∫
Ω
A∇w · ∇(qT − qTk )

=
∑
T∈TH

(∫
Ω
A∇w · ∇(qT − qTk ) −

∫
Ω
A∇w̄ · ∇(qT − qTk )

)
=

∑
T∈TH

∫
Ω
A∇

(
(1 − ηTk+2)w + IH (η

T
k+2w)

)
· ∇(qT − qTk )

C.S
≤

∑
T∈TH

©«
‖A1/2∇

(
(1 − ηTk+2)w

)
‖L2(Ω)︸                             ︷︷                             ︸

=:I

+ ‖A1/2∇IH (η
T
k+2w)‖L2(Ω)︸                        ︷︷                        ︸
=:I I

ª®®®®¬
· ‖A1/2∇(qT − qTk )‖L2(Ω)︸                      ︷︷                      ︸

=:I I I

.

For the �rst two terms, we only need the estimates that are used and introduced in previous
proofs. The third term is important, since we apply the previous lemma. It attains an
assertion for the energy of the qT corrector. We drop the patch index, Uk := Uk(T ), and
we need to remember previous estimates. Thus, for I , we have

I = ‖A1/2∇
(
(1 − ηTk+2)w

)
‖L2(Ω)

Def.
ηTk+2
≤ ‖A1/2∇

(
(1 − ηTk+2)w

)
‖L2(Uk+2)

(4.11)
≤ C′4‖A

1/2∇w ‖L2(Uk+3)
.
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4.2 New formulation

For the second term, I I , the estimate

I I = ‖A1/2∇IH (η
T
k+2w)‖L2(Ω)

= ‖A1/2∇IH (η
T
k+2w)‖L2(Uk+3\Uk )

(4.13)
≤ C4‖A

1/2∇w ‖L2(Uk+3\Uk−1)

≤ C4‖A
1/2∇w ‖L2(Uk+3)

holds true. Now, we intend to take advantage of Lemma 4.2.6. By de�nition, qT
k

can
be understood as the best approximation for qT , in terms of the energy norm on the
�nescale space V f(Uk). Therefore, we can pick an arbitrary element of V f(Uk) to achieve
an estimate for I I I . Set

q̄Tk := (1 − ηTk−1)q
T − IH ((1 − ηTk−1)q

T ).

We easily observe q̄T
k
∈ V f(Uk) and hence, we get

I I I = ‖A1/2∇(qT − qTk )‖L2(Ω)

≤ ‖A1/2∇(qT − q̄Tk )‖L2(Ω)

= ‖A1/2∇(ηTk−1q
T − IH (η

T
k−1q

T ) + IH (q
T ))‖L2(Ω)

≤ ‖A1/2∇(ηTk−1q
T )‖L2(Ω\Uk−2)

+ ‖A1/2∇IH (η
T
k−1q

T )‖L2(Uk\Uk−3)

(4.11)
≤ C′4‖A

1/2∇qT ‖L2(Ω\Uk−3)
+ ‖A1/2∇IH (η

T
k−1q

T )‖L2(Uk\Uk−3)

(4.13)
≤ C′4‖A

1/2∇qT ‖L2(Ω\Uk−3)
+C4‖A

1/2∇qT ‖L2(Uk+1\Uk−3)

≤ C′
Q
‖A1/2∇qT ‖L2(Ω\Uk−3)

(4.15)
≤ C′

Q
θk−3‖A1/2∇qT ‖L2(Ω),

where C′
Q
= C4 +C

′
4 and θ like in Lemma 4.2.6. Combining I , I I and I I I , results �nally in

‖A1/2∇w ‖2L2(Ω) ≤
∑
T∈TH

(I + I I ) · I I I

≤ 2C′
Q
θk−3

∑
T∈TH

‖A1/2∇w ‖L2(Uk+3)
‖A1/2∇qT ‖L2(Ω)

C.S.
≤ 2C′

Q
θk−3

( ∑
T∈TH

‖A1/2∇w ‖2L2(Uk+3)

)1/2 ( ∑
T∈TH

‖A1/2∇qT ‖2L2(Ω)

)1/2

≤ 2C′
Q
(k + 3)d/2θk−3‖A1/2∇w ‖L2(Ω)‖A

1/2∇q‖L2(Ω)

≤ CQk
d/2 θk ‖A1/2∇w ‖L2(Ω)‖A

1/2∇q‖L2(Ω),

where CQ = 2C′
Q
Cd θ

−3. The factor (k + 3)d/2 results from the transformation that
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needs to be made to get rid of Uk+3 and the constant Cd is related to separating kd/2 from
(k + 3)d/2. Dividing with ‖A1/2∇w ‖L2(Ω) completes the proof. �

We are now equipped to prove Theorem 4.2.1.

Proof of Theorem 4.2.1 : We start with using Galerkin orthogonality such that,
for every vLOD

H ,k
∈ V LOD

H ,k
,

|||u − uLOD
H ,k ||| ≤ |||u −v

LOD
H ,k |||

holds true. We recall that uLOD
H = uH − QuH and choose vLOD

H ,k
= uH − QkuH for uH ∈ VH .

Due to the decomposition V = V LOD
H +V f, we can write

u = uLOD
H + uf

and we observe

|||u −vLOD
H ,k ||| ≤ |||u

LOD
H + uf −vLOD

H ,k |||

≤ |||uH − QuH − uH + QkuH ||| + |||u
f |||

≤ |||QuH − QkuH ||| + |||u
f |||

(4.18)
≤ CQk

d/2 θk ‖A1/2∇QuH ‖L2(Ω) + |||u
f |||.

Further, we have

|||QuH |||
2 = a(QuH ,QuH )

= a(uH ,QuH )

C.S.
≤ |||uH ||| |||QuH |||.

(4.19)

Therefore, we obtain because of IH (uH ) = uH

|||QuH ||| ≤ |||uH |||

= |||IH (u
LOD
H + uf)|||

= |||IH (u
LOD
H )|||

≤ β1/2‖∇IH (u
LOD
H )‖L2(Ω)

(3.16)
≤ β1/2CIH ‖∇u

LOD
H ‖L2(Ω)

≤ β1/2α−1/2CIH |||u
LOD
H |||.
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4.2 New formulation

Combining this with

|||uLOD
H |||

2
= a(uLOD

H ,uLOD
H )

= F (uLOD
H )

C.S.
≤ ‖uLOD

H ‖L2(Ω)‖ f ‖L2(Ω)

≤ CP ‖∇u
LOD
H ‖L2(Ω)‖ f ‖L2(Ω)

≤ CPα
−1/2 |||uLOD

H |||‖ f ‖L2(Ω)

yields with C′1 := CPα
−1β1/2CIH ,

|||QuH ||| ≤ C′1k
d/2 θk ‖ f ‖L2(Ω). (4.20)

CP arises from the Poincaré-inequality. The last step is to �nd an error bound for |||uf |||,
which we already did in Lemma 4.1.1.

|||uf |||
2
= a(uf,uf)

= (A−1/2 f , A1/2uf)

C.S.
≤ ‖A−1/2 f ‖L2(Ω)‖A

1/2uf‖L2(Ω)

(4.10)
= α−1/2C3H ‖ f ‖L2(Ω)‖A

1/2∇uf‖L2(Ω)

≤ C2H ‖ f ‖L2(Ω) |||u
f |||,

withC2 := α1/2C3. Adding all parts together and settingC1 := C′1CQ leads to the expected
result,

|||u − uLOD
H ,k ||| ≤

(
C1k

d/2θk + HC2

)
‖ f ‖L2(Ω).

�
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5 Variational Crimes

Variational crimes is a popular topic for Galerkin methods, respectively, the FEM. Gilbert
Strang already mentioned them in one of the �rst works about FEMs (see [32]). Strang
perceived problems for the accuracy, in case speci�c approximation properties get touched.
One variational crime occurs due to an approximation of the domain TH 1 Ω. This could
be necessary if Ω contains a curved boundary or other shapes that are not exactly
approachable. Surely, TH 1 Ω implies VH 1 V . A second variational crime might occur,
when the entries of the sti�ness matrix S or the load vector L get computed. Cleary,
every entry contains integrals. Depending on its functions, those integrals need to be
approximated with quadrature rules that might not be exact. In fact, we compute ã and
F̃ instead of the exact versions a and F . Most importantly for this thesis, we can also
derive an error for the entries of the sti�ness matrix, if the coe�cient is subjected to
perturbations or approximations. For this thesis, we only consider the variational crime
of an altered a. Regardless of the cause, the ideal Galerkin method,

a(u,v) = F (v), ∀v ∈ V ,

turns into an approximated form,

ã(ũ,v) = F (v), ∀v ∈ VH .

Either variational crime violates Céa’s lemma, as the assumptions are no longer attained.
However, Céa’s lemma is representative for the error bounds of the FEM. To bypass this
issue, we present Strang’s lemma, applied to our situation.

5.0.1 Lemma (Strang’s lemma, see [7]) Let u ∈ V be a solution of

a(u,v) = F (v), ∀v ∈ V

and ũ ∈ VH a solution of
ã(ũ,v) = F (v), ∀v ∈ VH .
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Then for Cs > 0, the following error estimate

|||u − ũ ||| ≤ Cs

(
inf

vH ∈VH

{
|||u −vH ||| + sup

wH ∈VH

|a(vH ,wH ) − ã(vH ,wH )|

|||wH |||

})
(5.1)

holds true.

In many applications in engineering and industries, perturbations of the coe�cient can
be observed. A composite material that is periodic in theory, often deviates in practice;
for example, if the �bers or other material components are unpredictable. However, we
can assume that this perturbation is based on an old coe�cient Ã. We call it the reference
coe�cient since every perturbation in the underlying problem can be ascribed to it. We
de�ne the slightly di�erent continuous and bounded bilinear form

ã(v,w) :=
∫
Ω

(
Ã(x)∇v(x)

)
· ∇w(x) dx , ∀v ∈ V ,w ∈ V .

The perturbed version of the reference ã still reads

a(v,w) :=
∫
Ω
(A(x)∇v(x)) · ∇w(x) dx , ∀v ∈ V ,w ∈ V .

We choose this reversed notation for convenience with regard to the observations in
Chapter 6. Moreover, we keep the linear functional

F (w) :=
∫
Ω
f (x)w(x) dx , ∀w ∈ V .

Now, the weak formulation for the perturbed di�usion problem reads as follows.

5.0.2 Definition (Exact perturbed problem) For V = H 1
0 (Ω), a, ã and F de�ned above,

the weak formulation of a perturbed di�usion problem is to �nd u ∈ V such that, for all
v ∈ V , it holds that

a(u,v) = F (v). (5.2)

The reference problem is to �nd the solution ũ ∈ V such that, for all v ∈ V ,

ã(ũ,v) = F (v), (5.3)

where ã denotes the non-perturbed version of a, de�ned above.

We are now able to pursue Strang’s lemma, formulated in the following lemma.

5.0.3 Lemma For the solutionsu and ũ of (5.2) and (5.3) in De�nition 5.0.2, the following
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error bound
|||u − ũ ||| ≤ Cs |||u − IHu ||| +C‖A − Ã‖L∞(Ω)‖ f ‖L2(Ω) (5.4)

holds.

Proof: We start with the result of Strang’s lemma. Remember that the interpolation
IH : V → VH , introduced in Section 3.6, maps V to the FE space VH .

1
Cs
|||u − ũ |||

(5.1)
≤ inf

vH ∈VH

(
|||u −vH ||| + sup

wH ∈VH

|a(vH ,wH ) − ã(vH ,wH )|

|||wH |||

)
IHu∈VH
≤ |||u − IHu ||| + sup

wH ∈VH

|a(IHu,wH ) − ã(IHu,wH )|

|||wH |||

≤ |||u − IHu ||| + sup
wH ∈VH

|((A − Ã)∇IHu , wH )|

|||wH |||

C.S.
≤ |||u − IHu ||| + sup

wH ∈VH

‖(A − Ã)∇IHu‖L2(Ω)‖wH ‖L2(Ω)

|||wH |||

≤ |||u − IHu ||| + α
−1/2‖(A − Ã)∇IHu‖L2(Ω)

≤ |||u − IHu ||| + α
−1/2‖A − Ã‖L∞(Ω)‖∇IHu‖L2(Ω)

(3.16)
≤ |||u − IHu ||| + α

−1/2β1/2CIH ‖A − Ã‖L∞(Ω) |||u |||.

For |||u |||, we conclude with the help of Poincaré’s inequality (see [7])

|||u |||2 = a(u,u)

= (f , u)

≤ ‖ f ‖L2(Ω)‖u‖L2(Ω)

≤ ‖ f ‖L2(Ω)α
−1/2Cp |||u |||L2(Ω),

which �nally attains the assertion. �

This lemma gives an idea about how the perturbations a�ect the error bound. Depending
on the amount of the perturbation, the maximum norm could potentially have very high
values. In the applications, we see instances of dramatically increasing L∞(Ω) norm.
In practice, we might want to solve several problems of the same type, based on the
same reference coe�cient. This is why we start to think about possible ways to decrease
computational costs. In terms of the standard FEM, there are two opportunities to deal
with perturbations of a reference problem. Either we compute the sti�ness matrix with
respect to the reference coe�cient Ã, or to the perturbed coe�cient A. According to
Lemma 5.0.3, approximating a perturbed problem with the reference solution might cause
a very high error, whereas a recomputation is much more expensive. We show that the
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5.1 The novel Method

PG-LOD, presented in Chapter 3, enables to derive a novel method that is able to reduce
computational costs signi�cantly and still keeps the accuracy well enough. This method
can be applied to normal perturbation problems, but it is even stronger for multiscale
problems or in case the FEM is not applicable at all. The method has been proposed in
[15] in order to solve time-dependent di�usion problems. Basically, Hellman and Målqvist
considered every single time step in the di�usion coe�cient as a perturbation of the
’lagging’ coe�cient. We will show that this method can be generalized to deal with the
variational crime of perturbations. In the next section, we explain the novel method on
the basis of various methods that we can deduce from the standard PG-LOD approach.

5.1 The novel Method

Obviously, both solutions in (5.2) and (5.3) can be computed with the LOD-technique.
For this purpose, we may easily follow the same strategy, that is to use perturbed as well
as reference correctors for each coarse element and derive the reference and perturbed
versions of the space V LOD

H . We compute the reference corrector functions, which are,
analogously to the perturbed correctors, de�ned by

Q̃k =
∑
T∈TH

Q̃Tk ,

R̃k =
∑
T∈TH

R̃Tk ,

with Q̃T
k
v, R̃T

k
f ∈ V f(Uk(T )) such that, for all v f ∈ V f(Uk(T )),

ã(Q̃Tkv,v
f) = ãT (v,v

f),

ã(R̃Tk f ,v
f) = FT (v

f).

The resulting methods are formulated in the following. To keep clarity, we omit the
noti�cation of H for further observations and de�nitions. Hence, we use V LOD, based on
A, respectively, Ṽ LOD, based on Ã.
As we are interested in the PG-LOD with right hand side correction approximation of (5.2)
and (5.3), we formulate the PG-LOD that occurs from (3.12) for the perturbed problem.

5.1.1 Definition (Ideal PG-LOD approximation of the perturbed problem) The ideal
PG-LOD approximation with right hand side correction of u in (5.2) is to �nd uPG ∈ V LOD

such that, for all v ∈ VH , it holds that

a(uPG,v) = F (v) − a(R f ,v). (5.5)
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Due to (3.13), the full solution is u = uPG +R f . Besides, the ideal PG-LOD approximation
of the reference solution ũ in (5.3) is to �nd ũPG ∈ Ṽ LOD such that, for all v ∈ VH , it holds
that

ã(ũPG,v) = F̃ (v) − ã(R̃ f ,v), (5.6)

where the full solution reads ũ = ũPG + R̃ f .

However, to formulate a feasible and applicable method, we also need the localized
versions of the PG-LOD for the reference and the perturbed version ofV LOD

H ,k
. This results

in the localized PG-LOD approximations uPG
k
∈ V LOD

k
, based on A, and ũPG

k
∈ Ṽ LOD

k
, based

on Ã. The correctors Qk induce the �nescale space V LOD
k

and thus, we de�ne the method
as follows.

5.1.2 Definition (Localized PG-LOD approximation of the perturbed problem) The
localized PG-LOD approximation with right hand side correction of u in (5.2) is to �nd
uPG
k
∈ V LOD

k
such that, for all v ∈ VH , it holds that

a(uPG
k ,v) = F (v) − a(Rk f ,v), (5.7)

where the full solution is denoted by uk = uPG
k
+Rk f . Furthermore, the localized PG-LOD

approximation of the reference solution ũ in (5.3) is to �nd ũPG
k
∈ Ṽ LOD

k
such that, for all

v ∈ VH , it holds that
ã(ũPG

k ,v) = F (v) − ã(R̃k f ,v) (5.8)

and the full solution is given by ũk = ũ
PG
k
+ R̃k f .

Since A is just a perturbation of the reference problem, several correctors that are based
on the perturbed coe�cient might result equally or di�er just circumstantially to the
reference correctors. Thus, depending on the perturbation, a solution of (5.2) might be
computed with a huge loss of computational complexity, once we are able to fall back on
the already computed reference correctors. As we are interested in the solution of many
perturbations, this creates a huge bene�t for our purposes. Having this in mind, we may
think about two di�erent possibilities to achieve an approximation of (5.2).

1. For sure, the most accurate version is to compute V LOD
k

entirely and furthermore,
to use the new bilinear form a that is based on A, to compute the sti�ness matrix.
This approach is already formulated in De�nition 5.1.2. Obviously, it does not use
the link to the reference problem and requires as high computational complexity
as the reference problem itself.

2. The second possible strategy replaces the perturbed bilinear form a with the ref-
erence bilinear form ã and recomputes no corrector as it uses the reference LOD
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space Ṽ LOD
k

. This approach equals the localized PG-LOD of the reference problem
(5.8).

It is obvious that the approach in the �rst strategy enables the best accuracy, whereas the
second minimizes the costs completely. However, it might have a huge error. It turns out
that the best way of saving computational complexity is a mix between both strategies,
restricted to each coarse element T ∈ TH . We intend to develop a novel method that
decides for every T ∈ TH which strategy shall be used. This method requires to develop
a reasonable error indicator. The error analysis in Chapter 6 reveals an error estimate,
which can be understood as the PG-LOD version of Lemma 5.0.3 (Strang’s lemma). It is
stated in Theorem 6.2.9 and reads

|||u − ũk ||| ≤ ckd/2(θk +max(eu , e f ))‖ f ‖L2(Ω).

The error indicators eu and e f are a priori computable and de�ned in Chapter 6. Fur-
thermore, they consist of the maximum of eu,T respectively e f ,T over all T ∈ TH . If the
maximum is comparatively big, the error bound indicates that the reference method
might result in an inaccurate approximation. As we have already discussed, the best way
of saving computational complexity but not sacri�cing too much of the accuracy is a
blend between perturbed and reference localized PG-LOD. We therefore compute eu,T
and eu,f for every single T ∈ TH and decide separately whether we want to recompute
the corrector. For this purpose, we pick a tolerance TOL for the error indicator so that
max(eu , e f ) ≤ TOL. This criteria helps to decide on recomputing and a recomputed ele-
mentT ∈ TH ful�lls eu,T = e f ,T = 0. Thus, the resulting novel approximation is dependent
on the desired percentage of recomputing. In the following, we intend to formulate the
discussed procedure. For clarity reasons, we omit the e f for the correctors RT f and
formulate the novel method only for the standard correctors QT . The involvement of
e f works analogously. As we have already mentioned, we can pick the tolerance TOL
arbitrarily. If we aim to achieve a particular percentage of recomputing, we sort the error
eu,T for each T and de�ne TOL = eu,T such that the correct percentage results. After
updating the chosen correctors, we get eu ≤ TOL and a new LOD space with a blend
of reference and perturbed correctors. We will call this space V vc

k,p
, which is obviously

dependent on the recompute fraction p. Related to this, we also gain a mixed bilinear
form avc, de�ned by

avc(v,w) =
∑

T∈TH \T̃H

aT (v,w) +
∑
T̃∈T̃H

ãT̃ (v,w), ∀v,w ∈ V ,

where T̃H denotes the set of elements with reference correctors. With these de�nitions in
mind, we formulate the novel method as follows.

Variational crimes in the Localized orthogonal decomposition method 47



5 Variational Crimes

5.1.3 Definition (Novel PG-LOD method for perturbations) Fix the patch size k ∈ �
and a certain recompute fraction p ∈ [0, 1]. Let TOL(p) be a tolerance such that

eu ≤ TOL(p) and
#Q

(#Q + #Q̃)
≈ p,

where #Q denotes the number of updated correctors and #Q̃ the number of old reference
correctors. Let V vc

k,p
be the resulting LOD space with mixed correctors QT and Q̃T . The

novel PG-LOD approximation of u in (5.3) is to �nd uvc
k,p
∈ V vc

H ,k
such that, for all v ∈ VH ,

it holds that
avc(u

vc
k,p,v) = F (v). (5.9)

To simplify the procedure, we present the following pseudo code. Further details regarding

Pick k and p to ful�ll eu < TOL.
Copy precomputed Q̃T

k
ϕj for all T and j

for all T do

Compute eu,T .
if eu,T ≥ TOL then

Recompute QT
k
ϕj for all j

end

end

Apply the PG-LOD to compute uvc
k,p

.

the implementation of the PG-LOD are revealed in Chapter 7. We now present the error
analysis that justi�es this method.
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6 Error analysis for the PG-LOD on
perturbed problems

The following chapter is devoted to the error analysis for the novel method. It aims to
characterize the error indicator that is required for the approach. Moreover, we prove the
well-posedness for each approach presented above and gain a PG-LOD error estimate.
The approach is based on the observations for time-dependent problems in [15].

6.1 Error indicators

The error indicators that need to be evolved have to be dependent on A and Ã and,
most importantly, they have to be computable with the least possible information and
computational complexity. We utilize that the error of the PG-LOD mainly contains
factors of the form |||QT

k
− Q̃T

k
||| and |||RT

k
f − R̃T

k
f |||. Note that the energy norm is induced

by the perturbed bilinear form, based on A. Deriving an estimate for these factors yield
the characterization of the error indicators.

6.1.1 Definition (Error indicators) We de�ne the error indicators, for each T ∈ TH , by

eu,T = max
v |T |v∈VH , |||v |||T=1

‖(Ã −A)A−1/2(χT∇v − ∇Q̃
T
kv)‖L2(Uk (T )),

e f ,T =
‖(Ã −A)−1/2∇R̃T

k
f ‖L2(Uk (T ))

‖ f ‖L2(T )
,

(6.1)

where χT denotes the indicator function for an elementT ∈ TH . We have e f ,T = 0, in case
‖ f ‖L2(T ) = 0. Furthermore, we de�ne

eu := max
T

eu,T ,

e f := max
T

e f ,T .

The following lemma justi�es the use of these error indicators.
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6.1.2 Lemma For all v ∈ VH , the error bounds

|||QTkv − Q̃
T
kv ||| ≤ eu,T |||v |||T , (6.2)

|||RTk f − R̃
T
k f ||| ≤ e f ,T |||v |||T (6.3)

hold true.

Proof: For any v ∈ VH , we de�ne z := QT
k
v − Q̃T

k
v ∈ V f(Uk(T )) and we observe

|||z |||2Uk (T )
= (A∇(QTkv − Q̃

T
kv) , ∇z)Uk (T )

z∈V f
= (A∇v , ∇z)T − (A∇Q̃

T
kv , ∇z)Uk (T ) + (Ã∇Q̃

T
kv , ∇z)Uk (T ) − (Ã∇v , ∇z)T

= ((Ã −A)∇Q̃Tkv , ∇z)Uk (T ) − ((Ã −A)∇v , ∇z)T

= ((Ã −A)A−1/2(∇Q̃Tkv − χT∇v) , A
1/2∇z)Uk (T )

≤ ‖(Ã −A)A−1/2(χT∇v − ∇Q̃
T
kv)‖L2(Uk (T )) · |||z |||Uk (T ).

Dividing by |||z |||Uk (T ) and taking the maximum on w ∈ VH , where |||w ||| = 1, results in the
�rst assertion. The second estimate follows similarly with z := RT

k
f − R̃T

k
f and with

|||z |||2Uk (T )
= (A∇(RTk f − R̃

T
k f ) , ∇z)Uk (T )

= (f , z)T − (A∇R̃
T
k f , ∇z)Uk (T )

= ((Ã −A)∇R̃Tk f , ∇z)Uk (T )

≤ ‖(Ã −A)A−1/2R̃Tk f ‖L2(Uk (T )) |||z |||Uk (T ).

�

Certainly, we have to mention how to compute the error indicators eu,T and e f ,T . We refer
to Chapter 7, where the implementational details are discussed further. For now, it is
only important that they are actually computable a priori with a reasonable complexity.

6.2 Error analysis

This section deals with the problems that have been presented in Chapter 5. The aim is
to investigate the well-posedness in terms of the energy norm, which is induced by A.
Furthermore, we deduce an error estimate that evaluates the use of the PG-LOD, which
leads to the application of the error indicators eu and e f . To elaborate the novel method
for the perturbed problems, it is useful to obtain an estimate for

|||u − ũk |||,

50 Variational crimes in the Localized orthogonal decomposition method
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which we have utilized in Section 5.1. Note that we consider the energy norm in terms
of A. The error bounds obtained in this section are connected to the stability constants
of the inf-sup conditions (see De�nition 3.4.3) for each approach. Recall that this inf-
sup conditions are responsible for the well-posedness of a Petrov Galerkin formulation,
since the trial and test spaces are not equal anymore. Thus, the inf-sup conditions are
representative for the lost coercivity of the bilinear form and ensure the uniqueness of
the approximations. To summarize PG-LOD methods in Chapter 5, we mention each
in�uent approach and recall each name. Each method aims to gain an approximation for
the solution u of (5.2) in the exact perturbed formulation in De�nition 5.0.2. We de�ned
the di�erent methods in De�nition 5.1.1 and 5.1.2.

Method De�nition
Ideal PG-LOD u = uPG + R f
Localized PG-LOD uk = u

PG
k
+ Rk f

Reference localized PG-LOD ũk = ũ
PG
k
+ R̃k f

For the following calculations, we need to recall the interpolation estimate (3.16),

H−1
T ‖v − IHv ‖L2(T ) + ‖∇IHv ‖L2(T ) ≤ CIH ‖∇v ‖L2(U (T )).

Every overlap e�ect is captured by CIH and furthermore, IH is a projection. We also
need the uniformly boundedness constants α and β of our coe�cient A, de�ned in (2.1)
respectively, (2.2). In the following, we use the constants C and C′ several times. They
denote constants that we do not specify further, since they are not important for the
observations. However, C̄, Č and C̃ denote each constant for the error estimates and will
be speci�ed.

6.2.1 The ideal PG-LOD approximation

The ideal PG-LOD solution u in De�nition 5.1.1 is the �rst approach that needs to be
investigated. As we have already mentioned, thanks to the right hand side corrector,
it is just a reformulation and thus, there is no error. However, we need to derive the
well-posedness for the problem to ensure uniqueness of the approximation.

6.2.1.1 Stability

The stability of the ideal PG-LOD method is explained by the following lemma.

6.2.1 Lemma (Stability of the ideal PG-LOD method) There exists a constant γ > 0
such that the inf-sup condition for a with respect to the trial space V LOD and the test
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space VH

inf
wLOD∈V LOD

sup
v∈VH

|a(wLOD,v)|

|||wLOD ||| |||v |||
≥ γ (6.4)

is satis�ed.

Proof: We make the observation

inf
wLOD∈V LOD

sup
v∈VH

|a(wLOD,v)|

|||wLOD ||| |||v |||
= inf

w∈VH
sup
v∈VH

|(A∇(w − Qw) , ∇v)|

|||w − Qw ||| |||v |||

Qv∈V f
= inf

w∈VH
sup
v∈VH

|(A∇(w − Qw) , ∇(v − Qv)|

|||w − Qw ||| |||v |||

v :=w
≥ inf

w∈VH

|||(w − Qw)|||2

|||w − Qw ||| |||w |||
w∈VH
Qw∈V f
= inf

w∈VH

|||(w − Qw)|||2

|||w − Qw ||| |||IH (w − Qw)|||
(3.16)
≥ C−1

IH
α1/2β−1/2 =: γ .

Since CIH ,α , β > 0, we conclude γ > 0. �

Thus, the uniqueness of the ideal PG-LOD approximation is justi�ed.

6.2.2 The localized PG-LOD approximation

We are now prepared to investigate the inf-sup condition for the localized PG-LOD
method in De�nition 5.1.2 and conclude a �rst error bound for |||u − uk |||. With Lemma
4.2.7, we have already proven the key ingredient for the next inf-sup condition, the
estimate for the correctors (4.18). We �rst formulate and prove the inf-sup condition.

6.2.2.1 Stability

First of all, the stability of the localized PG-LOD is of interest.

6.2.2 Lemma (Stability for the localized PG-LOD method) There exists a constant γ̄ > 0
such that the inf-sup condition for a with respect to the trial space V LOD

k
and the test

space VH

inf
wLOD
k ∈V LOD

k

sup
v∈VH

|a(wLOD
k
,v)|

|||wLOD
k
||| |||v |||

≥ γ̄k , (6.5)

for a su�ciently large k , is satis�ed.

Proof: As we have already mentioned, we use (4.18), stated and proved in Lemma
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4.2.7, for every v ,
|||Qv − Qkv ||| ≤ CQk

d/2 θk |||Qv |||,

for constants CQ and 0 < θ < 1. We are able to make a further observation if we suppose
that v ∈ VH , since we apply (4.19), the projection property of IH and Qv ∈ V f.

|||Qv |||
(4.19)
≤ |||v |||

= |||IH (v − Qv)|||

(3.16)
≤ CIH β

1/2α−1/2 |||v − Qv |||.

(6.6)

Hence, we conclude for C := CQ CIH β1/2α−1/2

|||Qv − Qkv ||| ≤ Ckd/2 θk |||v − Qv |||. (6.7)

This estimate can be applied to the inf-sup condition by

inf
wLOD
k ∈V LOD

k

sup
v∈VH

|a(wLOD
k
,v)|

|||wLOD
k
||| |||v |||

= inf
w∈VH

sup
v∈VH

|a(w − Qkw,v)|

|||w − Qkw ||| |||v |||

≥ inf
w∈VH

sup
v∈VH

|a(w − Qw,v)| − |a(Qw − Qkw,v)|

(|||w − Qw ||| + |||Qw − Qkw |||)|||v |||

(6.7)
≥ inf

w∈VH
sup
v∈VH

|a(w − Qw,v)| −Ckd/2θk |||w − Qw ||| |||v |||

(1 +Ckd/2θk)|||w − Qw ||| |||v |||
(6.4)
≥

γ −Ckd/2θk

1 +Ckd/2θk
=: γk .

According to the de�nition of γk , we recognize that for su�ciently large k , there exists a
γ̄ such that 0 < γ̄ ≤ γk . �

6.2.2.2 Error

We now intend to derive an error estimate for |||u − uk |||. First of all, we remark that
the results presented in Chapter 4, especially Theorem 4.2.1 are no longer applicable.
The way we used the Galerkin orthogonality in the proof is not satis�ed, which is a
consequence of the use of the Petrov-Galerkin formulation. Therefore, we can not just
apply the error analysis in Chapter 4 at this point. We need to derive something similar.
This observation emphasizes the use of the right hand side correction.

6.2.3 Lemma (Error for the localized PG-LOD) With the exact solution u of (5.2) and
the localized PG-LOD approximation uk , it holds that

|||u − uk ||| ≤ C̄kd/2θk ‖ f ‖L2(Ω), (6.8)
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for a constant C̄ and 0 < θ < 1.

Proof: As a workaround for the Galerkin orthogonality, in order to connect u and uk ,
we �rst subtract the equations (5.5) from (5.7) and yield, for v ∈ VH ,

a(uPG
k ,v) = a(uPG,v) + a((R − Rk)f ,v).

Further, we choose an arbitrary uI ∈ V
LOD
k

to conclude

a(uPG
k − uI ,v) = a(uPG − uI ,v) + a((R − Rk)f ,v). (6.9)

Thus, the inf-sup condition implies

γ̄ |||uPG
k − uI |||

(6.5)
≤ sup

v∈VH

|a(uPG
k
− uI ,v)|

|||v |||

(6.9)
≤ sup

v∈VH

|a(uPG − uI ,v)| + |a((R − Rk)f ,v)|

|||v |||

C.S.
≤ |||uPG − uI ||| + |||(R − Rk)f |||,

(6.10)

which is a best approximation result to replace the Galerkin orthogonality. We now want
to choose uI reasonably. For this purpose, we �rst remark that IHuPG = IHu = uH and
thus,

uPG = uH − QuH

= IHu
PG − QIHu

PG.

Setting uI := IHuPG − QkIHu
PG results in

uPG − uI = −(Q − Qk)IHu
PG. (6.11)

Plugging this result into the best approximation result concludes

|||uPG − uPG
k ||| ≤ |||u

PG − uI ||| + |||u
PG
k − uI |||

(6.10)
≤ (1 + γ̄−1)|||uPG − uI ||| + γ

−1
k |||(R − Rk)f |||

(6.11)
= (1 + γ̄−1)|||(Q − Qk)IHu

PG ||| + γ−1
k |||(R − Rk)f |||.

(6.12)

We already see that the estimate amounts to an estimate for |||Q − Qk ||| and |||R − Rk |||.
The former is already given by Lemma 4.2.7. In complete analogy to this lemma and with
similar arguments like the ones made for the stability proof in Lemma 6.2.2, we are able
to additionally derive the estimate

|||R f − Rk f ||| ≤ CRk
d/2θk ‖ f ‖2L2, (6.13)
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for a constant CR and 0 < θ < 1 . Furthermore, we note

IHu
PG = IHu (6.14)

and the calculation

|||u |||2 = a(u,u)

= (f , u)

≤ ‖ f ‖L2(Ω)‖u‖L2(Ω),

≤ ‖ f ‖L2(Ω)α
−1/2Cp |||u |||L2(Ω),

(6.15)

where the last step contains Poincaré’s inequality with constant Cp . Recall also

u = uPG + R f ,

uk = u
PG
k + Rk f .

(6.16)

Finally, we can put everything together to

|||u − uk |||
(6.16)
≤ |||uPG − uPG

k ||| + |||(R − Rk)f |||

(6.12)
≤ (1 + γ̄−1)(|||(Q − Qk)IHu

PG ||| + |||(R − Rk)f |||)

(6.13)
(4.18)
≤ CQCR(1 + γ̄−1)kd/2θk(|||IHu

PG ||| + ‖ f ‖L2(Ω))

(6.14)
= CQCR(1 + γ̄−1)kd/2θk(|||IHu ||| + ‖ f ‖L2(Ω))

(3.16)
≤ CQCR(1 + γ̄−1)kd/2θk(α−1/2β1/2CIH |||u ||| + ‖ f ‖L2(Ω))

(6.15)
≤ C̄kd/2θk ‖ f ‖L2(Ω),

where the constant C̄ is de�ned by C̄ := (1 + γ̄−1)(1 + β1/2α−1CIHCp). This implies the
assertion. �

6.2.3 The PG-LOD approximation with the reference LOD space

In the next approach we de�ne an auxiliary PG-LOD that makes use of the reference
LOD space Ṽ LOD. However, we do not use the reference bilinear form ã. This surely has
a high advantage in terms of computational costs, since no �nescale corrector has to be
computed. We de�ne the auxiliary PG-LOD in the following.

6.2.4 Definition (Auxiliary localized PG-LOD approximation with reference correctors)

The PG-LOD approximation of u in (5.3) with reference correctors is to �nd ǔPG
k
∈ Ṽ LOD

k
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such that, for all v ∈ VH , it holds that

a(ǔPG
k ,v) = F (v) − a(R̃k f ,v), (6.17)

where the full approximation is de�ned by ǔk = ǔ
PG
k
+ R̃k f .

First, we show the stability and subsequently, we derive the error bound for the approxi-
mation ǔk .

6.2.3.1 Stability

We derive the related inf-sup condition, stated in the following lemma.

6.2.5 Lemma (Stability for the PG-LOD method with the reference LOD space) There
exists a constant γ̌ > 0 such that the inf-sup condition for a with respect to the trial space
Ṽ LOD
k

and the test space VH

inf
w̃LOD
k ∈Ṽ LOD

k

sup
v∈VH

|a(w̃LOD
k
,v)|

|||w̃LOD
k
||| |||v |||

≥ γ̌k , (6.18)

is satis�ed, where γ̄ is dependent on the error indicator eu , de�ned in De�nition 6.1.1.

Proof: We �rst focus on an estimate we immediately obtain

|||Qkw − Q̃kw |||
2
= |||

∑
T∈TH

(QTkw − Q̃
T
kw)|||

2

≤ C′kd
∑
T∈TH

|||QTkw − Q̃
T
kw |||

2
Uk (T )

(6.2)
≤ C′kde2

u |||w |||
2,

(6.19)

with the help of the error indicator eu and with a constant C . We use this estimate to
derive the desired inf-sup condition

inf
w̃LOD
k ∈Ṽ LOD

k

sup
v∈VH

|a(w̃LOD
k
,v)|

|||w̃LOD
k
||| |||v |||

≥ inf
w∈VH

sup
v∈VH

|a(w − Qkw,v)| − |a(Qkw − Q̃kw,v)|

(|||w − Qw ||| + |||Qw − Q̃kw |||)|||v |||

(6.19)
(6.6)
≥ inf

w∈VH
sup
v∈VH

|a(w − Qkw,v)| −Ck
d/2eu |||w − Qkw ||| |||v |||

(|||w − Qkw ||| +Ckd/2eu |||w |||)|||v |||

(4.19)
≥ inf

w∈VH
sup
v∈VH

|a(w − Qkw,v)| −Ck
d/2eu |||w − Qkw ||| |||v |||

(1 +Ckd/2eu)|||w − Qkw ||| |||v |||
(6.5)
≥

γk −Ck
d/2eu

1 +Ckd/2eu
=: γ̌k .
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In order to �nd a lower bound for γ̌k , we can use eu to control the e�ect of k in the
constant. The maximum eu of all eu,T for all T ∈ TH . If we set a tolerance TOL(k) and
recompute the correctors for everyT ′ in case that eu,T ′ ≥ TOL(k), the particular indicator
vanishes, i.e. eu,T ′ = 0. Using this strategy for every T ∈ TH yields eu < TOL(k). Thus,
we conclude that there exists a γ̌ > 0 such that γ̌ ≤ γ̌k . �

6.2.3.2 Error

We now aim to derive an error that relates the localized PG-LOD approximation uk in
De�nition 5.1.2 and the solution of the auxiliary PG-LOD approximation ǔk in De�nition
6.2.4. This approximation is due to the reference LOD space and the perturbed bilinear
form.

6.2.6 Lemma (Error for the localized PG-LOD and the localized PG-LOD with reference

finescale space) With the localized PG-LOD approximation uk in De�nition 3.5.3 and the
localized PG-LOD approximation with reference �nescale space ǔk , it holds that

|||uk − ǔk ||| ≤ Čkd/2 max(eu , e f )‖ f ‖L2(Ω), (6.20)

for a constant Č and the error indicators eu and e f , de�ned in De�nition 6.1.1.

Proof: We proceed analogously to Lemma 6.2.3, since we are again able to derive a best
approximation result. First, we combine (5.7) and (6.17) and add an arbitrary uI ∈ Ṽ

LOD
k

in order to gain

a(ǔPG
k − uI ,v) = a(uPG

k − uI ,v) − a(Rk − R̃k)f ,v). (6.21)

Moreover, we use (6.18) to apply the procedure of (6.10), which yields

γ̌ |||ǔPG
k − uI ||| ≤ |||u

PG
k − uI ||| + |||(Rk − R̃k)f |||. (6.22)

Further,
uLOD
k = IHu

PG
k − QkIHu

PG
k

inspires us to set
uI := IHuPG

k − Q̃kIHu
PG
k ∈ V

LOD
k ,

which consequents with (6.22) to

|||uPG
k − ǔ

PG
k ||| ≤ (1 + γ̌

−1)|||(Qk − Q̃k)IHu
PG
k ||| + γ̌

−1 |||(Rk − R̃k)f |||. (6.23)
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The �nal estimate is also in analogy to Lemma 6.2.3,

|||uk − ǔk ||| ≤ |||u
PG
k − ǔ

PG
k ||| + |||(Rk − R̃k)f )|||

(6.23)
≤ (1 + γ̌−1)(|||(Qk − Q̃k)IHu

PG
k ||| + |||(Rk − R̃k)f |||).

(6.24)

Obviously, we are able to use the estimate for (6.19) for |||(Qk − Q̃k)IHuPG
k
|||. Furthermore,

we can derive a similar approach for the remaining part |||(Rk − R̃k)f |||. In particular, we
use e f , analogously to (6.19), to gain the estimate

|||Rk f − R̃k f ||| ≤ Ckd/2e f ‖ f ‖L2(Ω). (6.25)

We also know that

γ |||uk ||| ≤ sup
v∈VH

|a(uk ,v)|

|||v |||

= sup
v∈VH

(f , v)

|||v |||

C.S.
≤ α−1/2Cp ‖ f ‖L2(Ω).

(6.26)

as well as IHuLOD
k
= IHuk . Adding everything together obtains

|||uk − ǔk ||| ≤ (1 + γ̌−1)(|||(Qk − Q̃k)IHu
PG
k ||| + |||(Rk − R̃k)f |||)

(6.19)
(6.25)
≤ (1 + γ̌−1)Ckd/2(eu |||IHuk ||| + e f ‖ f ‖L2(Ω))

(3.16)
≤ (1 + γ̌−1)Ckd/2 max(eu , e f )(CIHα

−1/2β1/2 |||uk ||| + ‖ f ‖L2(Ω))

(6.26)
≤ Čkd/2 max(eu , e f )‖ f ‖L2(Ω),

where Č is de�ned by Č := C(1+ γ̌−1)(γ−1CIHCpβ
1/2α−1 + 1). Thus, the proof is done. �

6.2.4 The localized PG-LOD approximation of the reference
problem

The last method we need to investigate is the reference localized PG-LOD approximation
ũk in De�nition 5.1.2. It takes the reference LOD space and the reference bilinear form.
Obviously, we would be able to deduce the stability in terms of the energy norm induced
by the reference coe�cient Ã. This follows analogously to our approach for the perturbed
localized PG-LOD uk . However, in order to gain an error estimate for |||u − ũk |||, we also
have to investigate |||ǔk − ũk |||. Therefore, we derive the stability of the reference problem
with respect to the perturbed energy norm |||.|||.
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6.2.4.1 Stability

The following lemma outlines our desired stability result.

6.2.7 Lemma (Stability for the PG-LOD method with the reference LOD space) There
exists a constant γ̃ > 0 such that the inf-sup condition for ã with respect to the trial space
Ṽ LOD
k

and the test space VH

inf
w̃LOD
k ∈Ṽ LOD

k

sup
v∈VH

|ã(w̃LOD
k
,v)|

|||w̃LOD
k
||| |||v |||

≥ γ̃k (6.27)

is satis�ed, where γ̃k is dependent on the error indicator eu , de�ned in De�nition 6.1.1.

Proof: The proof of this lemma, once more, makes use of the error indicator eu . We
need to emphasize that, for all T ∈ TH , we have Q̃T

k
∈ V f(Uk(T )) and Q̃k =

∑
T∈TH
Q̃T
k

.
Having this in mind allows for

inf
w̃LOD
k ∈Ṽ LOD

k

sup
v∈VH

|ã(w̃LOD
k
,v)|

|||w̃LOD
k
||| |||v |||

≥ inf
w̃LOD
k ∈Ṽ LOD

k

sup
v∈VH

|((Ã −A +A)∇w̃LOD
k
, ∇v)|

|||w̃LOD
k
||| |||v |||

≥ inf
w̃LOD
k ∈Ṽ LOD

k

sup
v∈VH

(
|a(w̃LOD

k
,v)|

|||w̃LOD
k
||| |||v |||

−
|((Ã −A)∇w̃LOD

k
, ∇v)|

|||w̃LOD
k
||| |||v |||

)
(6.18)
≥ γ̌k − inf

w∈VH
sup
v∈VH

|
∑

T ((Ã −A)(χT∇ − ∇Q̃
T
k
)w , ∇v)Uk (T ) |

|||w − Q̃kw ||| |||v |||

C.S.
≥ γ̌k − inf

w∈VH
sup
v∈VH

∑
T ‖(Ã −A)A

−1/2(χT∇ − ∇Q̃
T
k
)w ‖L2(Uk (T ))‖A

1/2∇v ‖L2(Uk (T ))

|||w − Q̃kw ||| |||v |||

(6.1)
≥ γ̌k − inf

w∈VH
sup
v∈VH

∑
T eu,T ‖A

1/2∇w ‖L2(T )‖A
1/2∇v ‖L2(Uk (T ))

|||w − Q̃kw ||| |||v |||

≥ γ̌k − inf
w∈VH

sup
v∈VH

eu ‖A
1/2∇w ‖L2(Ω)Ck

d/2 |||v |||

|||w − Q̃kw ||| |||v |||

≥ γ̌k − inf
w∈VH

sup
v∈VH

Ckd/2eu ‖A
1/2∇IH (w − Q̃kw)‖L2(Ω)

|||w − Q̃kw |||

(3.16)
≥ γ̌k − inf

w∈VH
sup
v∈VH

CIHα
−1/2β1/2Ckd/2eu |||(w − Q̃kw)|||

|||w − Q̃kw |||

≥ γ̌k −C
′kd/2eu =: γ̃k .

Analogously to the previous stability approach, the tolerance TOL(k) can be used to
control eu which justi�es the existence of a lower bound γ̃ > 0 with γ̃ ≤ γ̃k . �
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Hence, the reference localized PG-LOD is stable with respect to the perturbed energy
norm. We use this fact in the remaining error analysis.

6.2.4.2 Error

We derive an error estimate for |||ǔk − ũk ||| in order to incorporate it with the estimates,
made in the previous approaches. Recall that ǔk , de�ned in De�nition 6.2.4, denotes the
approximation with reference LOD space and perturbed bilinear form. The approximation
ũk results from De�nition 5.1.1. The error bound is formulated in the following.

6.2.8 Lemma (Error for the localized PG-LOD with reference finescale space and refer-

ence localized PG-LOD) With the localized PG-LOD approximation ǔk with reference
�nescale space in De�nition 6.2.4 and the localized reference PG-LOD approximation ũk

it holds that
|||ǔk − ũk ||| ≤ C̃kd/2 max(eu , e f )‖ f ‖L2(Ω), (6.28)

for a constant C̃ , 0 < θ < 1 and the error indicators eu and e f , de�ned in De�nition 6.1.1.

Proof: At �rst, we realize that ǔk and ũk base on the same LOD space Ṽ LOD
k

and thus,
we know that they only di�er in terms of the PG-LOD approach, which means

|||ǔk − ũk ||| = |||ǔ
PG
k − ũ

PG
k |||. (6.29)

Another key element marks the use of

w̃LOD
k = wH − Q̃kwH

= IHwH − Q̃kIHwH

= (I − Q̃k)IH (wH − Q̃kwH )

= (I − Q̃k)IHw̃
LOD
k ,

(6.30)

for all w̃LOD
k
∈ Ṽ LOD

k
. We start with combining (5.8) and (6.17) to gain, for every v ∈ VH ,

a(ǔPG
k ,v) − ã(ũ

PG
k ,v) = ã(R̃k f ,v) − a(R̃k f ,v)

= ((Ã −A)∇R̃k f , ∇v)

=
∑
T∈TH

((Ã −A)∇R̃Tk f , ∇v).

(6.31)

Since we are going to apply the inf-sup stability (6.18), we need to derive a factor a(ǔPG
k
−

ũPG
k
,v) on the left hand side. We do this by incorporating the factor ã(ũPG

k
,v) and yield
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|a(ǔPG
k − ũ

PG
k ,v)|

(6.31)
= |ã(ũPG

k ,v) − a(ũ
PG
k ,v) +

∑
T∈TH

((Ã −A)∇R̃Tk f , ∇v)|

= |((Ã −A)∇ũPG
k , ∇v) +

∑
T∈TH

((Ã −A)∇R̃Tk f , ∇v)|

(6.30)
= |((Ã −A)(∇ − ∇Q̃k)IHũ

PG
k , ∇v) +

∑
T∈TH

((Ã −A)∇R̃Tk f , ∇v)|

= |
∑
T∈TH

(
((Ã −A)(χT∇ − ∇Q̃

T
k )IHũ

PG
k , ∇v) + ((Ã −A)∇R̃

T
k f , ∇v)

)
|

≤ |
∑
T∈TH

(
‖(Ã −A)A−1/2(χT∇ − ∇Q̃

T
k )IHũ

PG
k ‖L2(Uk (T ))+

‖(Ã −A)A−1/2∇R̃Tk f ‖L2(Uk (T ))

)
‖A1/2∇v ‖L2(Uk (T )) |

C.S.
(6.1)
≤

( ∑
T∈TH

e2
u,T |||IHũ

PG
k |||

2
+ e2

f ,T ‖ f ‖
2
L2(T )

)1/2 ( ∑
T∈TH

|||v |||2Uk (T )

)1/2

≤ Ckd/2 max(eu , e f )
(
|||IHũ

PG
k ||| + ‖ f ‖L2(Ω)

)
|||v |||.

(6.32)

Now, we proceed in analogy to (6.26) and obtain with the help of (6.27)

γ̃ |||ũk ||| ≤ α
−1/2Cp ‖ f ‖L2(Ω). (6.33)

In total, we conclude with the help of |||IHũPG
k
||| = |||IHũk ||| and the interpolation inequality

that

|||ǔk − ũk ||| = |||ǔ
PG
k − ũ

PG
k |||

(6.18)
≤ γ̌−1 sup

v∈VH

|a(ǔPG
k
− ũPG

k
,v)|

|||v |||

(6.32)
≤ γ̌−1Ckd/2 max(eu , e f )

(
|||IHũ

PG
k ||| + ‖ f ‖L2(Ω)

)
(3.16)
≤ C̃kd/2 max(eu , e f )

(
α−1/2β1/2CIH |||ũk ||| + ‖ f ‖L2(Ω)

)
(6.33)
≤ C̃kd/2 max(eu , e f )‖ f ‖L2(Ω),

where C̃ := Cγ̌−1(γ̃−1CpCIHα
−1β1/2 + 1). �

Finally, all prerequisites to present the main result of this chapter, the justi�cation of the
novel method, are covered.
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6.2.5 Error bound for reference localized PG-LOD

The previous sections were required to prepare for deriving the desired error bound for
|||u − ũk ||| that also contains the error indicators eu and e f . This error estimate forms the
basis for the novel method proposal in De�nition 5.1.3.

6.2.9 Theorem (Error bound for perturbed and reference localized PG-LOD) Let u be
the exact solution of the perturbed problem (5.2) and ũk = ũ

PG
k
+ R̃k f the solution of the

localized PG-LOD of the reference problem (5.8), for k ∈ �. Furthermore, choose TOL
small enough such that there exists a lower bound for γ̃k and γ̌ . Then the error bound

|||u − ũk ||| ≤ ckd/2(θk + TOL)‖ f ‖L2(Ω) (6.34)

holds true, where c is independent of H and the patch size k .

Proof: We combine the previous results from Lemma 6.2.3, Lemma 6.2.6 and Lemma
6.2.8 and observe

|||u − ũk ||| ≤ |||u − uk ||| + |||uk − ǔk ||| + |||ǔk − ũk |||

≤ kd/2(C̄θk + (Č + C̃)max(eu , e f ))max(eu , e f )‖ f ‖L2(Ω)

≤ ckd/2(θk +max(eu , e f ))‖ f ‖L2(Ω),

which completes the proof. �
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7 Implementation

In the previous chapters, we examined the LOD method by Målqvist and Peterseim and
its slight variations from a rather analytic point of view. This chapter is devoted to a
presentation of the implementation of the LOD. Besides, we present further explanations
for the novel method. The LOD method as well as the PG-LOD method are applicable in
practice, which has already been proven by many simulations in recent papers (more
details in Chapter 9). We only focus on the main aspects of the implementation. Moreover,
we keep the assumption of homogeneous Dirichlet boundary conditions, which simpli�es
the work. For a detailed algebraic explanation and more special cases such as non-
homogeneous and Neumann boundary conditions or Eigenvalue problems, we highly
recommend the work of Målqvist, Peterseim, Henning and Engwer in [13].

7.1 Discretization

In order to simulate numerical experiments, we need a discrete setting. The discretization
of the space V is achieved by a shape-regular �ne mesh Th , where h denotes the maximal
diameter of the �ne elements. In our case this �ne mesh is a re�nement of the coarse mesh
TH of the coarse FE space VH (see Figure 7.1). This means, every coarse mesh element

(a) Coarse mesh TH . (b) Fine mesh Th .

Figure 7.1: Re�nement of a quadrilateral coarse mesh.

consists of �nitely many �ne mesh elements, since h < H , and crucially, the �nescale
elements lay in only one single coarse element. Furthermore, we set NH and Nh to be the

Variational crimes in the Localized orthogonal decomposition method 63



7 Implementation

number of coarse respectively of �ne mesh elements. Analogously to Section 2.2 a FE
space P1(Th) can be derived and we yield

Vh := V ∩ P1(Th).

We assume that this �ne discretization is �ne enough in order to capture all microscopic
features. Thus, to �nd an uh ∈ Vh

a(uh,v) = F (v), ∀v ∈ Vh,

is the most accurate FEM. However, this method is not computable, due to high com-
putational complexity or memory issues. Instead, we use this �ne mesh to compute
the �nescale correctors on each coarse mesh element that belongs to TH . Since we are
computing these correctors on only a small patch, the memory issue is small enough to
bypass a high complexity. Surely, the �nescale space V f has also a discretized version,
which reads

V f
h (Uk(T )) = V

f(Uk(T )) ∩Vh .

For every vH ∈ VH , the correctors are computed by a FEM, i.e, they contain solutions
Q
T ,h
k
vH ∈ V

f(Uk(T )) of

aUk (T )(Q
T ,h
k
vH ,wh) = aT (vH ,wh) ∀wh ∈ V

f
h (Uk(T )), (7.1)

and accordingly

Qh
kv :=

∑
T∈TH

Q
T ,h
k
v .

The resulting discretized LOD space is consequently de�ned by

V LOD,h
H ,k

= VH − Q
h
kVH ,

We end up with the discretized standard LOD method, that is to �nd uLOD,h
H ,k

∈ V LOD,h
H ,k

such that, for all v ∈ V LOD,h
H ,k

, it holds that

a(uLOD,h
H ,k

,v) = F (v).

Målqvist and Peterseim showed in [28] that this discrete setting still satis�es similar
results in terms of the error analysis we presented in Chapter 4. Our next purpose is to
sketch the implementational aspects of the standard LOD.
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7.2 The standard LOD

The LOD is basically a coarse Galerkin method, based on a �nescale space that is computed
with the help of an additional Galerkin method on the patch of each coarse element.
Thus, the LOD approximation is the result of a system of linear equations with respect
to the coarse basis functions. The mesh size is small enough to prevent memory issues
and to reduce computational time. The expensive �ne mesh is only used to compute the
correctors. Once

Qh
kv :=

∑
T∈TH

Q
T ,h
k
v

is computed, we can add the correctors to the coarse sti�ness matrix SLOD
H ∈ �NH×NH

with entries

SLOD
H [m][n] :=

{
a(ϕn + Q

h
k
ϕn,ϕm + Q

h
k
ϕm), for zn, zm ∈ N ,

0, else ,

where ϕn denotes the basis function of the interior node zn ∈ N . Note thatN denotes the
set of all interior nodes in VH . Similarly, the load vector LH ∈ �

NH can be determined
with

LLOD
H [m] :=

{
F (ϕm + Q

h
k
ϕm), for zm ∈ N ,

0, else .

Subsequently, we solve the resulting linear system of equations

SLOD
H uLOD

H = LLOD
H ,

with the solution uLOD
H ∈ �NH . We get the �nal standard LOD approximation by

uLOD =

NH−1∑
m=0

uLOD
H [m](ϕm + Q

h
kϕm).

We realize that this procedure of the standard LOD requires a communication between
the correctors. In particular, in order to compute SLOD

H , all correctors need to be available
and stored. This consequents from the fact that the test space is also chosen to be the
�nescale spaceV LOD,h

H ,k
. Certainly, this circumstance might also become an issue for saving

memories. This problem can be resolved by a method, earlier introduced in Chapter 3,
the Petrov Galerkin LOD. The advantages are pointed out in the subsequent section.

7.3 The Petrov Galerkin LOD

The Petrov Galerkin LOD was helpful for the analysis of the novel method in Chapter 5
and 6. It also is the method we use for the numerical experiments. As we have already
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shown, the di�erence between the PG-LOD and the standard LOD is the choice of the
test space. The test space for the PG-LOD is equal toVH , whereby the standard LOD uses
the �nescale space V LOD,h

H ,k
. Thus, only the trial space of the PG-LOD equals the �nescale

space. Obviously, the coarse sti�ness matrix of the PG-LOD SPG
H ∈ �NH×NH contains

entries of the form

SPG
H [m][n] :=

{
a(ϕn + Q

h
k
ϕn,ϕm), for zn, zm ∈ N ,

0, else .

The load vector LPG
H ∈ �

NH equals the load vector of the standard FEM

LPG
H [m] :=

{
F (ϕm), for zm ∈ N ,
0, else ,

whereas the linear system of equations reads

SPG
H uPG

H = L
PG
H .

Thereafter, the solution uPG
H ∈ �

NH can be incorporated to

uPG =

NH−1∑
m=0

uPG
H [m](ϕm + Q

h
kϕm).

The costs to compute SPG
H decrease in comparison to SLOD

H , as there is no communication
between correctors required. It is possible to delete the corrector right after the whole
support of the basis function has been included.

7.4 Right hand side Correction

In complete analogy to the element corrector Q, the right hand side corrector could be
computed and stored. As a consequence of the approaches presented in Section 3.5, we
gain the right hand side correction as the solution RT ,h

k
f ∈ V f(Uk(T )) of

aUk (T )(R
T ,h
k

f ,wh) = FT (wh) ∀wh ∈ V
f
h (Uk(T )), (7.2)

and in total, we get

Rhk f :=
∑
T∈TH

R
T ,h
k

f .
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For the LOD as well as for the PG-LOD, we add the right hand side correction to the load
vector by setting

LLOD
H [m] :=

{
F (ϕm + Q

h
k
ϕm) + a(R

h
k
,ϕm + Q

h
k
ϕm), for zm ∈ N ,

0, else ,

and

LPG
H [m] :=

{
F (ϕm) + a(Q

h
k
,ϕm), for zm ∈ N ,

0, else .

This procedure is a direct consequence of Section 3.5. For both cases, uLOD and uPG attain
the full solution by adding the correction Rh

k
f appropriately. Clearly, the involvement is

optional for our approach.

7.5 The novel method

According to the previous approaches and following the explanations in Section 5.1,
Algorithm 1 presents the pseudo code for our novel method. As we already know, the
involved method is represented by the PG-LOD with right hand side correction. Since we
assume that we will not have a memory issue by saving the corrector functions, we call
this algorithm the storage method. For this algorithm, we need to store every corrector

Pick k , p
Copy Q̃T

k
ϕj and R̃T

k
f for all T and j

Set R̂k = 0
for all T do

Compute eu,T and e f ,T
Pick TOL(p) appropriately to p
if max(eu,T , e f ,T ) ≥ TOL(p) then

Recompute QT
k

and RT
k
f

Update sti�ness matrix Sij += aT (ϕj ,ϕi) − a(Q
T
k
ϕj ,ϕi)

Update right hand side Li += FT (ϕi)
R̂k += R̃

T
k
f

else

Update sti�ness matrix Sij += ãT (ϕj ,ϕi) − ã(Q̃
T
k
ϕj ,ϕi)

Update right hand side Li += FT (ϕi)
R̂k += R

T
k
f

end

end

Solve for uVC
k,p

, by computing S−1b

Compute uvc
k,p
= uVC

k,p
+ R̂k
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function as well as to have access to the reference correctors. This requirement arises
because of the computation of the error indicators eu,T and e f ,T . This is addressed in the
following section.

7.5.1 Error indicators

Recall both error indicators, de�ned in De�nition 6.1.1, for every T ∈ TH , by

eu,T = max
v |T |v∈VH , |||v |||T=1

‖(Ã −A)A−1/2(χT∇v − ∇Q̃
T
kv)‖L2(Uk (T )),

e f ,T =
‖(Ã −A)−1/2∇R̃T

k
f ‖L2(Uk (T ))

‖ f ‖L2(T )
.

We realize that both indicators contain the appropriate corrector functions. Moreover,
computing e f ,T is a straight forward calculation for every T , since it only consists of the
L2(Ω) norms. In order to compute eu,T , we need to solve the eigenvalue problem

Bxl = µlCxl ,

where

Bij = ((Ã −A)
2A−1(χT∇ϕj − ∇Q

T
k ϕj) , χT∇ϕi − ∇Q

T
k ϕi)Uk (T ),

Cij = (A∇ϕj , ∇ϕi)T ,

for i, j = 1, . . . ,m − 1. In this case,m denotes the number of basis functions. For further
information, we refer to [15]. For this eigenvalue problem and for e f ,T , we need to store
the corrector functions as well as Ã and A. This procedure might result in a memory
problem. Due to the PG-LOD, we do not need communication between the correctors and
thus, it is useful to derive an error indicator that also enables the delete of the correctors
right after it has been involved to the PG-LOD. Hellman and Målqvist presented an
error indicator Eu (and similarly E f ) that only requires the storage of the coe�cients and
satis�es, for every T ∈ TH ,

e2
u,T ≤ Eu,T .

This indicator still has similar behavior in terms of the decrease. Our method solely
requires a measure of which correctors should be updated, if we aim to update, for
instance, 20% of all correctors. Using Eu only changes the choice of TOL. For further
details on Eu and eu and memory consumptions, see [15] and [13].
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The LOD-method as well as the PG-LOD-method have successfully been applied to various
problems in several recent research articles, among others, [28], [16], [18], [30] and [13].
This section is devoted to the application of our novel method to the variational crime of
random perturbations. For this purpose, Section 8.5 presents Weakly random problems
and performs several numeric simulations. Beforehand, we start with a continuation of
the multiscale examples in Section 2.4. All simulations have been performed with Python
2.7 and they base on the code that has been used by Hellman and Målqvist in [15]. We
always use a quadratic mesh in a two dimensional setting.

8.1 One dimensional PG-LOD experiment

In Section 2.4, we stated two multiscale problems in order to emphasize the e�ect of high
variations in the di�usion coe�cient (see Figure 2.1 and Figure 2.4(a)). We realized that
the energy error stays on the same logarithmic level as long as the mesh size H does
not capture every microscopic e�ect. For this case, Figure 2.2 and Figure 2.5 showed
that the approximation is indeed quite inaccurate. In Figure 8.1, we see the resulting
solution of the standard PG-LOD for the one dimensional problem with various coarse
mesh size H and �ne mesh size h = 1024. Clearly, already H = 1/8 achieves a reasonable
result as the macroscopic behavior is already correct. Figure 8.2 displays the energy
error of each PG-LOD and compares it with the FEM. Remarkably, the accuracy of the
method is already very good for k = 2 and it does not change signi�cantly for a bigger k .
Note that the memory consumption of the PG-LOD increases fast for a large k and H .
We furthermore want to emphasize that the amount of variations in the example have
intentionally chosen rather small. Thus, the FEM is still potentially cheaper. In total,
we suspect that for higher dimensions or variations the PG-LOD as well as the LOD
outperforms the FEM. Before we start with the numerical simulations, we need to think
about examples.
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Figure 8.1: PG-LOD approximation of uε for various choices of H and ε = 2−5.

21 22 23 24 25 26 27 28 29

1/H

2 9

2 8

2 7

2 6

2 5

2 4

2 3

2 2

2 1

En
er

gy
 e

rro
r

Energy error for FEM and PG-LOD
PG-LOD k = 1
PG-LOD k = 2
PG-LOD k = 3
PG-LOD k = 4
FEM

Figure 8.2: Energy error |||uε − uH ||| for ε = 2−5 and for various k .

70 Variational crimes in the Localized orthogonal decomposition method



8.2 Perturbations

8.2 Perturbations

In this section, we present various di�usion coe�cients and possible perturbations that
produce a variational crime in the Galerkin method. In Section 8.5, we get to know the
weakly random setting based on [25]. However, in Figure 8.3(c), we already display their
standard example for a high variational coe�cient. The original di�usion coe�cient
has two equidistantly distributed values and in the perturbed version, the coe�cient
is subjected to defects in the form that the entry neutralizes to the other background
value and disappears completely. This example is a very particular case for a perturbed
problem. We intend to think about some other possibilities of perturbations appearing in

(a) Original. (b) Change in value.

(c) Disappearance. (d) Shift.

Figure 8.3: 5% defects in a period structure with changing value, shift and disappearance. Blue is 0.05, red
is 0.8 and yellow is 1. Motivated by [25].

a certain amount of entries. The entries might change their values or move their position.
Figure 8.3 shows those possible perturbations. With a mix of these changes, we are able
to achieve many possible perturbations that are based on the reference coe�cient. Apart
from the standard example in Figure 8.3, there are a lot of instances that belong to the
Weakly random problems. In this thesis, we choose additional types, displayed in Figure
8.4. The coe�cient with channels in Figure 8.4(a) has already been presented with a
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coarser version in Section 2.4. Clearly, every coe�cient in Figure 8.4 can be subjected
to some perturbation like presented in Figure 8.3. Throughout the entire thesis, the
reference coe�cient is solely two valued. The black entries have the value 1 and the
background (white) is 0.05 which consequents a contrast of 20. Thus, we enable a better
comparison and we concentrate on only the essential parts of the simulations.

(a) Coe�cient 2, periodic channels. (b) Coe�cient 3, non periodic.

(c) Coe�cient 4, non periodic.

Figure 8.4: Instances for di�usion coe�cients.
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8.3 The novel method

The remarkable feature of the novel method is a mix of old and new corrector functionsQk
in the space V LOD

k
. For each T ∈ TH , the error eu denotes the indicator for recomputation.

In the following example, we choose H = 1/16, which results in 256 coarse elements, and
we take a �ner coe�cient of the standard example in Figure 8.3(a). Figure 8.5 displays
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Change in value 3
Change in value 50
Disappearance
Shift one step
Shift two steps

Figure 8.5: Error indicator for the coarse elements.

the error indicator for the coe�cient in Figure 8.7, whereas Figure 8.6 only displays the
indicator for the elements 70-78. For each element on the x-axisT ∈ TH , we get a speci�c
value. In order to enable a better comparison, we also added a two step shift and a much
higher change in value. We realize that the impact of the change in value is rather low,
even for very large values. The disappearance corresponds to the highest error, whereas
the shift is dependent on the particular direction and the step size. We remark that the
value of eu is not su�cient value for the actual impact on the accuracy. Later on, we will
see that the shift produces the highest energy error. The indicator eu,T has its maxima in
the coarse elements which contain the defects. The e�ect that is caused by one particular
defect has only an impact on the patch with size k ∈ �. Clearly, the bigger the k , the more
coarse element get a�ected. Figure 8.7 displays the a�ected correctors for various choices
of k ∈ �. The patch size increases for every k and more elements get a�ected. Obviously,
defects can also appear in multiple elements. In this case, more element correctors get
a�ected. When the error indicator is computed, we choose a certain amount of correctors
that we want to recompute. If we take, for example, 20%, then we take the elements with
the largest eu,T . For this purpose we choose TOL appropriately such that eu,T ≤ TOL, for
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all T ∈ TH . With respect to the error estimate in Chapter 6, we expect a much better
approximation of the novel method, whereby we still save 80% recomputation. We want
to remark that even 100% recomputing might save some computational e�ort, since we
have eu,T = 0 for the correctors that do not get touched at all (see Figure 8.7 for each k).
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Figure 8.6: Error indicator for particular elements.
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Original Updated for k = 1

Updated for k = 2 Updated for k = 3 Updated for k = 4

Defects

Figure 8.7: Coe�cient, defects, and the a�ected elements for several k ∈ �. Blue means eu,T > 0, white
means eu,T = 0.
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8.4 Numerical examples and discussion

We want to know how much accuracy we actually gain in comparison to the compu-
tational consumption we save. For this purpose, we perform an error investigation for
each coe�cient in Figure 8.4 and the standard coe�cient in Figure 8.3(a). Recall that
the exact solution we want to approximate u is de�ned in De�nition 5.0.2. With respect
to the notation in Section 5.1, the worst PG-LOD error appears for the approximation
ũk in De�nition 5.1.2, where only the reference correctors are used. It is determined by
|||u − ũk ||| and means 0 % recomputing. The best PG-LOD is achieved by updating 100%
of the a�ected correctors. In De�nition 5.1.1, we called the result of this strategy uk and
the error is |||u − uk |||. We expect the approximation error |||u − uvc

k,p
||| that consequents

from the novel method approximation uvc
k,p

, de�ned in De�nition 5.1.3, to be in between
the worst and the best case.

|||u − uk ||| ≤ |||u − u
vc
k,p ||| ≤ |||u − ũk ||| (8.1)

The goal certainly is to �nd the best compromise between saving computational e�ort
and accuracy. To compute this errors, we use a FEM on the �ne mesh Th as a reference
solution for u in 5.2 and call it uh . We set

eref := |||uh − ũk |||,

epert := |||uh − uk |||,

evc := |||uh − uvc
k,p |||.

For each perturbation in Figure 8.9 - 8.12, the sub�gures (b),(d) and (f) display the behavior
of evc in comparison to eref and epert. Figure 8.13 compares the error for each perturbation
for every coe�cient. In order to interpret the behavior of the energy error, we furthermore
display the error indicator eu in the sub�gures (c),(e) and (g) in Figure 8.9- 8.12, for every
coe�cient and each perturbation. The comparison between each coe�cient is done in
Figure 8.14. For every simulation in Figure 8.9 - 8.12, we choose a di�erent two valued
coe�cient with randomly generated perturbations. The probability is always 1%, except
for the channels in Figure 8.10 (2%). In order to enable a comparison between each
perturbation, the change in value, the disappearance and the shift always happens at the
same place. The change in value is always from the value 1 to 3 which is already rather
high. This change in value of plus 200% is realistic and thus, we do not consider higher
values (although they gain the same results). The shift is basically one step in terms of the
�ne mesh to the right. However, we have already determined that the type of the shift
does not have a high impact. Figure 8.8 shows the perturbations for each coe�cient. We
use a coarse mesh sizeH = 1/16 = 2−4 and a �ne mesh sizeh = 1/256 = 2−8. Furthermore,

76 Variational crimes in the Localized orthogonal decomposition method



8.4 Numerical examples and discussion

the localization parameter is k = 4. With respect to the amount of perturbations, this
patch size consequents that indeed every element corrector is a�ected.
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(a) Coe�cient 1

(b) Coe�cient 2

(c) Coe�cient 3

(d) Coe�cient 4

Figure 8.8: Perturbations for each coe�cient. Left: change in value, middle: disappearance, right: shift.
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(f) Energy error for shift.
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(g) Indicator eu for shift.

Figure 8.9: Energy error comparison and indicator eu for coe�cient 1.
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(a) Coe�cient
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(d) Energy error for disappearance.
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(e) Indicator eu for disappearance.
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(f) Energy error for shift.
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Figure 8.10: Energy error comparison and indicator eu for coe�cient 2.

80 Variational crimes in the Localized orthogonal decomposition method



8.4 Numerical examples and discussion

(a) Coe�cient
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(f) Energy error for shift.
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Figure 8.11: Energy error comparison and indicator eu for coe�cient 3.
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(a) Coe�cient
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Figure 8.12: Energy error comparison and indicator eu for coe�cient 4.
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(b) Coe�cient 2
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(c) Coe�cient 3

0 20 40 60 80 100
Updated correctors in %

2 × 10 2

3 × 10 2

4 × 10 2

En
er

gy
 e

rro
r

Change in value
Disappearance
Shift
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Figure 8.13: Energy errors evc in comparison.
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Figure 8.14: Indicator eu in comparison.
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We now discuss the results that are displayed in Figure 8.9-8.14.

• For every coe�cient, the behavior of the energy error evc is quite promising. We
yield a graph that decreases fast. In a view of the error indicator eu,T in Figure 8.5,
only a few elements get a comparably high value which consequents the peaks.
Therefore, those elements with peaks are the �rst elements for recomputation.
With respect to Theorem 6.2.9, we immediately gain a much better energy error
for evc.

• This result can also be determined by the graph of Figure 8.14. The decrease of evc

can also be noticed in eu . Most of the coe�cients possess the best compromise at
around 20% of recomputing.

• Regarding Figure 8.13 and Figure 8.14, we conclude that the di�erences between
each perturbation is rather low in terms of the indicator error behavior, since we
actually obtain similar graphs. However, the actual absolute impact on the error in
Figure 8.13 di�ers for each coe�cient signi�cantly, but it still has the same behavior.
Furthermore, we can not distinctly verify which perturbation generally implies the
highest impact on the error. Remarkably, the best PG-LOD errors in Figure 8.13
are mostly equal. However, for a very high change in value, the contrast might
increase and the error gets naturally bigger.

• The change in value consequents the lowest energy error. Nevertheless, especially
the coe�cient in Figure 8.10 might produce a high energy error for a drastic change
in value.

• Disappearance is more or less a change in value, but while the change in value
increases the �nescale part, the disappearance eliminates it. This approach is
obviously worse, as the disappearance lays always above the change in value. For
the channels in Coe�cient 2, the disappearance has the highest impact.

• Except for the coe�cient in Figure 8.10, the impact of the shift results in the worst
error.

• It is remarkable how e�ciently the method performs in case of the coe�cient in
Figure 8.11. The decay of evc and eu is very fast. We expect an accurate approach
for already 5% recomputing.

• We point out that Figure 8.12 prove that the novel method is applicable for com-
pletely non periodic coe�cients. We still gain a respectively well performance.

All in all, we conclude that the novel method is applicable for every instance that we
simulated in this section. We realize that the decrease of evc can already be noticed in the
behavior of eu . The di�erent stages of the indicator are also noticeable in the energy error.
This can be used in order to detect the best percentage in advance. Thus, a reasonably
percentage is already recognizable by a priori considering the error indicator eu,T . Now,
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we apply our novel PG-LOD method and the knowledge that results from the simulations
to the so-called Weakly Random framework.

8.5 Weakly Random Problems

Weakly random problems have been introduced by Le Bris and Legoll in, among others,
[25]. The setting is a special case of the variational crime of perturbations, presented
in Chapter 5. However, the amount of perturbation underlays a speci�c probability.
In order to apply Monte Carlo methods for stochastic simulations, multiple perturbed
multiscale problems based on the same reference problem need to be solved. Le Bris and
Legoll develop the weakly stochastic MsFEM as a variation of the MsFEM and investigate
it analytically and numerically. Thus, their setting is restricted to periodic instances.
Moreover, they assume a periodic-type randomness, which they call weakly randomness.
They perform stochastic simulations and apply Monte Carlo methods. The randomly
perturbed di�usion problem underlays a probability and reads{

−∇ ·
(
Apert(x ,ω)∇u(x ,ω)

)
= f (x ,ω), for x ∈ Ω,

u(x ,ω) = 0, for x ∈ ∂Ω.

We do not de�ne a probability space, since we will not make use of it at all. Neverthe-
less, we want to remark that Le Bris and Legoll de�ne a probability space with special
assumptions that they use in the numerical analysis. The coe�cient Apert underlies a
perturbation that is dependent on ω and still has potentially high variations. Le Bris and
Legoll assume this randomness to be restricted by the following property.

8.5.1 Definition (Weakly random property) The coe�cient of the weakly random prob-
lem Apert can be described by

Apert(x ,ω) := Aref(x) + µArand(x ,ω),

where 0 < µ ≤ 1 is a deterministic parameter. The stochastic coe�cient Arand contains
the same multiscale features like the determined coe�cient Aref.

This setting captures a lot of di�erent experiments, as it is a very general formulation.
It is important that the resulting stochastic problem is not fully random since the coef-
�cient Apert can be considered as a perturbation of the deterministic coe�cient Aref. In
Chapter 5 and 6, we showed that every variational crime with a variously high amount
of perturbations can be handled by the novel method that we propose in De�nition 5.1.3.
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Regarding the notation in Chapter 5, we realize

A := Apert,

Ã := Aref.

We de�ne slightly di�erent continuous and bounded bilinear forms

a(v,w,ω) :=
∫
Ω
(A(x ,ω)∇u(x ,ω)) · ∇v(x) dx ∀v ∈ V ,w ∈W

and
ã(v,w) :=

∫
Ω

(
Aref(x)∇v(x)

)
· ∇w(x) dx ∀u ∈ V ,w ∈W .

The linear functional reads

F (w) :=
∫
Ω
f (x)w(x) dx ∀w ∈W .

To be precise, the perturbed problem in De�nition 5.0.2, applied to the Weakly random
setting, reads as follows.

8.5.2 Definition (Exact stochastic problem) ForV = H 1
0 (Ω), a, ã and F de�ned as above,

the weak formulation of the stochastic di�usion problem is to �nd u(ω) ∈ V such that,
for all v ∈ V , it holds that

a(u(ω),v,ω) = F (v). (8.2)

The reference problem is to �nd the solution ũ ∈ V such that

ã(ũ,v) = F (v), (8.3)

where ã denotes the non-perturbed version of a, de�ned above.

Furthermore, we assume that the high variations of Ã and respectively, of A, make it
impossible to apply a standard FEM. To enable stochastic results, we have to compute
an approximation of the expectation value and the variance. For this purpose, we will
use a Monte Carlo method that requires several computations of the same problem, for
di�erent values of ω and thus, for a high number of perturbations. At this point, we
fall back to the novel method. [25] proposed a lot of di�erent test cases. However, their
problems are restricted to some periodic assumptions. We have already mentioned their
standard example in Figure 8.3(a). Certainly, our method also works for periodic cases,
but it does not make an explicit use of it. Every simulation that we made in the previous
section are actually examples of Weakly random problems with several perturbations. It
is important to notice that our method covers a lot more scenarios and thus, it has a much
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bigger application. However, our method obviously requires a higher computational
e�ort. The fact that our novel method already performs well for 20% recomputing though,
justi�es the usage.

8.6 Monte Carlo simulations

In order to investigate the accuracy of our approaches, we follow the same strategy like
Le Bris and Legoll in [25]. We consider the following error

eL2(u1,u2) = �

(
‖u1 − u2‖L2(Ω)

‖u2‖L2(Ω)

)
with solutions u1 and u2 that we specify later on. To apply the Monte Carlo method in M

realizations, we de�ne the sequence of random variables {Xm(ω)}1≤m≤M for every ω with

X (ω) :=
‖u1(·,ω) − u2(·,ω)‖L2(Ω)

‖u2(·,ω)‖L2(Ω)
.

The Monte Carlo method is used to compute the empirical mean µM as well as the
empirical standard deviation σM with

µM (X ) =
1
M

M∑
m=1

Xm(ω), σ 2
M (X ) =

1
M − 1

M∑
m=1
(Xm(ω) − µM (X ))

2.

We can assume that the random variable Xm underlies a normal distribution, which
allows for the application of the Central Limit Theorem. Accordingly, we get a con�dence
interval in the form that

|�(X ) − µM (X )| ≤ 1.96
σM
√
M
.

The value 1.96 consequents from the standard level of con�dence 95%. In order to compute
the con�dence interval, we compute µM and σM with our novel method for variational
crimes. In Section 8.4, we veri�ed a �rst idea for the detection of the best choice of the
percentage for recomputation. Obviously, for an arbitrary coe�cient, we do not know
the perfect choice. However, Section 8.4 showed very similar results for every coe�cient.
Clearly, the choice is also dependent on the mesh size and the amount of variations. We
expect a reasonable result as long as the probability for the random perturbations is
appropriately low. Once we know the certain percentage for recomputing, we can apply
the novel method to the weakly random setting and perform Monte Carlo simulations.
Figure 8.15 displays the result of a Monte Carlo simulation for Coe�cient 3 in Section
8.4. This coe�cient is displayed in Figure 8.4(b). The coe�cient is subjected to 1% of
disappearance, displayed in the middle of Figure 8.8(c). For every sample m, we compute
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the errors eL2(uh,uk), eL2(uh,u
vc
k,p
) and eL2(uk ,u

vc
k,p
). We set k = 4 and we note that uk

corresponds from 100% recomputing and ũk from 0%. The novel method approximation
uvc
k,p

is due to p = 0.2, which results in 20% recomputing. In a view of Figure 8.12(d), we
see that 20% corresponds to a reasonable error. Figure 8.16 reveals that the comparison
between 100% and 20% is quite promising. Clearly, the con�dence interval converges
slower compared to the perturbed LOD. With respect to Figure 8.16 and Figure 8.15 we
want to remark that a Monte Carlo method might not be the best method for our purposes
and thus, the convergence is rather slow. Due to lack of time, we performed no further
simulations and left it as a task for the future.
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Figure 8.15: Monte Carlo simulation for coe�cient 3. The dashed lines represent the con�dence interval.
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Figure 8.16: Comparison between Monte Carlo simulation for eL2 (uh ,uk ) and eL2 (uh ,u
vc
k,p ). The dashed

lines represent the con�dence interval.

90 Variational crimes in the Localized orthogonal decomposition method



9 Conclusion and future work

This paper was devoted to the Localized orthogonal decomposition method, introduced
by Målqvist and Peterseim in [28], and its applications to multiscale di�usion problems.
First, we presented the standard FEM and showed that multiscale problems require a
mesh size H for the FEM that might reach the limits of today’s computer technology. Due
to that, we presented the Localized orthogonal decomposition method as an example for a
multiscale method. The incorporation of the corrector function into each coarse FE-basis
function resulted that the basis functions lose their local support. Thus, a localization
was required in order to gain a feasible method. We presented the possibilities for the
localization, introduced the right hand side correction and furthermore, we learned about
the PG-LOD that aims to reduce the memory consumption of the method. To justify
the localization for the LOD, it was crucial to show that the corrector functions decay
exponentially outside of an area of their associated node. We presented the classical
version and discussed analytical problems and space for improvements. The classical
estimate

|||u − u lod
H ,lk ||| ≤

(
C4‖H

−1
T ‖L∞(Ω)(lk)

d/2(C1/l)
k−2

2 + HC2

)
‖ f ‖L2(Ω),

with the exact solution u and its approximation u lod
H ,lk

, showed that the method yields
a good accuracy for su�ciently large constants l and k , which are responsible for the
patch size of the localization. After presenting this result, we changed the localization
as well as the interpolation and we utilized a new proof strategy to proof a similar, but
essentially better result

|||u − uLOD
H ,k ||| ≤

(
Ckd/2θk + HC′

)
‖ f ‖L2(Ω),

with a di�erent approximationuLOD
H ,k

. Compared to the former result, the factor ‖H−1
T ‖L∞(Ω)

does not appear anymore and therefore, the method is already applicable for a lower
localization constant k . We presented the proof of the latter in detail and emphasized the
usage of the changed interpolation and localization. As an application of the LOD, Chapter
5 dealt with variational crimes. We explained that interferences in the sti�ness matrix and,
more particularly, perturbations in the di�usion coe�cient might result in a complete
recomputation of the FEM, since the accuracy decreases signi�cantly. Concerning the
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FEM, we realized that there is no possibility to make use of the non-perturbed problem in
terms of computational savings. Based on the approaches for time-dependent problems
by Målqvist and Hellman in [15], we presented a novel method that enables the possibility
to actually pay with accuracy in order to gain a less expensive computation. Since this
method is based on the PG-LOD with right hand side correction, the error analysis in
Chapter 6 required inf-sup conditions for the stability of the PG-LOD. In addition, these
results provided the main tools for the error bound

|||u − ũk ||| ≤ ckd/2(θk + TOL)‖ f ‖L2(Ω)

for the approximation of the non-perturbed ũk . We pointed out that we recompute
only for a certain amount of correctors in the PG-LOD and use old correctors, if they
are not, or just slightly, a�ected. For this purpose, we presented an error indicator eu
that enables the decision on recomputing by setting an upper bound TOL. In Chapter
8, we tested the PG-LOD on multiscale instances and we presented several numerical
examples of di�usion coe�cients that are potentially subjected to perturbations. The
presented perturbations are change in values, shift and disappearance. Related to this, we
pointed out the error indicator eu in order to describe the novel method. In the numerical
simulations, we assessed the novel method in terms of the energy error compared to
the worst and the best PG-LOD and we compared the results with the indicator eu . We
concluded that the novel method performs well and is actually applicable for every test
case we proposed. Lastly, we explained the application of our novel method to the weakly
random problems by Le Bris and Legoll in [25]. We proposed to use the novel PG-LOD
method for every step in the Monte Carlo method in order to approximate the con�dence
interval and we concluded well performance.

The instances for di�usion coe�cients throughout this thesis were motivated by com-
posite materials in today’s industries. We restricted our approaches to two values, which
enabled a better comparison. The results can be assigned to more general cases. However,
the di�usion properties of composite materials are restricted to the number of their
di�erent components. In terms of perturbations, we think about machine failures which
are indeed mostly subjected to displacements and defects we addressed in this thesis.
With the con�dence interval that follows from the Monte Carlo method, we can identify
whether we are still able to use the material, although the machine might produce some
failure. In total, we actually achieved a strong method throughout this thesis, in case the
failure is su�ciently small and the probability appropriately low.

Many di�erent experiments and analytical enhancements have been left for the future.

92 Variational crimes in the Localized orthogonal decomposition method



From an analytic point of view, high contrast problems are of interest regarding to this
thesis. Moreover, the proof for the localization in Chapter 4 is still very complex. Recently,
there has been another approach made by Kornhuber, Yserentant and Peterseim in [23],
in order to gain a similar result that works on a more abstract level, but enables an
elegant proof. It is interesting to compare both strategies with the knowledge of Chapter
4. In terms of the error analysis for the novel method in Chapter 6, no estimate for the
expectation value in Section 8.5 has been derived, which is also a task for the future.
Related to this, more Monte Carlo approaches and stochastic simulations have to be
compared and assessed. Moreover, an interesting goal for the novel method is to �nd an
a priori percentage for recomputing.
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