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Abstract

In this thesis we develop a generalized finite element method for linear
thermoelasticity problems, modeling displacement and temperature in an elastic
body. We focus on strongly heterogeneous materials, like composites. For
classical finite element methods such problems are known to be numerically
challenging due to the rapid variations in the data.

The method we propose is based on the local orthogonal decomposition
technique introduced in [12]. In short, the idea is to enrich the classical finite
element nodal basis function using information from the diffusion coefficient.
Locally, these basis functions have better approximation properties than the
nodal basis functions.

The papers included in this thesis first extends the local orthogonal de-
composition framework to parabolic problems (Paper I) and to linear elasticity
equations (Paper II). Finally, using the theory developed in these papers, we
address the linear thermoelastic system (Paper III).

Keywords: Thermoelasticity, parabolic equations, linear elasticity, multi-
scale, composites, generalized finite element, local orthogonal decomposition, a
priori analysis.
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Introduction

1. Background

In many applications the expansion and contraction of a material exposed to
external forces and temperature changes are of great importance. For instance,
it may be crucial when designing parts for aircrafts or when constructing a
bridge.

In this thesis we study numerical solutions to linear thermoelastic systems,
which consist of partial differential equations (PDEs) simulating displacement
and temperature changes in materials over time. In particular, we are inter-
ested in applications where the material under consideration is strongly het-
erogeneous, e.g. composites. Composite materials are constructed using two
or more different constituents. Typically, the material properties in composites
vary on a very fine scale, as in, for instance, fiber reinforced materials. Model-
ing physical behavior in these materials results in equations with highly varying
and oscillating coefficients. Such problems, that exhibit a lot of variations in the
data, often on multiple scales, are commonly referred to as multiscale problems.

Classically, numerical solutions to thermoelasticity equations have been ob-
tained using finite element methods (FEMs) based on continuous piecewise poly-
nomials. These methods work well for homogeneous materials, or materials that
are not varying too much in space. However, for strongly heterogeneous mate-
rials the classical FEMs struggle to approximate the solution accurately unless
the mesh width is sufficiently small. Indeed, the mesh width must be small
enough to resolve all the fine variations in the data. In practice, this leads to
issues with computational cost and available memory.

Today’s increasing interest in and usage of composite materials thus pose a
demand for other types of numerical methods. Several such methods have been
proposed over the last two decades, see, for instance, [9, 5, 1, 10]. However,
the analysis of many of these methods require restrictive assumptions on the
material, such as periodicity or separation of scales.

In [12] a generalized finite element method (GFEM), cf. [2], is proposed and
rigorous analysis is provided. Convergence of the method is proven for an ar-
bitrary positive and bounded coefficient, that is, no assumptions on periodicity
or separation of scales are needed.
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The purpose of this thesis is to generalize the method proposed in [12] to
solve linear thermoelasticity equations with highly varying and oscillating coef-
ficients. This is done in three steps. In Paper I we extend the method to linear
parabolic problems, in Paper II we consider (stationary) linear elasticity equa-
tions and in Paper III we finally address the thermoelastic system. In all three
papers we prove convergence of optimal order for highly varying coefficients and
provide several numerical examples that confirm the analysis.

In the upcoming section we describe the system of equations used to model
the displacement and temperature of an elastic material. In Section 2 the issue
with applying the classical FEM to multiscale problems is described in more
detail. In Section 3 we introduce the GFEM proposed in [12] for elliptic equa-
tions and discuss the main idea behind the extension to linear thermoelasticity.
Finally, in Section 4 we summarize the appended papers and highlight the main
results.

1.1. Linear thermoelasticity. Linear thermoelasticity refers to a cou-
pled system of PDEs describing the displacement and temperature of an elastic
body, see [3, 4]. To introduce the mathematical formulation of this system we
let Ω ⊆ Rd, d = 1, 2, 3, be a domain describing the initial configuration of an
elastic medium. For a given simulation time T > 0, we let the vector valued
function u : [0, T ]×Ω→ Rd denote the displacement field and θ : [0, T ]×Ω→ R
denote the temperature. To define boundary conditions for u we let ΓuD and
ΓuN be two disjoint parts of the boundary such that ΓuD ∪ ΓuN = ∂Ω. On the
part denoted ΓuD we impose Dirichlet boundary conditions corresponding to a
clamped part of the material. On ΓuN , corresponding to the traction boundary,
we impose Neumann boundary conditions. Similarly, we define ΓθD and ΓθN to
be the drained and flux part of the boundary for the temperature θ.

Under the assumption that the displacement gradients are small, the strain
tensor is given by the following linear relation

ε(u) =
1

2
(∇u+∇uᵀ).

For isotropic materials the total stress tensor is given by

σ̄ = 2µε(u) + λ(∇ · u)I − αθI,

where I is the d-dimensional identity matrix and α is the thermal expansion
coefficient. Furthermore, µ and λ denotes the Lamé coefficients satisfying

µ =
E

2(1 + ν)
, λ =

Eν

(1 + ν)(1− 2ν)
,

where ν denotes Poisson’s ratio and E denotes Young’s elastic modulus. Pois-
son’s ratio is a measure on the materials tendency to shrink (expand) when
stretched (compressed) and Young’s modulus describes the stiffness of the ma-
terial. The coefficients α, λ, and µ are all material dependent and thus rapidly
varying in space for strongly heterogeneous (multiscale) materials.
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Now, Cauchy’s equilibrium equations states that

−∇ · σ̄ = f,

where f : Ω→ Rd denotes the external body forces. Furthermore, the temper-
ature in the material can be described by the parabolic equation

θ̇ −∇ · κ∇θ + α∇ · u̇ = g,

where κ : Ω→ Rd×d is the heat conductivity parameter and g denotes internal
heat sources. Note that κ is material dependent and thus rapidly varying. To
summarize, the linear thermoelastic system is given by the following system of
equations

−∇ · (2µε(u) + λ∇ · uI − αθI) = f, in (0, T ]× Ω,(1.1)

θ̇ −∇ · κ∇θ + α∇ · u̇ = g, in (0, T ]× Ω,(1.2)

u = 0, in (0, T ]× ΓuD,(1.3)

σ̄ · n = 0, in (0, T ]× ΓuN .(1.4)

θ = 0, on (0, T ]× ΓθD,(1.5)

κ∇θ · n = 0, on (0, T ]× ΓθN .(1.6)

θ(0) = θ0, in Ω,(1.7)

where we for simplicity assume homogeneous boundary conditions. Note that
the equations (1.1)-(1.2) are coupled.

Remark 1.1. The system (1.1)-(1.7) is formally equivalent to a linear model
for poroelasticity. In this case θ denotes the fluid pressure, κ the hydraulic
conductivity, and α the Biot-Willis coupling-deformation coefficient. Hence,
the results in this thesis also apply to the linear poroelastic system.

To define a FEM (and a GFEM) for (1.1)-(1.7) we define the corresponding
variational (or weak) formulation. For this purpose we first need to introduce
some notation and spaces. We use (·, ·) to denote the inner product in L2(Ω)
and ‖ · ‖ the corresponding norm. Let H1(Ω) := W 1

2 (Ω) denote the classical
Sobolev space with norm ‖v‖2H1(Ω) = ‖v‖2 + ‖∇v‖2 and let H−1(Ω) denote the

dual space to H1. Furthermore, let Lp([0, T ];X) denote the Bochner space with
norm

‖v‖Lp([0,T ];X) =
(∫ T

0

‖v‖pX dt
)1/p

, 1 ≤ p <∞,

‖v‖L∞([0,T ];X) = ess sup
0≤t≤T

‖v‖X ,

where X is a Banach space equipped with the norm ‖ · ‖X . The dependence
on the interval [0, T ] and the domain Ω is frequently suppressed and we write,
for instance, L2(L2) for L2([0, T ];L2(Ω)). We also use the double-dot product
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notation to denote the Frobenius inner product of two matrices A and B

A : B =

d∑
i,j=1

AijBij , A,B ∈ Rd×d.

Now, define the following spaces

V 1 := {v ∈ (H1(Ω))d : v = 0 on ΓuD}, V 2 := {v ∈ H1(Ω) : v = 0 on ΓθD}.

Multiplying (1.1) with v1 ∈ V 1 and (1.2) with v2 ∈ V 2 and using Green’s
formula together with the boundary conditions (1.3)-(1.6) we arrive at the fol-
lowing variational formulation; find u(t, ·) ∈ V 1 and θ(t, ·) ∈ V 2 such that, for
a. e. t > 0,

(σ(u) : ε(v1))− (αθ,∇ · v1) = (f, v1), ∀v1 ∈ V 1,(1.8)

(θ̇, v2) + (κ∇θ,∇v2) + (α∇ · u̇, v2) = (g, v2), ∀v2 ∈ V 2,(1.9)

and the initial value θ(0, ·) = θ0 is satisfied. Here σ(u) := 2µε(u) + λ∇ · uI is
the first part of σ̄ involving only the displacement u, commonly referred to as
the effective stress tensor.

Two functions u and θ are weak solutions if (1.8)-(1.9) are satisfied and

u ∈ L2(V 1), ∇ · u̇ ∈ L2(H−1), θ ∈ L2(V 2), and θ̇ ∈ L2(H−1). Existence and
uniqueness of such weak solutions are proved in, e.g., [17, 16], and in [14] within
the framework of linear degenerate evolution equations in Hilbert spaces. In
[14] it is also proved that the system is of parabolic type, meaning that it is
well posed for nonsmooth initial data with regularity estimates depending on
negative powers of t.

2. Classical finite element

In this section we explain more carefully why the classical FEM fails to
approximate the solution to problems with rapidly varying data. To simplify
the discussion we start by considering elliptic equations.

2.1. Elliptic equations. Consider the elliptic equation

−∇ ·A∇u = f, in Ω,

u = 0, on ∂Ω,

with the variational formulation; find u ∈ V , such that

a(u, v) = (f, v), ∀v ∈ V,(2.1)

where V = H1
0 (Ω) and a(u, v) := (A∇u,∇v). Here A : Ω→ Rd×d the diffusion

coefficient is assumed to be rapidly oscillating.
To define a FEM we need a triangulation of the domain. Let {Th}h>0 be a

family triangulations of Ω with the mesh size hK := diam(K), for K ∈ Th and
denote the largest diameter in the triangulation by h := maxK∈Th hK . Now
let Vh ⊆ V denote the space of continuous piecewise affine functions on the
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triangulation Th. The finite element formulation then reads; find uh ∈ Vh, such
that,

a(uh, v) = (f, v), ∀v ∈ Vh.(2.2)

Classical a priori error analysis gives the bound

‖uh − u‖H1 ≤ Ch‖D2u‖,(2.3)

where D2u denotes the second order (weak) derivatives of u. Not only does this
bound require additional regularity of the solution, the norm ‖D2u‖ may also
be very large if A is rapidly oscillating. Indeed, if A varies with frequency ε−1

for some ε > 0, then ‖∇A‖L∞ = O(ε−1). Estimating ‖D2u‖ with the problem
data gives

‖D2u‖ ≤ C‖∆u‖ ≤ C‖A∇ · (∇u)‖ = C‖∇ · (A∇u)−∇A∇u‖
≤ C‖∇ · (A∇u)‖+ ‖∇A‖L∞‖∇u‖ ≤ C(1 + ε−1)‖f‖,

where we used elliptic regularity in the first inequality and the bound ‖u‖H1 ≤
C‖f‖, derived from (2.1), in the last inequality. Furthermore, we can derive
the bound ‖uh‖H1 ≤ C‖f‖ from (2.2), which gives the following upper bound
of the error; ‖uh − u‖H1 ≤ C‖f‖. Hence, the error bound (2.3) takes the form

‖uh − u‖H1 ≤ C min

{
h+

h

ε
, 1

}
‖f‖,

and convergence does not take place unless h < ε. If ε is small, the condition
h < ε, can be devastating considering computational cost and available memory.

2.2. Linear thermoelasticity. As in the previous section we define a
family of triangulations {Th}h>0 and we let V 1

h ⊆ V 1 and V 2
h ⊆ V 2 denote

finite element spaces consisting of continuous piecewise linear functions on this
triangulation. Furthermore, we let 0 = t0 < t1 < ... < tN = T be a uniform
discretization of the time interval such that tj − tj−1 = τ > 0 for j = 1, ..., N .
The classical FEM with a backward (implicit) Euler discretization in time for
(1.8)-(1.9) reads; for n ∈ {1, ..., N} find unh ∈ V 1

h and θnh ∈ V 2
h , such that

(σ(unh) : ε(v1))− (αθnh ,∇ · v1) = (fn, v1), ∀v1 ∈ V 1
h ,(2.4)

(∂̄tθ
n
h , v2) + (κ∇θnh ,∇v2) + (α∇ · ∂̄tunh, v2) = (gn, v2), ∀v2 ∈ V 2

h ,(2.5)

where ∂̄tθ
n
h := (θnh − θn−1

h )/τ and similarly for ∂̄tu
n
h. Here u0

h = uh,0 and
θ0
h = θh,0, where uh,0 ∈ V 1

h and θh,0 ∈ V 2
h denote suitable initial conditions. The

right hand sides are evaluated at time tn, that is, fn := f(tn) and gn := g(tn).
A priori analysis for the system (2.4)-(2.5) can be found in [7]. It follows

that the error is bounded by

‖unh − un‖H1 + ‖θnh − θn‖+

( n∑
j=1

τ‖θjh − θ
j‖2H1

)1/2

≤ Cε−1h+ Cτ,

where the constant Cε−1 depends on both ‖u(tn)‖H2 and ‖θ(tn)‖H2 . By argu-
ments similar to the ones used for the elliptic equation in Section 2.1, we get that
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‖u(tn)‖H2 = O(ε−1) and ‖θ(tn)‖H2 = O(ε−1), if the material has variations on
a scale of size ε.

3. A generalized finite element method

In [12] a GFEM, often referred to as local orthogonal decomposition, is
proposed and analyzed for elliptic equations of the form (2.1). In Section 3.1
below we describe this method and the main ideas used in the analysis. Finally,
in Section 3.4 we describe how this method can be generalized to define a GFEM
for linear thermoelasticity, which is the main objective of this thesis.

3.1. Elliptic equations. The method proposed in [12] builds on the ideas
from the variational multiscale method [10, 11], where the solution space is
decomposed to into a coarse and a fine part. The nodal basis functions in the
coarse space is then modified by adding a correction from the fine space.

We begin by assuming that the mesh size h used in the classical FEM in
(2.2) is fix and sufficiently small, that is h < ε, such that the error (2.3) is small.
In this case, the solution uh and the space Vh are referred to as the reference
solution and the reference space, respectively. Now define VH similarly to Vh
but with a larger mesh size H > h, such that VH ⊆ Vh. Note that the classical
FEM solution uH in the coarse space VH is not a good approximation to u. It
is, however, cheaper to compute than uh since dim(VH) < dim(Vh). The aim
is now to define a new multiscale space Vms with the same dimension as the
coarse space VH , but with better approximations properties.

To define such a space, we need an interpolation operator IH : Vh → VH
with the properties IH ◦ IH = IH and for K ∈ TH

H−1
K ‖v − IHv‖L2(K) + ‖∇IHv‖L2(K) ≤ CI‖∇v‖L2(ωK), v ∈ Vh,(3.1)

where ωK := ∪{K̂ ∈ TH : K̂ ∩K 6= ∅}. For a quasi-uniform mesh, the bounds
in (3.1) can be summed to achieve a global bound

H−1‖v − IHv‖+ ‖∇IHv‖ ≤ C‖∇v‖,(3.2)

There are many interpolations operators that satisfy these conditions, for in-
stance, the global L2-projection. In Paper II and Paper III we use an in-
terpolation of the form IH = EH ◦ ΠH , where ΠH is the L2-projection onto
P1(TH), the space of functions that are affine on each triangle K ∈ TH and
EH : P1(TH) → VH is an averaging operator. We refer to [13, 6] for further
details and possible choices of IH .

Now let Vf denote the kernel to the operator IH

Vf := ker IH = {v ∈ Vh : IHv = 0}.

The space Vh can be decomposed as Vh = VH ⊕ Vf , meaning that vh ∈ Vh can
be decomposed into

vh = vH + vf , vH ∈ VH , vf ∈ Vf .(3.3)
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The kernel Vf is a fine scale (detail) space in the sense that it captures all
features that are not captured by the coarse space VH . Let Rf : Vh → Vf denote
the Ritz projection onto Vf , that is,

a(Rfv, w) = a(v, w), ∀w ∈ Vf , v ∈ Vh.(3.4)

Because of the decomposition (3.3) we have the identity

vh −Rfvh = vH + vf +Rf(vH + vf) = vH −RfvH ,

since vf ∈ Vf . Using this we can define the multiscale space Vms

Vms := Vh −RfVh = VH −RfVH .(3.5)

Note that Vms is the orthogonal complement to Vf with respect to the inner
product a(·, ·) and must have the same dimension as VH . Indeed, with N
denoting the inner nodes in TH and λz the basis function at node z, a basis for
Vms is given by

{z ∈ N : λz −Rfλz}.
Hence, that basis functions are the classical nodal basis functions modified by
corrections Rfλz computed in the fine scale space.

Replacing Vh with Vms in (2.2) we can now define the GFEM; find ums ∈
Vms, such that,

a(ums, v) = (f, v), ∀v ∈ Vms.(3.6)

The following theorem gives an a priori bound for the GFEM and can be found
in [12]. We include the proof here since it is short and highlights the main ideas
used in the analysis.

Theorem 3.1. Let uh be the solution to (2.2) and ums the solution to (3.6).
Then

‖ums − uh‖H1 ≤ CH‖f‖,
where C does not depend on the derivatives of A.

Proof. Define e := ums − uh and note that e ∈ Vf . Hence, IHe = 0.
Furthermore we have due to Galerkin orthogonality a(e, vms) = 0 for vms ∈ Vms.
Using this together with the interpolation bound (3.2) we have

a(e, e) = −a(e, uh) = −(f, e) ≤ ‖f‖‖e‖ = ‖f‖‖e− IHe‖ ≤ CH‖f‖‖∇e‖,

and the bound follows by using equivalence of the energy norm induced by a(·, ·)
and the H1-norm. �

From Theorem 3.1 we have that the solution given by the GFEM converges
to uh, with optimal order, independently of the derivatives (variations) of A.
We emphasize that the total error is bounded by

‖ums − u‖H1 ≤ ‖ums − uh‖H1 + ‖uh − u‖H1 ,

where the error in the second term is due to the classical FEM and assumed to
be of reasonable size, since h is assumed to be sufficiently small.
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Although the a priori analysis seems promising, the GFEM as suggested
above suffers from some drawbacks. The problem of finding the corrections
Rfλz, which are needed to construct the basis, are posed in the entire fine scale
space Vf which has the same dimension as Vh. Furthermore, the corrections
generally have global support and therefore destroys the sparsity of the resulting
discrete system. Both issues are resolved by performing a localization of the
corrections. The localization is motivated by the observation that the correction
Rfλz decay exponentially away from node z.

3.2. Localization. In [12] it is proved that the corrections decay expo-
nentially and a localization procedure is proposed. However, in [8] a different
localization technique is proposed which allows for smaller patches to be used.
We describe the procedure in [8] here, which is also the procedure that is used
in the appended papers.

We define patches of size k in the following way; for K ∈ TH
ω0(K) := int K,

ωk(K) := int
(
∪ {K̂ ∈ TH : K̂ ∩ ωk−1(K) 6= ∅}

)
, k = 1, 2, ...,

and let Vf(ωk(K)) := {v ∈ Vf : v(z) = 0 on Ω \ ωk(K)} be the restriction of Vf

to the patch ωk(K).
We proceed by noting that Rf in (3.4) can be written as the sum

Rf =
∑
K∈TH

RKf ,

where RKf : Vh → Vf and fulfills

a(RKf v, w) = a(v, w)K , ∀w ∈ Vf , v ∈ Vh, K ∈ TH ,(3.7)

where we define

a(v, w)K := (A∇v,∇w)L2(K), K ∈ TH .
The aim is to localize these computations by replacing Vf with Vf(ωk(K)). De-
fine RKf,k : Vh → Vf(ωk(K)) such that

a(RKf,kv, w) = a(v, w)K , ∀w ∈ Vf(ωk(K)), v ∈ Vh, K ∈ TH ,

and set Rf,k :=
∑
K∈TH R

K
f,k. We can now define the localized multiscale space

Vms,k = {vH −Rf,kvH : vH ∈ VH}.(3.8)

By replacing Vms with Vms,k in (3.6) a localized GFEM can be defined; find
ums,k ∈ Vms,k such that

a(ums,k, v) = (f, v), ∀v ∈ Vms,k.(3.9)

Since the dimension of Vf(ωk(K)) can be made significantly smaller than
the dimension of Vf (depending on k), the problem of finding Rf,kλz is compu-
tationally cheaper than finding Rfλz. Moreover, the resulting discrete system
is sparse. It should also be noted that the computation of Rf,kλz for all nodes
z is suitable for parallelization, since they are independent of each other.
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The convergence of the method (3.9) depends on the size of the patches. In
[12, 8] the following Theorem is proved.

Theorem 3.2. Let uh be the solution to (2.2) and ums,k the solution to
(3.9). Then there exists ξ ∈ (0, 1) such that

‖ums,k − uh‖H1 ≤ C(H + kd/2ξk)‖f‖,

where C does not depend on the derivatives of A.

To achieve linear convergence k should be chosen proportional to logH−1,
that is, k = c logH−1, for some constant c.

3.3. Parabolic equations. A natural first step in generalizing the GFEM
to linear thermoelasticity is to first extend it to a time dependent problem of
parabolic type. Recall that the thermoelastic system (1.8)-(1.9) is parabolic
[14]. This is the subject of Paper I.

We consider a parabolic problem on the following weak form; find u(t) ∈ V ,
such that, u(0) = u0 and

(u̇, v) + a(u, v) = (f, v), ∀v ∈ V,(3.10)

where a(u, v) = (A∇u,∇v) as in the elliptic equation (2.1). The diffusion
coefficient A : Ω→ Rd×d is assumed to not depend on time.

The classical FEM for (3.10) with a backward Euler discretization reads;
for n ∈ {1, ..., N} find unh ∈ Vh, such that, u0

h = uh,0

(∂̄tu
n
h, v) + a(unh, v) = (fn, v), ∀v ∈ Vh,(3.11)

with the notation and time discretization as in Section 2.2 and uh,0 a suitable
approximation of u0. It is well known, see, e.g., [15], that the following error
estimate holds for the parabolic equation

‖unh − u(tn)‖H1 ≤ Cε−1h+ Cτ,

where Cε−1 is constant depending on, among other terms, ‖u(tn)‖H2 and is thus
of size ε−1 if A varies on scale of size ε. Hence, parabolic problems suffers from
the same issues as elliptic problems when using classical finite element.

In the error analysis of the classical FEM, the error is usually split into the
two parts

unh − u(tn) = unh −Rhu(tn) +Rhu(tn)− u(tn) =: θn + ρn,

where Rh : V → Vh is the Ritz projection given by

a(Rhv, w) = a(v, w), ∀w ∈ Vh, v ∈ V.

The error of the Ritz projection is given by the analysis of the elliptic problem

‖Rhv − v‖H1 ≤ Ch‖D2v‖.(3.12)

This directly gives the error of ρn. Indeed, ‖ρn‖H1 ≤ Ch‖D2u(tn)‖, where
‖D2u(tn)‖ ≤ Cε−1‖∇ · A∇u(tn)‖ = Cε−1‖fn − u̇(tn)‖ and Cε−1 depend on the
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derivatives of A. Furthermore, to bound ‖θn‖H1 we put θn into (3.11), which
gives

(∂̄tθ
n, v) + a(θn, v) = −((Rh − I)∂̄tu(tn) + (∂̄tu(tn)− u̇(tn)), v)

=: −(∂̄tρ
n + ω, v),

where the error of ∂̄tρ
n follows from (3.12) and the error of ω follows from

Taylor’s formula. In order to bound θn in the H1-norm we can choose v = ∂̄tθ
n.

Inspired by this we propose the following GFEM for the parabolic problem,
where the space Vh in (3.11) is simply replaced by the multiscale space Vms

defined in Section 3.1; for n ∈ {1, ..., N} find unms ∈ Vms, such that, u0
ms = ums,0

(∂̄tu
n
ms, v) + a(unms, v) = (fn, v), ∀v ∈ Vms,(3.13)

with ums,0 a suitable approximation of uh,0. Now, because of the choice of the
space Vms we can define a Ritz projection Rms : Vh → Vms by

a(Rmsv, w) = a(v, w) = (Ahv, w), ∀v ∈ Vms,

where Ah : Vh → Vh is the operator defined by

(Ahv, w) = a(v, w), ∀w ∈ Vh.

The error analysis for the elliptic problem in [12] gives the bound

‖Rmsv − v‖H1 ≤ CH‖Ahv‖, ∀v ∈ Vh,(3.14)

where C is independent of the derivatives of A. The assumption that A does
not depend on time is crucial here. Otherwise, we would have to define a new
space and compute a new set of basis functions at each time step tn.

As for the elliptic equation we assume that h is sufficiently small to resolve
the variations in A. This means that the reference solution uh given by (3.11)
approximates u in (3.10) sufficiently well. In the error analysis we can thus split

‖unms − u(tn)‖H1 ≤ ‖unms − unh‖H1 + ‖unh − u(tn)‖H1 ,

where the second part is bounded by classical FEM error analysis. For the first
part we can use a similar analysis, but with the new Ritz projection Rms. We
split the error into the parts

unms − unh = unms −Rmsu
n
h +Rmsu

n
h − unh =: θnms + ρnms,

where the error of ρnms is given by (3.14) and Ahunh = Phf
n − ∂̄tunh with Ph

denoting the L2-projection onto Vh. For θnms we get by plugging θnms into (3.13)

(∂̄tθ
n
ms, v) + a(θnms, v) = −(∂̄tρ

n
ms, v), ∀v ∈ Vms.

Naturally, the error bound in this case depends on the regularity of the
(discrete) time derivative of the reference solution. Since the initial data is not
in H2 we expect, for instance, ‖∂̄tunh‖ to depend on negative powers of tn. This
is possible since the backward Euler scheme preserves the smoothing effect of
parabolic problems. In Paper I this is thoroughly investigated and error bounds
involving negative powers of tn are derived.
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To utilize the localization introduced in Section 3.1 we can replace Vms by
Vms,k, define a new Ritz projection Rms,k : Vh → Vms,k, and perform similar
splits of the error.

3.4. Linear thermoelasticity. In the classical finite element error anal-
ysis for linear thermoelasticity, a Ritz projection related to the stationary form
of the problem is used to split the error into two terms. This Ritz projec-
tion is defined by the following Rh(v1, v2) : V 1 × V 2 → V 1

h × V 2
h , such that,

Rh(v1, v2) = (R1
h(v1, v2), R2

hv2) and for all (v1, v2) ∈ V 1 × V 2,

(σ(v1 −R1
h(v1, v2)) : ε(w1))− (α(v2 −R2

hv2),∇ · w1) = 0, ∀w1 ∈ V 1
h ,

(κ∇(v2 −R2
hv2),∇w2) = 0, ∀w2 ∈ V 2

h .

with error estimates (see [7, Lemma 2.2])

‖v1 −R1
h(v1, v2)‖H1 ≤ Ch‖D2v1‖+ C‖v2 −R2

hv2‖,(3.15)

‖v2 −R2
hv2‖H1 ≤ Ch‖D2v2‖.(3.16)

The error can now be split according to

unh − u(tn) = unh −R1
h(u(tn), θ(tn)) +R1

h(u(tn), θ(tn))− u(tn) =: ηnh,u + ρnh,u,

θnh − θ(tn) = θnh −R2
hθ(tn) +R2

hθ(tn)− θ(tn) =: ηnh,θ + ρnh,θ,

where the error of ρnh,u and ρnh,θ follows from (3.15)-(3.16). The first parts ηnh,u
and ηnh,θ can be plugged into the equation (2.4)-(2.5) to derive error estimates
for these. Compare to the parabolic problem in Section 3.3. For the details we
refer to [7].

To derive a GFEM for the thermoelasticity problem (1.8)-(1.9) we need
to decompose two different spaces; V 1

h and V 2
h . The decomposition of V 1

h is
performed with respect to the bilinear form (σ(·) : ε(·)) and the decomposition
of V 2

h with respect to (κ∇·,∇·). This is done by mimicking the procedure
described in Section 3.1. First define two interpolations I1

H : V 1
h → V 1

H and
I2
H : V 2

h → V 2
H into the coarse finite element spaces V 1

H ⊆ V 1
h and V 2

H ⊆ V 2
h .

Now, the corresponding kernels are V 1
f := ker I1

H and V 2
f := ker I2

H , and we can
define the Ritz projections onto the these R1

f : V 1
h → V 1

f and R2
f : V 2

h → V 2
f

given by

(σ(v1 −R1
f v1) : ε(w1)) = 0, ∀w1 ∈ V 1

f , v1 ∈ V 1
h

(κ∇(v2 −R2
f v2),∇w2) = 0, ∀w2 ∈ V 2

f , v2 ∈ V 2
h .

The multiscale spaces are finally defined as

V 1
ms := V 1

H −R1
f V

1
H , V 2

ms := V 2
H −R2

f V
2
H ,

as in (3.5). With these spaces we can now define a Ritz projection corresponding
to the stationary system. Define Rms(v1, v2) : V 1

h ×V 2
h → V 1

ms×V 2
ms, such that,

13
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Rms(v1, v2) = (R1
ms(v1, v2), R2

msv2) and for all (v1, v2) ∈ V 1
h × V 2

h ,

(σ(v1 −R1
ms(v1, v2)) : ε(w1))− (α(v2 −R2

msv2),∇ · w1) = 0, ∀w1 ∈ V 1
ms,

(κ∇(v2 −R2
msv2),∇w2) = 0, ∀w2 ∈ V 2

ms.

The spaces V 1
ms and V 2

ms are designed to handle multiscale behavior in the
coefficients µ, λ, and κ respectively. However, α is also material dependent and
can be expected to vary at the same scale. For this reason, we shall add an
extra correction to the solution Rms(v1, v2) inspired by the techniques in [11, 8].

This additional correction is defined as R̃f : V 2
h → V 1

f , such that,

(σ(R̃fv2) : ε(w1)) = (αR2
msv2,∇ · w1), ∀w1 ∈ V 1

f ,

and we define R̃1
ms(v1, v2) = R1

ms(v1, v2) + R̃fv2. Using the two operators A1 :
V 1
h × V 2

h → V 1
h and A2 : V 2

h → V 2
h defined by

(A1(v1, v2), w1) = (σ(v1) : ε(w1))− (αv2,∇ · w1), ∀w1 ∈ V 1
h ,

(A2v2, w2) = (κ∇v2,∇w2), ∀w2 ∈ V 2
h ,

we prove, in Paper III, that the following error bounds hold for any (v1, v2) ∈
V 1
h × V 2

h

‖v1 − R̃1
ms(v1, v2)‖H1 ≤ CH‖A1(v1, v2)‖+ C‖v2 −R2

msv2‖,(3.17)

‖v2 −R2
msv2‖H1 ≤ CH‖A2v2‖,(3.18)

where C is independent of the variations in µ, λ, α, and κ.
The following system defines a GFEM for the time dependent problem (2.4)-

(2.5). For n ∈ {1, ..., N} find ũnms = unms + unf , with unms ∈ V 1
ms and unf ∈ V 1

f ,
and θnms ∈ V 2

ms, such that

(σ(ũnms) : ε(v1))− (αθnms,∇ · v1) = (fn, v1), ∀v1 ∈ V 1
ms,(3.19)

(∂̄tθ
n
ms, v2) + (κ∇θnms,∇v2) + (α∇ · ∂̄tũnms, v2) = (gn, v2), ∀v2 ∈ V 2

ms,(3.20)

(σ(unf ) : ε(w1))− (αθnms,∇ · w1) = 0, ∀w1 ∈ V 1
f ,(3.21)

where ũ0
ms = ũms,0 and θ0

ms = θms,0 are suitable approximations of uh,0 and
θh,0 (see Paper III). Here we have added an additional correction, unf , on unms

inspired by the correction in the stationary setting. Following the classical finite
element analysis one can now split the error according to

ũnms − unh = ũnms − R̃1
ms(u

n
h, θ

n
h) + R̃1

ms(u
n
h, θ

n
h)− unh =: η̃nms,u + ρnms,u,

θnms − θnh = θnms −R2
msθ

n
h +R2

msθ
n
h − θnh =: ηnms,θ + ρnms,θ,

where the error of ρ̃nms,u and ρnms,θ are bounded by (3.17)-(3.18). The error of

η̃nu,ms and ηnθ,ms follows by plugging these into (3.19)-(3.21). However, in this

case η̃nms,u 6∈ V 1
ms, which needs to be taken into account in the analysis.

To proceed we need to perform a localization of both spaces V 1
ms and V 2

ms.
We use the patches ωk(K) defined in Section 3.2 to define localized spaces V 1

ms,k

and V 2
ms,k, as in (3.8). To motivate this we need to show that the corrections

R1
f λx and R2

f λy decay exponentially away from node x and y, where λx and λy

14
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denotes the classical hat functions in V 1
H and V 2

H respectively. The correction
R2

f λy is based on the bilinear form (κ∇·,∇·) of the same type as in Section 3.1
and the decay thus follows directly from [12, 8]. The correction R1

f λx is based
on the elasticity form (σ(·) : ε(·)) and the decay does not follow directly from
the earlier results. This is instead proven in Paper II.

The localized GFEM for (2.4)-(2.5) is now defined as; for n ∈ {1, ..., N}
find

ũnms,k = unms,k +
∑
K∈TH

un,Kf,k , with unms,k ∈ V 1
ms,k, u

n,K
f,k ∈ V

1
f (ωk(K)),

and θnms,k ∈ V 2
ms,k, such that

(σ(ũnms,k) : ε(v1))− (αθnms,k,∇ · v1) = (fn, v1), ∀v1 ∈ V 1
ms,k,(3.22)

(∂̄tθ
n
ms,k, v2) + (κ∇θnms,k,∇v2)

+ (α∇ · ∂̄tũnms,k, v2) = (gn, v2), ∀v2 ∈ V 2
ms,k,(3.23)

(σ(un,Kf,k ) : ε(w1))− (αθnms,k,∇ · w1)K = 0, ∀w1 ∈ V 1
f (ωk(K)).(3.24)

The main theorem in this thesis is Theorem 3.3 below and is proved in Paper
III under certain conditions on the size of H. Here Cf,g denotes a constant
depending on f and g, see Paper III for details.

Theorem 3.3. Let {unh}Nn=1 and {θnh}Nn=1 be the solutions to (2.4)-(2.5) and
{ũnms,k}Nn=1 and {θnms,k}Nn=1 the solutions to (3.22)-(3.24). For n ∈ {1, ..., N}
we have

‖unh − ũnms,k‖H1 + ‖θnh − θnms,k‖H1 ≤ C(H + kd/2ξk)
(
Cf,g + t−1/2

n ‖θ0
h‖H1

)
,

where C and Cf,g are constants independent of the variations in σ, λ, α, and κ.

4. Summary of papers

Paper I. In Paper I we propose and analyze the GFEM (3.13) for parabolic
equations with highly varying and oscillating coefficients. We prove convergence
of optimal (second) order in the L2-norm to the reference solution assuming
initial data only in L2. We do not assume any structural conditions on the
multiscale coefficient, such as, periodicity or scale separation. Furthermore, we
show how to extend this method to semilinear parabolic problems, where the
right hand side in (3.10) is replaced by f(u).

Paper II. In Paper II we propose a GFEM for linear elasticity equations
with applications in heterogeneous materials. In particular, we prove expo-
nential decay of the corrections R1

f λz in Section 3.4. Furthermore, we prove
that the GFEM reduces the locking effect that occur for materials with large
Lamé parameter λ when using classical continuous and piecewise linear finite
elements.
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Paper III. In Paper III we build on the theory developed in Paper I and
Paper II (originating from [12]) to define a GFEM for linear thermoelasticity
with highly varying coefficients describing a heterogeneous material. We prove
linear convergence to the reference solution in the H1-norm independent of the
variations in the data, see Theorem 3.3 in Section 3.4.

5. Future work

In Paper I on parabolic equations we assume that the diffusion coefficient
A(x) is independent of time. A natural extension would be to include time
dependent coefficients A(t, x). However, the main idea of the paper, to replace
Vh with the space Vms in (3.11), then fails. We would need to have a new
space V nms for each time tn, since the diffusion coefficient A(tn, ·) takes different
values for different times tn. This is considerably more expensive than the time
independent case, since we need to compute new corrections at each time step.
It is possible that a more refined strategy could be developed by working with
the parabolic problem in a space-time framework and perform localization in
both time and space.

In applications involving composite materials there may be uncertainties in
the material parameters, such as position or rotation, coming from the assembly
procedure. These uncertainties can, for instance, be modeled by letting the
coefficients depend on a random variable ω. A first step in extending the GFEM
framework to such problems could be to consider an elliptic problem of the form

−∇ ·A(x, ω)∇u(x, ω) = f(x, ω),

where A(·, ω) is multiscale in space for a fix ω. This problem suffers from the
same problem as the time dependent case, since A(·, ω) now takes different
values for different outcomes ω.

In the analysis of the localization the constant ξ ∈ (0, 1), see e.g. Theo-
rem 3.2, depends on the contrast β/α of A, that is, the ratio between the max-
imal and minimal value obtained by A. Also the constant C in Theorem 3.2
depends on this ratio. However, in available numerical examples, see Paper I
and Paper II, but also, e.g., [12, 8], the size of the patches and the resulting
convergence does not seem to be affected by large contrasts. Thus, the error
bounds derived for the localization could be too crude. This should be further
investigated to derive sharper error bounds for special classes of A.
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implementation of the Localized Orthogonal Decomposition method, Sub-
mitted.

[7] A. Ern and S. Meunier: A posteriori error analysis of Euler-Galerkin ap-
proximations to coupled elliptic-parabolic problems, M2AN Math. Model.
Numer. Anal. 43 (2009), no. 2, p. 353 – 375.
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Multiscale techniques for parabolic equations

Axel Målqvist1,2 and Anna Persson1

Abstract. We use the local orthogonal decomposition technique intro-

duced in [15] to derive a generalized finite element method for linear and
semilinear parabolic equations with spatial multiscale diffusion coefficient.

We consider nonsmooth initial data and a backward Euler scheme for the

temporal discretization. Optimal order convergence rate, depending only
on the contrast, but not on the variations in the diffusion coefficient, is

proven in the L∞(L2)-norm. We present numerical examples, which con-

firm our theoretical findings.

1. Introduction

In this paper we study numerical solutions to a parabolic equation with a
highly varying diffusion coefficient. These equations appear, for instance, when
modeling physical behavior in a composite material or a porous medium. Such
problems are often referred to as multiscale problems.

Convergence of optimal order of classical finite element methods (FEMs)
based on continuous piecewise polynomials relies on at least spatial H2 - regu-
larity. More precisely, for piecewise linear polynomials, the error bound depends
on ‖u‖H2 , where ‖u‖H2 ∼ ε−1 if the diffusion coefficient varies on a scale of ε.
Thus, the mesh width h must fulfill h < ε to achieve convergence. However,
this is not computationally feasible in many applications. To overcome this
issue, several numerical methods have been proposed, see, for example, [2], [5],
[9], [15], [16], [17], and references therein. In particular, [16] and [17] consider
linear parabolic equations.

In [15] a generalized finite element method (GFEM) was introduced and
convergence of optimal order was proven for elliptic multiscale equations. The
method builds on ideas from the variational multiscale method ([9],[11]), which
is based on a decomposition of the solution space into a (coarse) finite dimen-
sional space and a residual space for the fine scales. The method in [15], often
referred to as local orthogonal decomposition, constructs a generalized finite
element space where the basis functions contain information from the diffusion
coefficient and have support on small vertex patches. With this approach, con-
vergence of optimal order can be proved for an arbitrary positive and bounded
diffusion coefficient. Restrictive assumptions such as periodicity of the coef-
ficients or scale separation are not needed. Some recent works ([7], [8], [14])
show how this method can be applied to boundary value problems, eigenvalue
problems, and semilinear elliptic equations. There has also been some recent
work on the linear wave equation [1].

1Department of Mathematical Sciences, Chalmers University of Technology and Univer-

sity of Gothenburg SE-412 96 Göteborg, Sweden.
2Supported by the Swedish Research Council.
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In this paper we apply the technique introduced in [15] to parabolic equa-
tions with multiscale diffusion coefficients. For the discretization of the temporal
domain we use the backward Euler scheme. Using tools from classical finite el-
ement theory for parabolic equations, see, e.g, [12], [13], [18], and references
therein, we prove convergence of optimal order in the L∞(L2)-norm for linear
and semilinear equations under minimal regularity assumptions and nonsmooth
initial data. The analysis is completed with numerical examples that support
our theoretical findings.

In Section 2 we describe the problem formulation and the assumptions
needed to achieve sufficient regularity of the solution. Section 3 describes the
numerical approximation and presents the resulting GFEM. In Section 4 we
prove error estimates and in Section 5 we extend the results to semilinear par-
abolic equations. Finally, in Section 6 we present some numerical examples.

2. Problem formulation

We consider the parabolic problem

u̇−∇ · (A∇u) = f, in Ω× (0, T ],

u = 0, on ∂Ω× (0, T ],(2.1)

u(·, 0) = u0, in Ω,

where T > 0 and Ω is a bounded polygonal/polyhedral domain in Rd, d ≤ 3.
We assume A = A(x) and f = f(x, t), that is, the coefficient matrix A does not
depend on the time variable.

We let H1(Ω) denote the classical Sobolev space with norm

‖v‖2H1(Ω) = ‖v‖2L2(Ω) + ‖∇v‖2L2(Ω)

and V = H1
0 (Ω) the space of functions in H1(Ω) that vanishes on ∂Ω. We use

H−1(Ω) = V ∗ to denote the dual space to V . Furthermore, we use the notation
Lp(0, T ;X) for the Bochner space with finite norm

‖v‖Lp(0,T ;X) =
(∫ T

0

‖v‖pX dt
)1/p

, 1 ≤ p <∞,

‖v‖L∞(0,T ;X) = ess sup
0≤t≤T

‖v‖X ,

where X is a Banach space equipped with norm ‖ · ‖X . Here v ∈ H1(0, T ;X)
means v, v̇ ∈ L2(0, T ;X). The dependence on the interval [0, T ] and the domain
Ω is frequently suppressed and we write, for instance, L2(L2) for L2(0, T ;L2(Ω)).
Finally, we abbreviate the L2-norm ‖ · ‖ := ‖ · ‖L2(Ω) and the energy norm,

|||·||| := ‖A1/2∇ · ‖.
To ensure existence, uniqueness, and sufficient regularity, we make the fol-

lowing assumptions on the data.

Assumptions. We assume
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(A1) A ∈ L∞(Ω,Rd×d), symmetric, and

0 < α := ess inf
x∈Ω

inf
v∈Rd\{0}

A(x)v · v
v · v

,

∞ > β := ess sup
x∈Ω

sup
v∈Rd\{0}

A(x)v · v
v · v

,

(A2) u0 ∈ L2,

(A3) f, ḟ ∈ L∞(L2).

Throughout this work C denotes constants that may depend on the bounds
α and β (often through the contrast β/α), the shape regularity parameter γ
(3.1) of the mesh, the final time T , and the size of the domain Ω, but not on the
mesh size parameters nor the derivatives of the coefficients in A. The fact that
the constant does not depend on the derivatives of A is crucial, since these (if
they exist) are large for the problems of interest. This is sometimes also noted
as C being independent of the variations of A.

We now formulate the variational form of problem (2.1). Find u(·, t) ∈ V
such that u(·, 0) = u0 and

(u̇, v) + a(u, v) = (f, v), ∀v ∈ V, t ∈ (0, T ],(2.2)

where (u, v) =
∫

Ω
uv and a(u, v) = (A∇u,∇v).

The following theorem states existence and uniqueness for (2.2). The proof
is based on Galerkin approximations, see, e.g., [6] and [10].

Theorem 2.1. Assume that (A1), (A2), and (A3) holds. Then there exists
a unique solution u to (2.2) such that u ∈ L2(0, T ;V ) and u̇ ∈ L2(0, T ;H−1).

3. Numerical approximation

In this section we describe the local orthogonal decomposition presented in
[15] to define a generalized finite element method for the multiscale problem
(2.2).

First we introduce some notation. Let {Th}h>0 and {TH}H>h be families
of shape regular triangulations of Ω where hK := diam(K), for K ∈ Th, and
HK := diam(K), for K ∈ TH . We also define H := maxK∈TH HK and h :=
maxK∈Th hK . Furthermore, we let γ > 0 denote the shape regularity parameter
of the mesh TH ;

γ := max
K∈TH

γK , with γK :=
diamBK
diamK

, for K ∈ TH ,(3.1)

where BK is the largest ball contained in K.
Now define the classical piecewise affine finite element spaces

VH = {v ∈ C(Ω̄) : v = 0 on ∂Ω, v|K is a polynomial of degree ≤ 1,∀K ∈ TH},
Vh = {v ∈ C(Ω̄) : v = 0 on ∂Ω, v|K is a polynomial of degree ≤ 1,∀K ∈ Th}.

We let N denote the interior nodes of VH and ϕx the corresponding hat function
for x ∈ N , such that span({ϕx}x∈N ) = VH . We further assume that Th is a
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refinement of TH , such that VH ⊆ Vh. Finally, we also need the finite element
mesh TH of Ω to be of a form such that the L2-projection PH onto the finite
element space VH is stable in H1-norm, see, e.g., [3], and the references therein.

To discretize in time we introduce the uniform discretization

0 = t0 < t1 < ... < tN = T, where tn − tn−1 = τ.(3.2)

Let Un be the approximation of u(t) at time t = tn and denote fn := f(tn). Us-
ing the notation ∂̄tUn = (Un−Un−1)/τ we now formulate the classical backward
Euler FEM; find Un ∈ Vh such that

(∂̄tUn, v) + a(Un, v) = (fn, v), ∀v ∈ Vh,(3.3)

for n = 1, ..., N and U0 ∈ Vh is some approximation of u0. For example, one
could choose U0 = Phu0, where Ph is the L2-projection onto Vh. We also define
the operator Ah : Vh → Vh by

(Ahv, w) = a(v, w), ∀v, w ∈ Vh.(3.4)

The convergence of the classical finite element approximation (3.3) depends
on ‖D2u‖, where D2 denotes the second order derivatives. If the diffusion
coefficient A oscillates on a scale of ε we have ‖D2u‖ ∼ ε−1. Indeed, defining
A = −∇ ·A∇, elliptic regularity gives

‖D2u‖ ≤ C1‖∆u‖ ≤ C2‖A∆u‖ ≤ C2‖∇ ·A∇u−∇A · ∇u‖
≤ C2(‖Au‖+ ‖∇A · ∇u‖) ≤ C2(‖Au‖+ CA‖∇u‖) ≤ C3(1 + CA)‖Au‖,

where CA is a constant that depends on the derivatives (variations) of A. This
inequality is sharp in the sense that Au and ∇A ·∇u does not cancel in general.
The total error is thus ‖u(tn)−Un‖ ∼ (τ + (h/ε)2), which is small only if h < ε.

The purpose of the method described in this paper is to find an approximate
solution, let us denote it by Û for now, in some space V̂ ⊂ Vh, such that
dim V̂ = dimVH , for H > h, and the error ‖Un − Ûn‖ ≤ CH2. Here C is

independent of the variations in A and Ûn is less expensive to compute than
Un. The total error is then the sum of two terms

‖u(tn)− Ûn‖ ≤ ‖u(tn)− Un‖+ ‖Un − Ûn‖,
where the first term is the error due to the standard FEM approximation with
backward Euler discretization in time. This is small if h is chosen small enough,
that is, if h resolves the variations of A. Hence, we think of h > 0 as fix and
appropriately chosen. Our aim is now to analyze the error ‖Un − Ûn‖.

We emphasize that V̂ = VH is not sufficient. The total error would in this
case be ‖u(tn)− Ûn‖ ∼ (τ + (H/ε)2), which is small only if H < ε.

The next theorem states some regularity results for (3.3).

Theorem 3.1. Assume that (A1), (A2), and (A3) holds. Then, for 1 ≤ n ≤
N , there exists a unique solution Un to (2.2) such that Un ∈ Vh. Furthermore,
if U0 = 0, then we have the bound

‖∂̄tUn‖ ≤ C(‖f‖L∞(L2) + ‖ḟ‖L∞(L2)),(3.5)
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and, if f = 0, then

‖∂̄tUn‖ ≤ Ct−1
n ‖U0‖, n ≥ 1, ‖∂̄t∂̄tUn‖ ≤ Ct−2

n ‖U0‖, n ≥ 2,(3.6)

where C depends on α and T , but not on the variations of A.

Proof. From (3.3) it follows for n ≥ 2 that

(∂̄t∂̄tUn, v) + a(∂̄tUn, v) = (∂̄tfn, v), ∀v ∈ Vh,
and the stability estimate for backward Euler schemes gives

‖∂̄tUn‖ ≤ ‖∂̄tU1‖+

n∑
j=2

τ‖∂̄tfj‖.

From (3.3) we have, since U0 = 0, ‖∂̄tU1‖ ≤ ‖f1‖. Finally, using the inequality
n∑
j=2

τ‖∂̄tfj‖ ≤
n∑
j=2

max
tj−1≤ξ≤tj

τ‖ḟ(ξ)‖ ≤ C‖ḟ‖L∞(L2),

we deduce (3.5).
For the bound (3.6) we refer to [18, Lemma 7.3]. �

3.1. Orthogonal decomposition. In this section we describe the orthog-
onal decomposition which defines the GFEM space denoted V̂ in the discussion
above. We refer to [15] and [14] for details.

For the construction of the GFEM space we use the (weighted) Clément
interpolation operator introduced in [4], IH : Vh → VH defined by

IHv =
∑
x∈N

(IHv)(x)ϕx, where (IHv)(x) :=

∫
Ω
vϕx∫

Ω
ϕx

.(3.7)

For this interpolation operator the following result is proved [4]

H−1
K ‖v − IHv‖L2(K) + ‖∇(v − IHv)‖L2(K) ≤ C‖∇v‖L2(ω̄K),∀v ∈ V,(3.8)

where ω̄K := ∪{K̄ ∈ TH : K̄ ∩K 6= ∅} and C depends on the shape regularity
γ.

Let V f = {v ∈ Vh : IHv = 0} be the kernel of the Clément interpolation
operator (3.7). This space contains all fine scale features not resolved by VH .
The space Vh can then be decomposed into Vh = VH ⊕ V f , where v ∈ Vh can
be written as a sum v = vH + vf , with vH ∈ VH , vf ∈ V f , and (vH , v

f) = 0.
Now define the orthogonal projection Rf : Vh → V f by

a(Rfv, w) = a(v, w) ∀w ∈ V f , v ∈ Vh.
Using this projection we define the GFEM space, also referred to as the multi-
scale space,

V ms := VH −RfVH ,

which leads to another orthogonal decomposition Vh = V ms ⊕ V f . Hence any
function v ∈ Vh has a unique decomposition v = vms + vf , with vms ∈ V ms and
vf ∈ V f , with a(vms, vf) = 0.
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To define a basis for V ms we need to find the projection Rf of the nodal
basis function ϕx ∈ VH . Let this projection be denoted φx, so that φx ∈ V f

satisfies the (global) corrector problem

a(φx, w) = a(ϕx, w), ∀w ∈ V f .(3.9)

A basis for the multiscale space V ms is thus given by

{ϕx − φx : x ∈ N}.

We also introduce the projection Rms : Vh → V ms, defined by

a(Rmsv, w) = a(v, w), ∀w ∈ V ms, v ∈ Vh.(3.10)

Note that Rms = I − Rf . For Rms we have the following lemma, based on the
results in [15].

Lemma 3.2. For the projection Rms in (3.10) and v ∈ Vh we have the error
bound

‖v −Rmsv‖ ≤ CH2‖Ahv‖, v ∈ Vh,(3.11)

where C depends on α and γ, but not on the variations of A.

Proof. Define the following elliptic auxiliary problem: find z ∈ Vh such
that

a(z, w) = (v −Rmsv, w), ∀w ∈ Vh.

In [15, Lemma 3.1] it was proven that the solution to an elliptic equation of the
form

a(u,w) = (g, w), ∀w ∈ Vh,

satisfies the error estimate

|||u−Rmsu||| ≤ CH‖g‖,

where C depends on γ and α, but not on the variations of A. Hence, we have
the following bound for z,

|||z −Rmsz||| ≤ CH‖v −Rmsv‖.

Furthermore, we note that v −Rmsv ∈ Vh and

‖v −Rmsv‖2 = (v −Rmsv, v −Rmsv) = a(z, v −Rmsv)

= a(z −Rmsz, v −Rmsv) ≤ |||z −Rmsz||| |||v −Rmsv|||.

Now, since a(v, w) = (Ahv, w), we get |||v − Rmsv||| ≤ CH‖Ahv‖ and (3.11)
follows. �

In particular, if Un is the solution to (3.3), then (3.11) gives

‖Un −RmsUn‖ ≤ CH2‖Phfn − ∂̄tUn‖, n ≥ 1,

‖∂̄tUn −Rms∂̄tUn‖ ≤ CH2‖Ph∂̄tfn − ∂̄t∂̄tUn‖, n ≥ 2.
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The result in Lemma 3.2 should be compared with the error of the classical
Ritz projection Rh : V → Vh defined by a(Rhv, w) = a(v, w), ∀w ∈ Vh. Using
elliptic regularity estimates, one achieves

‖Rhv − v‖ ≤ Ch2‖D2v‖ ≤ Ch2‖Av‖,

which is similar to the result in Lemma 3.2. However, in this case, C depends on
the variations of A, as we noted in the discussion in the beginning of this section.
This is avoided using the Rms-projection, since the constant in Lemma 3.2 does
not depend on the variations of A.

Now let Pms denote the L2-projection onto V ms and define the correspond-
ing GFEM to problem (3.3); find Ums

n ∈ V ms such that Ums
0 = PmsU0 and

(∂̄tU
ms
n , v) + a(Ums

n , v) = (fn, v), ∀v ∈ V ms,(3.12)

for n = 1, ..., N . Furthermore, we define the operator Ams : V ms → V ms by

(Amsv, w) = a(v, w), ∀v, w ∈ V ms.(3.13)

3.2. Localization. Since the corrector problems (3.9) are posed in the
fine scale space V f they are computationally expensive to solve. Moreover,
the correctors φx generally have global support, which destroys the sparsity
of the resulting linear system (3.12). However, as shown in [15], φx decays
exponentially fast away from x. This observation motivates a localization of
the corrector problems to smaller patches of coarse elements. Here we use a
variant presented in [7], which reduces the required size of the patches.

We first define the notion of patches and their sizes. For all K ∈ TH we
define ωk(K) to be the patch of size k, where

ω0(K) := K,

ωk(K) := ∪{K̄ ∈ TH : K̄ ∩ ωk−1(K) 6= ∅}, k = 1, 2, ...

Moreover, we define V f(ωk(K)) := {w ∈ V f : supp(w) ⊂ ωk(K)}.
Now define the operator Rf

K : Vh → V f by∫
Ω

A∇Rf
Kv · ∇w =

∫
K

A∇v · ∇w, ∀v ∈ Vh, w ∈ V f ,

and note that Rf :=
∑
K∈TH R

f
K . We now localize the operator Rf

K by defining

Rf
K,k : Vh → V f(ωk(K)) through∫

ωk(K)

A∇Rf
K,kv · ∇w =

∫
K

A∇v · ∇w, ∀v ∈ Vh, w ∈ V f(ωk(K)),

and we define Rf
k :=

∑
K∈TH R

f
K,k. Hence we can, for each nonnegative integer

k, define a localized multiscale space

V ms
k := VH −Rf

kVH .

Here the basis is given by {ϕx − φk,x : x ∈ N}, where φk,x = Rf
kϕx is the

localized version of φx. The procedure of decomposing Vh into the orthogonal
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spaces V ms and V f together with the localization of V ms to V ms
k is referred to

as local orthogonal decomposition.
The following lemma follows from Lemma 3.6 in [7].

Lemma 3.3. There exists a constant 0 < µ < 1 that depends on the contrast
β/α such that

|||Rfv −Rf
kv||| ≤ Ckd/2µk|||v|||, ∀v ∈ Vh,

where C depends on β, α, and γ, but not on the variations of A.

Now let Rms
k : Vh → V ms

k be the orthogonal projection defined by

a(Rms
k v, w) = a(v, w), ∀w ∈ V ms

k .(3.14)

Next lemma is a consequence of Theorem 3.7 in [7] and estimates the error due
to the localization procedure.

Lemma 3.4. For the projection Rms
k in (3.14) we have the bound

‖v −Rms
k v‖ ≤ C(H + kd/2µk)2‖Ahv‖, ∀v ∈ Vh.(3.15)

Here C depends on β, α, and γ, but not on the variations of A.

Proof. The proof is similar to the proof of Lemma 3.2. Let z ∈ Vh be the
solution to the elliptic dual problem

a(z, w) = (v −Rms
k v, w), ∀w ∈ Vh,

which gives

‖v −Rms
k v‖2 = (v −Rms

k v, v −Rms
k v) = a(z −Rms

k z, v −Rms
k v)

≤ |||z −Rms
k z||||||v −Rms

k v|||.

It follows from Theorem 3.7 in [7] that there exists a constant C depending
on β, α, and γ, such that |||z − Rms

k z||| ≤ C(H + kd/2µk)‖v − Rms
k v‖, with

µ as in Lemma 3.3. Since (Ahv, w) = a(v, w) we get |||v − Rms
k v||| ≤ C(H +

kd/2µk)‖Ahv‖ and (3.15) follows. �

We are now ready to formulate the localized version of (3.12) by replacing
V ms by V ms

k . The localized GFEM formulation reads; find Ums
k,n ∈ V ms

k such
that Ums

k,0 = Pms
k U0 and

(∂̄tU
ms
k,n, v) + a(Ums

k,n, v) = (fn, v), ∀v ∈ V ms
k ,(3.16)

for n = 1, ..., N , where Pms
k is the L2-projection onto V ms

k . We also define the
operator Ams

k : V ms
k → V ms

k , a localized version of (3.13), by

(Ams
k v, w) = a(v, w), ∀v, w ∈ V ms

k .(3.17)

Next lemma states some important properties of the operators Ah, Ams,
and Ams

k .
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Lemma 3.5. The operators Ah, Ams, and Ams
k are self-adjoint and positive

definite. Furthermore, the following bound hold

‖(Ams
k )−1/2Pms

k f‖ ≤ C‖f‖H−1 , ∀f ∈ L2,

where C depends on α.

Proof. The fact that the operators are self-adjoint and positive definite
follows from the assumptions on A (A1). A proof of the bound can be found in
[13]. �

We also define the solution operator Ems
k,n = ((I+ τAms

k )−1)n, such that the

solution to (3.16), with f = 0, can be expressed as Ums
k,n = Ems

k,nU
ms
k,0. For this

operator we have estimates similar to (3.6).

Lemma 3.6. For l = 0, 1, and v ∈ L2, we have

‖∂̄ltEms
k,nP

ms
k v‖ ≤ Ct−ln ‖v‖, n ≥ l, |||Ems

k,nP
ms
k v||| ≤ Ct−1/2

n ‖v‖, n ≥ 1,

where C depends on the constant Ck = sups>0 s
ke−s, β, and α.

Proof. The operator Ams
k is self-adjoint, positive definite, and defined on

the finite dimensional space V ms
k . Thus, there exist a finite number of positive

eigenvalues {λi}Mi=1 and corresponding orthogonal eigenvectors {ϕi}Mi=1 such
that span{ϕi} = V ms

k . We refer to [14] for a further discussion on the eigenvalues
to the operator Ams

k .
It follows that Ems

k,nv can be written as

Ems
k,nv =

M∑
i=1

1

(1 + τλi)n
(v, ϕi)ϕi,

and the estimates now follows from [18, Lemma 7.3]. �

4. Error analysis

In this section we derive error estimates for the local orthogonal decompo-
sition method introduced in Section 3. The localized GFEM solution (3.16) is
compared to the classical FEM solution (3.3), which leads to a setting where
the initial data is not smooth, since U0 ∈ Vh only. This leads to error bounds
which are non-uniform in time, but of optimal order for a fix time tn > 0.
The same phenomenon appears in classical finite element analysis for equations
with nonsmooth initial data, see [18] and references therein. The error analysis
in this section is carried out by only taking the L2-norm of U0, which allows
u0 ∈ L2. If we, for instance, choose U0 = Phu0, then ‖U0‖ ≤ ‖u0‖.

Theorem 4.1. Let Un be the solution to (3.3) and Ums
k,n the solution to

(3.16). Then, for 1 ≤ n ≤ N ,

‖Ums
k,n − Un‖ ≤ C

(
1 + log

tn
τ

)
(H + kd/2µk)2

(
t−1
n ‖U0‖+ ‖f‖L∞(L2)

+ ‖ḟ‖L∞(L2)

)
,
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where C depends on β, α, γ, and T , but not on the variations of A.

The proof of Theorem 4.1 is divided into two lemmas. The first covers the
homogeneous case, f = 0, and the second covers the nonhomogeneous case with
vanishing initial data u0 = 0. To study the error in the homogeneous case we
use techniques similar to the classical finite element analysis of problems with
nonsmooth initial data, see [18] and the references therein.

Define Th = A−1
h Ph and Tms

k = (Ams
k )−1Pms

k . With this notation the
solution to the parabolic problem (3.3), with f = 0, can be expressed as
Th∂̄tUn + Un = 0. Similarly, the solution to (3.16), with f = 0, can be ex-
pressed as Tms

k ∂̄tU
ms
k,n + Ums

k,n = 0. Note that Tms
k is self-adjoint and positive

semi-definite on L2, and that Tms
k = Rms

k Th.
Now, let en = Ums

k,n − Un, where en solves the error equation

Tms
k ∂̄ten + en = −Un − Tms

k ∂̄tUn = (Th − Tms
k )∂̄tUn = (Rms

k − I)Un(4.1)

=: ρn,

for n = 1, ..., N with Tms
k e0 = 0, since Ums

k,0 = Pms
k U0. The following lemma is a

discrete versions of [18, Lemma 3.3].

Lemma 4.2. Suppose en satisfies the error equation (4.1). Then

‖en‖2 ≤ C
(
‖ρn‖2 + t−1

n

( n∑
j=1

τ‖ρj‖2 +

n∑
j=2

τt2j‖∂̄ρj‖2
))
, n ≥ 2,(4.2)

‖e1‖ ≤ ‖ρ1‖.(4.3)

Proof. Multiply the error equation (4.1) by ∂̄ten and integrate over Ω to
get

(Tms
k ∂̄ten, ∂̄ten) + (en, ∂̄ten) = (ρn, ∂̄ten),

where the first term on the left hand side is nonnegative, since Tms
k is positive

semi-definite on L2. Multiplying by τtn we have

tn‖en‖2 − tn(en, en−1) ≤ tn(ρn, en − en−1),

which gives

tn
2
‖en‖2 −

tn−1

2
‖en−1‖2 ≤ tn(ρn, en − en−1) +

tn − tn−1

2
‖en−1‖2

≤ tn(ρn, en)− tn−1(ρn−1, en−1)

− (tnρn − tn−1ρn−1, en−1) +
τ

2
‖en−1‖2.

Summing over n now gives

tn‖en‖2 − t1‖e1‖2 ≤ 2tn(ρn, en)− 2t1(ρ1, e1)−
n∑
j=2

2(tjρj − tj−1ρj−1, ej−1)

+

n∑
j=2

τ‖ej−1‖2,
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and thus,

tn‖en‖2 ≤ C
(
tn‖ρn‖2 +

n∑
j=2

τ
(
t2j‖∂̄tρj‖2 + ‖ρj−1‖2

)
+

n∑
j=2

τ‖ej−1‖2
)
.

To estimate the last sum we note that, since Tms
k is self-adjoint and positive

semi-definite,

2(Tms
k ∂̄ten, en) = (Tms

k ∂̄ten, en) + (Tms
k en, ∂̄ten)

= ∂̄t(T
ms
k en, en) + τ(Tms

k ∂̄ten, ∂̄ten) ≥ ∂̄t(Tms
k en, en).

so by multiplying the error equation (4.1) by 2en we get

∂̄t(T
ms
k en, en) + 2‖en‖2 ≤ 2(Tms

k ∂̄ten, en) + 2‖en‖2 = 2(ρn, en).

Multiplying by τ and summing over n gives

(Tms
k en, en) +

n∑
j=1

τ‖ej‖2 ≤
n∑
j=1

τ‖ρj‖2,

where we have used that Tms
k e0 = 0. Since the first term is nonnegative we

deduce that
∑n
j=1 τ‖ej‖2 ≤

∑n
j=1 τ‖ρj‖2 and (4.2) follows. For n = 1 this also

proves (4.3). �

Next Lemma is a discrete version of a result that can be found in the proof
of [18, Theorem 3.3].

Lemma 4.3. Under the assumptions of Lemma 4.2 we have, for n ≥ 2, the
bound

‖en‖ ≤ Ct−1
n

(
max

2≤j≤n
t2j‖∂̄tρj‖+ max

1≤j≤n

(
tj‖ρj‖+ ‖

j∑
r=1

τρr‖
))
.(4.4)

Proof. It follows from Lemma 4.2 that

‖en‖ ≤ C( max
2≤j≤n

tj‖∂̄tρj‖+ max
1≤j≤n

‖ρj‖), n ≥ 2,

or by using Young’s inequality with different constants the proof can be modified
to show that

‖en‖ ≤ ε max
2≤j≤n

tj‖∂̄tρj‖+ C(ε) max
1≤j≤n

‖ρj‖, n ≥ 2,

for some ε > 0. Now define zj = tjej . Then

Tms
k ∂̄tzn + zn = tnρn + Tms

k en−1 := ηn, n ≥ 1,

and, since Tms
k z0 = 0 we conclude from Lemma 4.2

‖zn‖ ≤ ε max
2≤j≤n

tj‖∂̄tηj‖+ C max
1≤j≤n

‖ηj‖.

From the definition of ηj it follows that

‖ηj‖ ≤ tj‖ρj‖+ ‖Tms
k ej−1‖, j ≥ 1.
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Furthermore, for j ≥ 2

tj‖∂̄tηj‖ ≤ tj‖∂̄ttjρj‖+ tj‖∂̄tTms
k ej−1‖

≤ t2j‖∂̄tρj‖+ tj‖ρj−1‖+ tj‖ρj−1 − ej−1‖
≤ t2j‖∂̄tρj‖+ 2tj‖ρj − ρj−1‖+ 2tj‖ρj‖+ tj‖ej−1‖
≤ 3t2j‖∂̄tρj‖+ 2tj‖ρj‖+ 2tj−1‖ej−1‖

≤ C
(
t2j‖∂̄tρj‖+ tj‖ρj‖

)
+ 2‖zj−1‖,

where we used 1
2 tj ≤ tj−1 ≤ tj for j ≥ 2. To bound ‖Tms

k en‖ we define
ẽn =

∑n
j=1 τej and ẽ0 = 0. Multiplying the error equation (4.1) by τ and

summing over n gives
n∑
j=1

τTms
k ∂̄ten + ẽn = Tms

k ∂̄tẽn + ẽn = ρ̃n, n ≥ 1,

where ρ̃n =
∑n
j=1 τρj and we have used that Tms

k e0 = 0. Note that by definition
Tms
k ẽ0 = 0. Thus, by Lemma 4.2, we have

‖ẽn‖ ≤ C
(

max
2≤j≤n

tj‖∂̄tρ̃j‖+ max
1≤j≤n

‖ρ̃j‖
)

≤ C
(

max
2≤j≤n

tj‖ρj‖+ max
1≤j≤n

‖
j∑
r=1

τρr‖
)
.

Hence, since Tms
k ∂̄tẽn = Tms

k en,

‖Tms
k en‖ ≤ ‖ẽn‖+ ‖ρ̃n‖ ≤ C

(
max

2≤j≤n
tj‖ρj‖+ max

1≤j≤n
‖

j∑
r=1

τρr‖
)
.

With ε = 1
4 we get

‖zn‖ ≤
1

4
max

2≤j≤n
tj‖∂̄tηj‖+ C max

1≤j≤n
‖ηj‖

≤ 1

2
max

1≤j≤n
‖zj‖+ C

(
max

2≤j≤n
t2j‖∂̄tρj‖+ max

1≤j≤n
(tj‖ρj‖+ ‖

j∑
r=1

τρr‖)
)
,

but from (4.3) we deduce ‖z1‖ ≤ t1‖ρ1‖, and hence

‖zn‖ ≤
1

2
max

2≤j≤n
‖zj‖+ C

(
max

2≤j≤n
t2j‖∂̄tρj‖+ max

1≤j≤n
(tj‖ρj‖+ ‖

j∑
r=1

τρr‖)
)
.

Choosing n∗ such that max2≤j≤n zj = zn∗ we conclude (4.4). �

Lemma 4.4. Assume f = 0 and let Ums
k,n be the solution to (3.16) and Un

the solution to (3.3). Then, for 1 ≤ n ≤ N ,

‖Ums
k,n − Un‖ ≤ C(H + kd/2µk)2t−1

n ‖U0‖
where C depends on β, α, γ, and T , but not on the variations of A.
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Proof. From Lemma 4.3 we have

‖en‖ ≤ Ct−1
n

(
max

2≤j≤n
t2j‖∂̄tρj‖+ max

1≤j≤n

(
tj‖ρj‖+ ‖

j∑
r=1

τρr‖
))
, n ≥ 2,

and from Lemma 4.2 ‖e1‖ ≤ ‖ρ1‖. The rest of the proof is based on estimates
for the projection Rms

k in Lemma 3.4 and the regularity of the homogeneous
equation (3.6). We have

t2j‖∂̄tρj‖ ≤ C(H + kd/2µk)2t2j‖Ah∂̄tUj‖

≤ C(H + kd/2µk)2t2j‖∂̄t∂̄tUj‖ ≤ C(H + kd/2µk)2‖U0‖, j ≥ 2,

tj‖ρj‖ ≤ C(H + kd/2µk)2tj‖AhUj‖ ≤ C(H + kd/2µk)2‖U0‖, j ≥ 1,

‖
j∑
r=1

τρr‖ = ‖
j∑
r=1

τ(Th − Tms
k )∂̄tUr‖ ≤ ‖(Th − Tms

k )(Uj − U0)‖

≤ C(H + kd/2µk)2‖U0‖,

where we have used ‖Uj‖ ≤ ‖U0‖, which completes the proof. �

The next lemma concerns the convergence of the inhomogeneous parabolic
problem (2.1) with initial data U0 = 0.

Lemma 4.5. Assume U0 = 0 and let Ums
k,n be the solution to (3.16) and Un

the solution to (3.3). Then, for 1 ≤ n ≤ N ,

‖Ums
k,n − Un‖ ≤ C(1 + log

tn
τ

)(H + kd/2µk)2(‖f‖L∞(L2) + ‖ḟ‖L∞(L2)),

where C depends on β, α, γ, and T , but not on the variations of A.

Proof. Let Ums
k,n − Un = Ums

k,n −Rms
k Un +Rms

k Un − Un =: θn + ρn. For ρn
we use Lemma 3.4 to achieve the estimate

‖ρn‖ ≤ C(H + kd/2µk)2‖AhUn‖.

Now, for v ∈ V ms
k we have(

∂̄tθn, v
)

+ a(θn, v) = (−∂̄tρn, v).

Using Duhamel’s principle we have

θn = τ

n∑
j=1

Ems
k,n−j+1P

ms
k (−∂̄tρj),

since θ0 = 0. Summation by parts now gives

θn = Ems
k,nP

ms
k ρ0 − Pms

k ρn + τ

n∑
j=1

∂̄tE
ms
k,n−j+1P

ms
k ρj .
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Note that ρ0 = 0. Using Lemma 3.4 and Lemma 3.6 we get

‖θn‖ ≤ ‖ρn‖+ τ

n∑
j=1

t−1
n−j+1‖ρj‖

≤ C(H + kd/2µk)2 max
1≤j≤n

‖AhUj‖(1 + τ

n∑
j=1

t−1
n−j+1),

where the last sum can be bounded by

τ

n∑
j=1

t−1
n−j+1 ≤ 1 + log

tn
τ
.

It remains to bound ‖AhUn‖. We have AhUn = Phfn − ∂̄tUn and Lemma 3.1
gives

‖AhUj‖ ≤ ‖fj‖+ ‖∂̄tUj‖ ≤ C(‖f‖L∞(L2) + ‖ḟ‖L∞(L2)),

which completes the proof. �

Proof of Theorem 4.1. The result follows from Lemma 4.4 and Lemma
4.5 by rewriting Un = Un,1+Un,2, where Un,1 is the solution to the homogeneous
problem and Un,2 the solution to the inhomogeneous problem with vanishing
initial data. �

Remark 4.6. We note that the choice of k and the size of µ determine the
rate of the convergence. In general, to achieve optimal order convergence rate,
k should be chosen proportional to log(H−1), i.e. k = c log(H−1). With this
choice of k we have ‖Ums

k,n − Un‖ ≤ C(1 + log n)H2t−1
n .

5. The semilinear parabolic equation

In this section we discuss how the above techniques can be extended to a
semilinear parabolic problem with multiscale diffusion coefficient.

5.1. Problem formulation. We are interested in equations of the form

u̇−∇ · (A∇u) = f(u), in Ω× (0, T ],

u = 0, on ∂Ω× (0, T ],(5.1)

u(·, 0) = u0, in Ω,

where f : R → R is twice continuously differentiable and Ω is a polygo-
nal/polyhedral boundary in Rd, for d ≤ 3. For d = 2, 3, f is assumed to
fulfill the growth condition

|f (l)(ξ)| ≤ C(1 + |ξ|δ+1−l), for l = 1, 2,(5.2)

where δ = 2 if d = 3 and δ ∈ [1,∞) if d = 2. Furthermore, we assume that the
diffusion A fulfills assumption (A1) and u0 ∈ V .

Example 5.1. The Allen-Cahn equation u̇−∇· (A∇u) = −(u3−u) fulfills
the assumption (5.2).
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Define the ball BR := {v ∈ V : ‖v‖H1 ≤ R}. Using Hölder and Sobolev
inequalities the following lemma can be proved, see [13].

Lemma 5.2. If f fulfills assumption (5.2) and u, v ∈ BR, then

‖f(u)‖ ≤ C, ‖f ′(u)z‖H−1 ≤ C‖z‖,
‖f ′(u)z‖ ≤ C‖z‖H1 , ‖f ′′(u)z‖H−1 ≤ C‖z‖,

and

‖f(u)− f(v)‖H−1 ≤ C‖u− v‖,

where C is a constant depending on R.

From (5.1) we derive the variational form; find u(t) ∈ V such that

(u̇, v) + (A∇u,∇v) = (f(u), v), ∀v ∈ V,(5.3)

and u(0) = u0. For this problem local existence of a solution can be derived
given that the initial data u0 ∈ V , see [13].

Theorem 5.3. Assume that (A1) and (5.2) holds. Then, for u0 ∈ BR, there
exist τ0 = τ0(R) and c > 0, such that (5.3) has a unique solution u ∈ C(0, τ0;V )
and ‖u‖L∞(0,τ0;V ) ≤ cR.

For the Allen-Cahn equation it is possible to find an a priori global bound
of u. This means that for any time T there exists R such that if u is a solution
then ‖u(t)‖L∞(H1) ≤ R for t ∈ [0, T ]. Thus we can apply the local existence
theorem repeatedly to attain global existence, see [13].

5.2. Numerical approximation. The assumptions and definitions of the
families of triangulations {Th}h>0 and {TH}H>h and the corresponding spaces
VH and Vh remain the same as in Section 3. For the discretization in time we
use a uniform time discretization given by

0 = t0 < t1 < ... < tN = τ0, where tn − tn−1 = τ,(5.4)

where τ0 is given from Theorem 5.3. With these discrete spaces we consider the
semi-implicit backward Euler scheme where Un ∈ Vh satisfies

(∂̄tUn, v) + (A∇Un,∇v) = (f(Un−1), v), ∀v ∈ Vh,(5.5)

for n = 1, ..., N where U0 ∈ Vh is an approximation of u0. It is proven in [12]
that this scheme satisfies the bound

‖Un − u(tn)‖ ≤ Ct−1/2
n (h2 + τ),

if we choose, for instance, U0 = Phu0, where Ph denotes the L2-projection onto
Vh. Note that C in this bound depends on the variations of A.

The following theorem gives some regularity estimates of the solution to
(5.5).
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Theorem 5.4. Assume that (A1) and (5.2) holds. Then, for U0 ∈ BR,
there exist τ0 = τ0(R) and c > 0 such that (5.5) has a unique solution Un ∈ Vh,
for 1 ≤ n ≤ N , and max1≤n≤N ‖Un‖H1 ≤ cR. Moreover, the following bounds
hold

‖∂̄tUn‖ ≤ Ct−1/2
n , n ≥ 1, |||∂̄tUn||| ≤ Ct−1

n , n ≥ 1,

‖∂̄t∂̄tUn‖ ≤ Ct−3/2
n , n ≥ 2,

where C depends on α, τ0, and R, but not on the variations of A.

Proof. We only prove the estimate ‖∂̄t∂̄tUn‖ ≤ Ct
−3/2
n here. The other

two follow by similar arguments.
From (5.5) we get

(∂̄t∂̄tUn, v) + a(∂̄tUn, v) = (∂̄tf(Un−1), v), ∀v ∈ Vh, n ≥ 2,(5.6)

(∂̄
(3)
t Un, v) + a(∂̄t∂̄tUn, v) = (∂̄t∂̄tf(Un−1), v), ∀v ∈ Vh, n ≥ 3.(5.7)

Choosing v = ∂̄t∂̄tUn in (5.7) gives

1

τ
‖∂̄t∂̄tUn‖2 −

1

τ
(∂̄t∂̄tUn−1, ∂̄t∂̄tUn) + |||∂̄t∂̄tUn|||2 = (∂̄t∂̄tf(Un−1), ∂̄t∂̄tUn),

which gives the bound

‖∂̄t∂̄tUn‖2 − ‖∂̄t∂̄tUn−1‖2 ≤ Cτ‖∂̄t∂̄tf(Un−1)‖H−1 .(5.8)

Using Lemma 5.2 we have for

ξj ∈ (min{Un−j , Un−(j−1)},max{Un−j , Un−(j−1)})

the following bound

‖∂̄t∂̄tf(Un)‖H−1 =
1

τ2
‖f ′(ξ1)(Un − Un−1)− f ′(ξ2)(Un−1 − Un−2)‖H−1

≤ 1

τ2
‖(f ′(ξ1)− f ′(ξ2))(Un − Un−1)‖H−1

+
1

τ2
‖f ′(ξ2)(Un − 2Un−1 + Un−2)‖H−1

≤ 1

τ2
‖(ξ1 − ξ2)(Un − Un−1)‖+ C‖∂̄t∂̄tUn‖,

Note that |ξ1− ξ2‖ ≤ ‖Un−2−Un−1‖+ ‖Un−1−Un‖. By using Sobolev embed-
dings we get

1

τ2
‖(ξ1 − ξ2)(Un − Un−1)‖ ≤ max

n−1≤j≤n
2‖(∂̄tUj)2‖ ≤ max

n−1≤j≤n
2‖∂̄tUj‖2L4

≤ C max
n−1≤j≤n

‖∂̄tUj‖2H1 ≤ Ct−2
n−1 ≤ Ct−2

n ,
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where we recall the bounds 1
2 tj ≤ tj−1 ≤ tj for j ≥ 2. Multiplying by τt4n in

(5.8) and summing over n gives

t4n‖∂̄t∂̄tUn‖2

≤ t42‖∂̄t∂̄tU2‖2 +

n∑
j=3

(τt4j‖∂̄t∂̄tf(Un−1)‖2H−1 + (t4j − t4j−1)‖∂̄t∂̄tUj−1‖2)

≤ t42‖∂̄t∂̄tU2‖2 + C

n∑
j=3

τ
(
t4j‖∂̄t∂̄tUj−1‖2 + t4j t

−4
j−1 + t3j−1‖∂̄t∂̄tUj−1‖2

)
≤ t42‖∂̄t∂̄tU2‖2 + Ctn + C

n∑
j=3

τ
(
t4j−1‖∂̄t∂̄tUj−1‖2 + t3j−1‖∂̄t∂̄tUj−1‖2

)
,

for n ≥ 3. Using ‖∂̄tUj‖ ≤ Ct−1/2
j for j ≥ 1 we get

t42‖∂̄t∂̄tU2‖2 ≤ Cτ2(‖∂̄tU2‖2 + ‖∂̄tU1‖2) ≤ Cτ2(t−1
2 + t−1

1 ) ≤ Cτ.

Now, to bound
∑n
j=2 t

3
j‖∂̄t∂̄tUj‖, we choose v = ∂̄t∂̄tUn in (5.6) to derive

‖∂̄t∂̄tUn‖2 +
1

τ
|||∂̄tUn|||2 −

1

τ
|||∂̄tUn−1|||2 ≤ ‖∂̄tf(Un−1)‖2.(5.9)

and with ξj as above, we get

‖∂̄tf(Un−1)‖ = ‖f ′(ξ2)∂̄tUn−1‖ ≤ C|||∂̄tUn−1||| ≤ Ct−1
n−1,

where we used Lemma 5.2 and |||∂̄tUj ||| ≤ Ct−1
j for j ≥ 1. Multiplying 5.9 with

τt3n and summing over n gives

n∑
j=2

τt3j‖∂̄t∂̄tUj‖2 + t3n|||∂̄tUn|||
2 ≤ C

n∑
j=2

(τt3j t
−2
j−1 + (t3j − t3j−1)|||∂̄tUj−1|||2)

+ t31|||∂̄tU1|||2

≤ C
n∑
j=2

(τtj + τt2j−1|||∂̄tUj−1|||2) + t31|||∂̄tU1|||2.

Using |||∂̄tUj ||| ≤ Ct−1
j for j ≥ 1 we get

n∑
j=2

τt3j‖∂̄t∂̄tUj‖2 ≤ C(t2n + tn + t1) ≤ Ctn,

39



Paper I

where C now depends on tn ≤ T . So we have proved

t4n‖∂̄t∂̄tUn‖2 ≤ C
n∑
j=3

τt4j−1‖∂̄t∂̄tUj−1‖2 + Ctn + τ

≤ C
n−1∑
j=2

τt4j‖∂̄t∂̄tUj‖2 + Ctn+1

≤ C
n−1∑
j=2

τt4j‖∂̄t∂̄tUj‖2 + Ctn.

Applying the classical discrete Grönwall’s lemma gives

t4n‖∂̄t∂̄tUn‖2 ≤ Ctn,

which proves ‖∂̄t∂̄tUn‖ ≤ Ct−3/2
n for n ≥ 3. For n = 2 we proved

t42‖∂̄t∂̄tU2‖2 ≤ Cτ ≤ Ct2,

which completes the proof. �

We use the same GFEM space as in Section 3, that is, V ms = VH −Rf(VH)
and the localized version V ms

k = VH−Rf
k(VH). Furthermore, for the completely

discrete scheme, we consider the time discretization defined in (5.4) and the
linearized backward Euler method thus reads; find Ums

k,n ∈ V ms such that Ums
k,0 =

Pms
k U0 and

(∂̄tU
ms
k,n, v) + a(Ums

k,n, v) = (f(Ums
k,n−1), v),(5.10)

for n = 1, ..., N where Pms
k is the L2-projection onto V ms

k .
To derive an error estimates we represent the solution to (5.10) by using

Duhamel’s principle. Note that Ums
k,n is the solution to the equation

∂̄tU
ms
k,n +Ams

k Ums
k,n = Pms

k f(Ums
k,n−1),

and by Duhamel’s principle we get

Ums
k,n = Ems

k,nU
ms
k,0 + τ

n∑
j=1

Ems
k,n−j+1P

ms
k f(Ums

k,j−1).

5.3. Error analysis. For the error analysis we need the following gener-
alized discrete Grönwall lemma, see, e.g., [13].

Lemma 5.5. Let A,B ≥ 0, γ1, γ2 > 0, 0 ≤ t0 < tn ≤ T , and 0 ≤ ϕn ≤ R.
If

ϕn ≤ At−1+γ1
n +Bτ

n−1∑
j=1

t−1+γ2
n−j+1ϕj ,

then there is a constant C depending on B, γ1, γ2, and, T , such that,

ϕn ≤ At−1+γ1
n .
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Theorem 5.6. For given R ≥ 0 and τ0 > 0 let Un be the solution to
(5.5) and Ums

k,n be the solution to (5.10), such that Un, U
ms
k,n ∈ BR. Then, for

1 ≤ n ≤ N ,

‖Ums
k,n − Un‖ ≤ C(H + kd/2µk)2t−1/2

n ,(5.11)

where C depends on β, α, γ, R, and τ0, but not on the variations of A.

Proof. First we define en = Ums
k,n−Un = (Ums

k,n−Rms
k Un)+(Rms

k Un−Un) =
θn + ρn. For ρj we use Lemma 3.4 to prove the bounds

‖ρj‖ ≤ C(H + kd/2µk)2t
−1/2
j , j ≥ 1,

and

‖∂̄tρj‖ ≤ C(H + kd/2µk)2t
−3/2
j , j ≥ 2.

For θn we have

θn = Ems
k,nθ0 + τ

n∑
j=1

Ems
k,n−j+1P

ms
k (f(Ums

k,j−1)− f(Uj−1)− ∂̄tρj).

To bound ‖θn‖ we first assume n ≥ 2 and use summation by parts for the
first part of the sum. Defining n2 to be the integer part of n/2 we can write

−τ
n2∑
j=1

Ems
k,n−j+1P

ms
k ∂̄tρj = Ems

k,nP
ms
k ρ0 − Ems

k,n−n2
Pms
k ρn2

+ τ

n2∑
j=1

(
∂̄tE

ms
k,n−j+1

)
Pms
k ρj ,

and θn can be rewritten as

θn = Ems
k,nP

ms
k e0 − Ems

k,n−n2
Pms
k ρn2

+ τ

n2∑
j=1

(
∂̄tE

ms
k,n−j+1

)
Pms
k ρj

− τ
n∑

j=n2+1

Ems
k,n−j+1P

ms
k ∂̄tρj

+ τ

n∑
j=1

(Ams
k )1/2Ems

k,n−j+1(Ams
k )−1/2Pms

k (f(Ums
k,j−1)− f(Uj−1)),

where we note that Pms
k e0 = 0. To estimate these terms we need the following

bounds for γ1, γ2 > 0

τ

n∑
j=1

t−1+γ1
n−j+1t

−1+γ2
j ≤ Cγ1,γ2t−1+γ1+γ2

n , τ

n2∑
j=1

t−γ1n−j+1t
−1+γ2
j ≤ Cγ1,γ2t−γ1+γ2

n .
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see [12]. Using Lemma 3.6 we get

‖θn‖ ≤ ‖ρn2‖+ Cτ

n2∑
j=1

t−1
n−j+1‖ρj‖+ Cτ

n∑
j=n2+1

‖∂̄tρj‖

+ Cτ

n∑
j=1

t
−1/2
n−j+1‖f(Ums

k,j−1)− f(Uj−1)‖H−1 ,

and together with Lemma 3.4 and Lemma 5.2 this gives

‖θn‖ ≤ C(H + kd/2µk)2
(
t−1/2
n2

+ τ

n2∑
j=1

t−1
n−j+1t

−1/2
j + τ

n∑
j=n2+1

t
−3/2
j

)
+ Cτ

n∑
j=1

t
−1/2
n−j+1‖U

ms
k,j−1 − Uj−1‖

≤ C(H + kd/2µk)2t−1/2
n + Cτ

n∑
j=1

t
−1/2
n−j+1‖ej−1‖.

Now consider θ1. We can rewrite

θ1 = Ems
k,1θ0 + τEms

k,1P
ms
k (f(Ums

k,0)− f(U0)− ∂̄tρ1)

= Ems
k,1P

ms
k e0 − Ems

k,1P
ms
k ρ1 + τEms

k,1P
ms
k (f(Ums

k,0)− f(U0)),

and using similar arguments as above

‖θ1‖ ≤ C(H + kd/2µk)2t
−1/2
1 + τt

−1/2
1 ‖e0‖,

Hence, we arrive at the estimate

‖en‖ ≤ Ct−1/2
n (H + kd/2µ)2 + Cτ

n∑
j=1

t
−1/2
n−j+1‖ej−1‖, n ≥ 1,

and we can use Lemma 5.5 to conclude (5.11). �

6. Numerical Results

In this section we present some numerical results to verify the predicted
error estimates presented for the linear problem in Section 4 and the semilinear
problem in Section 5. In both cases the domain is set to the unit square Ω =
[0, 1]×[0, 1] and T = 1. The domain Ω is discretized with a uniform triangulation
and the interval [0, T ] is divided into subintervals of equal length.

The method is tested on two different types of diffusion coefficients A1 and
A2 defined as

A1(x) =

(
1 0
0 1

)
, A2(x) =

(
B(x) 0

0 B(x)

)
,

where B is piecewise constant with respect to a uniform Cartesian grid of size
2−6, see Figure 1. Note that our choice of B imposes significant multiscale
behavior on the diffusion coefficient. Here we expect quadratic convergence
in space of the standard finite element with piecewise linear and continuous
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polynomials (P1-FEM) when A = A1, but poor convergence when A = A2. For
the GFEM we expect quadratic convergence in both cases.
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(a) Coefficient B for the linear para-
bolic problem. The contrast is β/α ≈
106.
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(b) Coefficient B for the semilinear
parabolic problem. The contrast is
β/α ≈ 103.

Figure 1. Coefficients for the two parabolic problems.

We compute the localized GFEM in (3.16) and (5.10), denoted Ums
k,n, for 5

different values of the coarse grid width, H =
√

2·2−2,
√

2·2−3,
√

2·2−4,
√

2·2−5,
and
√

2·2−6. The time step is chosen to τ = 0.01 for all problems. The reference
mesh Th is of size h =

√
2 · 2−7 and defines the space Vh on which the localized

corrector problems φk,x are solved. To measure the error, the solution Un in

(3.3) is computed using P1-FEM on the finest scale h =
√

2 ·2−7 with τ = 0.01.
Note that this experiment measures the error ‖Un −Ums

k,n‖. The total error

‖u(tn)−Ums
k,n‖ is also affected by the difference ‖u(tn)−Un‖, which is dominating

for the smaller values of H. We now present the result in two separate sections.

6.1. Linear parabolic problem. For the linear parabolic problem (2.1)
the right hand side is set to f(x, t) = t, which fulfills the assumptions for the
required regularity. For simplicity the initial data is set to u0 = 1. More-
over, at each cell in the Cartesian grid we choose a value from the interval
[10−1, 105]. This procedure gives B a rapidly varying feature and a high con-
trast max(B)/min(B) ≈ 106, see Figure 1 (left).

For each value of H the localized GFEM, Ums
k,n, and the corresponding P1-

FEM, denoted UH,n, are computed. The patch sizes k are chosen such that
k ∼ log(H−1), that is k = 1, 2, 2, 3, and 4 for the five simulations. When
computing UH,n the stiffness matrix is assembled on the fine scale h and then
interpolated to the coarser scale. This way we avoid quadrature errors. The
convergence results for A1 and A2 are presented in Figure 2, where the error at
the final time tN is plotted against the degrees of freedom |N |. Comparing the
plots we can see the predicted quadratic convergence for the localized GFEM.
However, as expected, the P1-FEM shows poor convergence on the coarse grids
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when the diffusion coefficient has multiscale features. We clearly see the pre-
asymptotic effects when H does not resolve the fine structure of B.
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(a) Constant coefficient A1.
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(b) Multiscale coefficient A2.

Figure 2. Relative L2 errors ‖Ums
k,N − Uh,N‖/‖Uh,N‖ (blue

◦) and ‖UH,N − Uh,N‖/‖Uh,N‖ (red ∗) for the linear para-
bolic problem plotted against the number of degrees of freedom
|N | ≈ H−2. The dashed line is H2.

6.2. Semilinear parabolic problem. For the semilinear parabolic prob-
lem we study the Allen-Cahn equation, which has right hand side f(u) =
−(u3 − u) that fulfills the necessary assumptions. We define the initial data
to be u0(x, y) = x(1 − x)y(1 − y), which is zero on ∂Ω. The matrix B con-
structed as in the linear case but with values varying between 10−3 and 1. Note
that the solution to the Allen-Cahn equation converges to zero rapidly if the
diffusion is too high, thus the smaller contrast max(B)/min(B) ≈ 103 in this
case, see Figure 1 (right). However, B is still rapidly varying. As in the linear
case we now compute the localized GFEM approximations Ums

k,n and the corre-
sponding P1-FEM, UH,n. The patch sizes are chosen to k = 1, 2, 2, 3, and 4, for
the five simulations. The convergence results for A1 and A2 are presented in
Figure 3. We can draw the same conclusions as in the linear case. The local-
ized GFEM shows predicted quadratic convergence in both cases, but P1-FEM
shows poor convergence on the coarse grids when the diffusion coefficient has
multiscale features.
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(a) Constant coefficient A1.
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(b) Multiscale coefficient A2.

Figure 3. Relative L2 errors ‖Ums
k,N −Uh,N‖/‖Uh,N‖ (blue ◦)

and ‖UH,N − Uh,N‖/‖Uh,N‖ (red ∗) for the semilinear para-
bolic problem plotted against the number of degrees of freedom
|N | ≈ H−2. The dashed line is H2.
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[14] A. Målqvist and D. Peterseim: Computation of eigenvalues by numerical
upscaling, Numer. Math. 130 (2015), no. 2, p. 337–361.

[15] A. Målqvist and D. Peterseim: Localization of elliptic multiscale prob-
lems, Math. Comp. 83 (2014), no. 290, p. 2583–2603.

[16] H. Owhadi and L. Zhang: Homogenization of parabolic equations with a
continuum of space and time scales, SIAM J. Numer. Anal. 46 (2007/08),
no. 1, p. 1–36.

[17] H. Owhadi, L. Zhang, and L. Berlyand: Polyharmonic homogenization,
rough polyharmonic splines and sparse super-localization, ESAIM Math.
Model. Numer. Anal. 48 (2014), no. 2, p. 517–552.

[18] V. Thomée: Galerkin Finite Element Methods for Parabolic Problems,
Springer Series in Computational Mathematics, Springer-Verlag, Berlin,
Second edition, 2009.

48



Paper II

Patrick Henning and Anna Persson, A multiscale method for linear elasticity
reducing Poisson locking, Preprint.





A multiscale method for linear elasticity reducing Poisson
locking

Patrick Henning1 and Anna Persson2

Abstract. We propose a generalized finite element method for linear

elasticity equations with highly varying and oscillating coefficients. The

method is formulated in the framework of localized orthogonal decompo-
sition techniques introduced by Målqvist and Peterseim [23]. Assuming

only L∞-coefficients we prove linear convergence in the H1-norm, also for
materials with large Lamé parameter λ. The theoretical a priori error

estimate is confirmed by numerical examples.

1. Introduction

In this paper we study numerical solutions to linear elasticity equations
with highly varying coefficients. Such equations typically occur when modeling
the deformation of a heterogeneous material, for instance a composite material.
Problems with this type of coefficients are commonly referred to as multiscale
problems.

The convergence of classical finite element methods based on continuous
piecewise polynomials depends on (at least) the spatial H2-norm of the solution
u. However, for problems with multiscale features this norm may be very large.
Indeed, if the coefficient varies at a scale of size ε, then ‖u‖H2 ∼ ε−1. Thus, to
achieve convergence the mesh size must be small (h < ε). In many applications
this condition leads to issues with computational cost and available memory. To
overcome this difficulty several methods have been proposed, where we refer to
[1, 9, 24, 29] for multiscale methods particularly addressing elasticity problems.

Generalized finite element methods (GFEM, cf. [4]) belong to the class of
Galerkin methods. Instead of constructing the finite dimensional solution space
from standard shape functions, a generalized finite element approach is based on
constructing a set of locally supported basis functions (not necessarily piecewise
polynomials) that incorporate additional information about the structure of the
original problem. This strategy can enhance the local approximation properties
significantly. In this paper we propose a GFEM based on the ideas in [23],
often referred to as localized orthogonal decomposition (LOD). The methodology
of the LOD arose from the framework of the Variational Multiscale Method
(VMM) originally proposed by Hughes et al. [17, 18] as a tool for stabilizing
finite element methods that perform bad due to an under-resolution of relevant
microscopic data. The stabilization was achieved by using a Petrov-Galerkin
formulation of the problem with a standard finite element space as trial space
and a generalized finite element space for the test-functions. The concept was

1Department of Mathematics, KTH Royal Institute of Technology, SE-100 44 Stockholm,
Sweden.

2Department of Mathematical Sciences, Chalmers University of Technology and Univer-

sity of Gothenburg, SE-412 96 Göteborg, Sweden.
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reinterpreted and specialized in [19, 20] to elliptic homogenization problems. A
short time later, the first rigorous analysis was provided in [23] by introducing a
H1-stable localized orthogonal decomposition for constructing the test function
space. In subsequent works, refined construction strategies were proposed [16,
13].

The LOD framework relies on a decomposition of a high-dimensional so-
lution space into a coarse space (spanned by a set of standard nodal basis
functions) and a fine scale detail space that is expressed through the kernel
of a projection operator. The generalized finite element basis functions are
constructed by adding a correction from the detail space to each coarse nodal
basis function. The corrections are problem dependent and constructed by
solving a partial differential equation in the fine scale part of the space. In
[23] elliptic equations are considered and it is proven that the corrections decay
exponentially for these problems. This motivates a truncation to patches of
coarse elements, which allow for efficient computations. The resulting method
is proved to be convergent of optimal order. This convergence result does not
depend on any assumptions regarding periodicity or scale separation of the co-
efficients. Since its development, the method has been applied to several other
types of equations, see, for instance, semilinear elliptic equations [14], boundary
value problems [13], eigenvalue problems [22, 15], linear and semilinear parabolic
equations [21], the Helmholtz problem [27, 11] and the linear wave equation [2].
A review is given in [28].

In this work we consider linear elasticity equations with mixed inhomoge-
neous Dirichlet and Neumann boundary conditions. We construct correspond-
ing correctors for standard nodal basis functions and prove that they decay
exponentially. Moreover, we prove that the resulting generalized finite element
method converges with optimal order in the spatial H1-norm. The results are
confirmed by a numerical example.

Furthermore, the generalized finite element method proposed in this paper
reduces the locking effect that is observed for classical finite elements based
on continuous piecewise affine polynomials for nearly incompressible materials.
The error bound derived for the ideal method (without localization) is uniform
in the Lamé parameter λ, i.e., completely locking-free. The error estimate for
the final localized method depends on λ, however not in the usual manner, but
only weakly through a term that converges with an exponential rate to zero. In
practice, this eliminates the locking-effect.

The paper is organized as follows. In Section 2 we formulate the problem,
in Section 3 we define the generalized finite element method and in Section 4 we
perform the localization of the basis functions. Finally, in Section 5 we provide
some numerical examples.

2. Problem formulation

Let d = 2, 3, denote the spatial dimension and let S := Rd×dsym denote the
space of d×d symmetric matrices over R. On S, we use the double-dot product
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notation

A : B =

d∑
i,j=1

AijBij , A,B ∈ S.

The computational domain Ω ⊆ Rd is assumed to be a bounded polygonal (or
polyhedral) Lipschitz domain describing the reference configuration of an elastic
medium. We use (·, ·)L2(Ω) to denote the inner product on L2(Ω,Rd)

(v, w)L2(Ω) :=

∫
Ω

v(x) · w(x) dx, v, w ∈ L2(Ω,Rd),

and ‖·‖L2(Ω) for the corresponding norm. Furthermore, we let H1(Ω,Rd) denote

the classical Sobolev space with norm ‖v‖2H1(Ω) := ‖v‖2L2(Ω) +‖∇v‖2L2(Ω), where

∇v ∈ L2(Ω,Rd×d), and

‖∇v‖2L2(Ω) :=

d∑
i,j=1

∫
Ω

(∂ivj(x))2 dx, v ∈ H1(Ω,Rd).

Let u : Ω→ Rd denote the displacement field of the elastic medium. Under
the assumption of small displacement gradients, the (linearized) strain tensor
ε(u) is given by

εkl(u) :=
1

2
(∂kul + ∂luk), 1 ≤ k, l ≤ d.

Furthermore, Hooke’s (generalized) law states that the stress tensor σ is given
by the relation

σij =

d∑
k,l=1

Aijkl(x)εkl(u), 1 ≤ i, j ≤ d,

where A is a fourth order tensor describing the elastic medium. In this paper we
assume that the material is strongly heterogeneous and thus A has multiscale
properties. The tensor A is assumed to be symmetric in the sense that Aijkl =
Ajikl = Aijlk = Aklij almost everywhere.

Cauchy’s equilibrium equation now states that

−∇ · σ = f,

where f : Ω→ Rd denotes the body forces. To formulate the problem of interest
we let ΓD and ΓN denote two disjoint Hausdorff measurable segments of the
boundary, such that ΓD ∪ ΓN = ∂Ω, where Dirichlet and Neumann conditions
are imposed respectively. The linear elasticity problem consists of finding the
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displacement u and the stress tensor σ such that

−∇ · σ = f, in Ω,(2.1)

σij =

d∑
k,l=1

Aijkl εkl(u), in Ω,(2.2)

u = g, on ΓD,(2.3)

σ · n = b, on ΓN ,(2.4)

where we assume that meas(ΓD) > 0. Here g, b : Ω→ Rd denotes the Dirichlet
and Neumann data respectively.

To pose a variational form of problem (2.1)-(2.4) we need to define appro-
priate test and trial spaces. Letting γ : H1(Ω) → L2(ΓD) denote the trace
operator onto ΓD, we define the test space

V := {v ∈ (H1(Ω))d : γv = 0}.

Multiplying the equation (2.1) with a test function from V and using Green’s
formula together with the boundary conditions (2.4) we get that

(σ : ∇v)L2(Ω) = (f, v)L2(Ω) + (b, v)L2(ΓN ).

Due to the symmetry of A we have the identity (σ : ∇v) = (σ : ε(v)), and by
defining the bilinear form

B(u, v) := (σ : ε(v))L2(Ω) = (A(x)ε(u) : ε(v))L2(Ω),

we arrive at the following weak formulation of (2.1)-(2.4). Find u ∈ H1(Ω,Rd),
such that γu = g, and

B(u, v) = (f, v)L2(Ω) + (b, v)L2(ΓN ), ∀v ∈ V.(2.5)

Remark 2.1. In the case of an isotropic medium the elasticity coefficient
satisfies Aijkl = µ(δikδjl + δilδjk) + λδijδkl, where δij is the Kronecker delta,
and µ and λ are the so called Lamé coefficients. The stress tensor can in this
case be simplified to

σ = 2µε(u) + λ(∇ · u)I,

where I is the identity matrix.

Assumptions. We make the following assumptions on the data

(A1) Aijkl ∈ L∞(Ω,R), 1 ≤ i, j, k, l ≤ d, and there exist positive constants
α, β ∈ R such that

αB : B ≤ A(·)B : B ≤ βB : B, ∀B ∈ S, a.e. in Ω.

(A2) f ∈ L2(Ω,Rd), b ∈ L2(ΓN ,Rd), and g ∈ H1/2(ΓD,Rd).

Recall Korn’s inequality for a domain with mixed boundary conditions, see,
for instance, [7, 25].
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Lemma 2.2 (Korn’s inequality). Let Ω ⊂ Rd denote a bounded and con-
nected Lipschitz-domain, and let ΓD denote the part of the boundary where
Dirichlet boundary conditions are defined. If meas(ΓD) > 0, then

‖∇v‖L2(Ω) ≤ Cko‖ε(v)‖L2(Ω), ∀v ∈ V,(2.6)

Here Cko is a constant depending only on Ω.

In the case ΓD = ∂Ω we have Cko =
√

2, independently of the size of Ω.
Using (2.6) we derive the following bounds,

αC−2
ko ‖∇v‖

2
L2(Ω) ≤ B(v, v) ≤ β‖∇v‖2L2(Ω), ∀v ∈ V,(2.7)

where we have used the bound ‖ε(v)‖L2(Ω) ≤ ‖∇v‖L2(Ω). It follows that the
bilinear form B(·, ·) is an inner product on V and existence and uniqueness of a
solution to the problem (2.5) follows from the Lax-Milgram lemma. We denote
the norm induced by the inner product B(·, ·) by ‖v‖2B(Ω) := B(v, v) for v ∈ V .

Remark 2.3. In the case of an isotropic material (see Remark 2.1) we have
the bounds

C−2
ko 2µ1‖∇v‖2L2(Ω) ≤ ‖

√
2µε(v)‖2L2(Ω) ≤ ‖

√
2µε(v)‖2L2(Ω) + ‖

√
λ∇ · v‖2L2(Ω)

= B(v, v) ≤ C(2µ2 + λ2)‖∇v‖2L2(Ω),

where µ1 > 0 is the lower bound of µ and µ2, λ2 ≤ ∞ are the upper bounds of µ
and λ respectively. We emphasize that this means that only β in (2.7) depends
on λ.

3. Numerical Approximation

3.1. Classical finite element. First, we define the classical finite element
space of continuous and piecewise affine elements. Let Th be a regular triangula-
tion of Ω into closed triangles/tetrahedra with mesh size hT := diam(T ), for T ∈
Th, and denote the largest diameter in the triangulation by h := maxT∈Th hT .
We assume that the family of triangulations {Th}h>0 is shape regular. Now
define the spaces

Sh = {v ∈ (C(Ω̄))d : vj |T is a polynomial of degree ≤ 1,∀T ∈ Th, 1 ≤ j ≤ d},
Vh = Sh ∩ V.

Furthermore, we let Nh denote the nodes generated by Th and N̊h = Nh \ ΓD
the free nodes in Vh. Now, let gh ∈ Sh be an approximation of an extension of
g, such that gh(z) = 0, ∀z ∈ N̊h and γgh is some appropriate approximation
of g. The classical finite element method now reads; find uh = uh,0 + gh, such
that uh,0 ∈ Vh and

B(uh,0, v) = (f, v)L2(Ω) + (b, v)L2(ΓN ) − B(gh, v), ∀v ∈ Vh.(3.1)

Note that γuh = γgh, where γgh is an approximation of g.

55



Paper II

Theorem 3.1. Let u be the solution to (2.5) and uh the solution to (3.1).
If the solution u is sufficiently regular we have

‖u− uh‖H1(Ω) ≤ CAh‖D2u‖L2(Ω),

where CA depends on the size of A and ‖D2u‖L2(Ω) depends on the variations

in A via a regularity estimate ‖D2u‖L2(Ω) ≤ C(u,Ω)‖A‖W 1,∞(Ω). In particular,

we have ‖D2u‖L2(Ω) →∞ the faster A oscillates.

Since the a priori bound in Theorem 3.1 depends, through the H2-norm
of u, on the variations (derivatives) in the data, the mesh width h must be
sufficiently small for uh to be a good approximation of u. In the context of mul-
tiscale problems, this results in a significant computational complexity. In the
following we assume that h is small enough and we shall refer to uh as a reference
solution. However, we emphasize that our method never requires to compute
this expensive reference solution and that it is purely used for comparisons.

3.1.1. Poisson locking. This subsection describes the phenomenon known
as locking, sometimes referred to as Poisson locking to distinguish it from other
types of locking. To simplify the discussion here we assume that we have an
isotropic material with µ and λ constant parameters and gD = 0 on ΓD = ∂Ω.
In this case we can exploit Galerkin orthogonality and the norm-equivalence in
Remark 2.1 to see that the error bound in Theorem 3.1 becomes the estimate

‖u− uh‖H1(Ω) ≤ Ch
√

2µ+ λ√
2µ

‖D2u‖L2(Ω),(3.2)

where C is independent of µ and λ. Moreover, ‖D2u‖L2(Ω) is independent of µ
and λ which follows from the stability estimate (see [8]),

‖u‖H2(Ω) + λ‖∇ · u‖H1(Ω) ≤ CΩ‖f‖L2(Ω),(3.3)

where CΩ is independent of µ and λ. We emphasize that the estimate (3.3)
does not hold if µ and λ vary in space. Since both C and ‖D2u‖L2(Ω) in (3.2)
are independent of λ, we conclude that the error bound blows up as λ → ∞.
This is counter-intuitive to the observation that the error with respect to the
H1-best-approximation in Vh is not affected by λ.

In fact, there is a simple reason for this phenomenon. For λ → ∞ we
have that the displacement must fulfill the extra condition ∇ · u = 0. However,
vh = 0 is the only function in Vh that fulfills ∇ · vh = 0. This forces the
Galerkin-approximation uh to convergence to the bad approximation uh = 0
in order to remain stable. This issue can be avoided by using discrete solution
spaces in which divergence-free functions can be well-approximated, cf. the
robust methods in [7, 8, 5, 3], where it is in fact possible to derive estimates of
the type ‖u− uh‖H1(Ω) ≤ Ch‖D2u‖L2(Ω) independent of λ.

From the discussion above we conclude that if λ is large compared to µ the
mesh size must be sufficiently small, i.e. h . 1/

√
λ, to achieve convergence for

conventional Lagrange P1 finite elements. A natural question is what the typical
ranges of values for µ and λ are and how they are related. The Lamé parameters
are determined by Young’s modulus E and Poisson’s ratio ν according to µ =
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E
2(1+ν) and λ = Eν

(1+ν)(1−2ν) . Consequently, we obtain
√

2µ+λ√
2µ

=
√

1
1−2ν and

hence (3.2) reduces to

‖u− uh‖H1(Ω) ≤ CΩ
h√

1− 2ν
‖f‖L2(Ω),(3.4)

where we see that the problem only arises if the Poisson’s ratio is close to ν =
0.5, which describes a perfectly incompressible material. In most engineering
applications the value of Poisson’s ratio lies between 0.2 and 0.35 (e.g. ν =
0.27 − 0.30 for steel, ν = 0.2 − 0.3 for rocks such as granite or sandstone and
ν = 0.17 − 0.27 for glass; cf. [12]). Poisson’s ratios larger than 0.45 are rare.
Examples for such tough cases are clay (ν ≤ 0.45), gold (ν = 0.45) and lead
(ν = 0.46). Natural rubber with ν = 0.4999 can be considered as the most
extreme case (cf. [26]). These values give us a clear image about the order of
magnitude required for h in practical scenarios. If the extension of Ω is of order
1, tough cases (ν ≈ 0.45) require h . 1

3 and extreme cases (ν ≈ 0.4999) require

h . 1
70 . These values help us to understand the phenomenon of locking better.

The constraints that are imposed by Poisson locking are not severe (in the sense
that it does typically not make the problem prohibitively expensive), but they
are highly impractical and not desirable in the sense that they make the problem
significantly more expansive than it should be. For instance for ν = 0.45 the
mesh needs to be three times finer than for a locking-free method, which makes
an enormous difference in CPU demands due to the curse of dimension.

3.1.2. Poisson locking for multiscale problems. This paper is devoted to
multiscale problems and the locking effect has to be seen from a different per-
spective in this case. Multiscale elasticity problems as they typically arise in
engineering or in geosciences involve material parameters (in general form rep-
resented by the tensor A(x)) that vary on an extremely fine scale ε (relative to
the extension of the computational domain) with ε � λ−1/2. These variations
need to be resolved by an underlying fine mesh which imposes the condition
h < ε� λ−1/2 even for locking-free methods. In other words, the natural con-
straints imposed by the variations of the coefficient are much more severe than
the constraints imposed by the locking effect. Since we assume that the reference
solution uh given by (3.1) is a good approximation to our original multiscale
problem (i.e. h < ε), then the solution will not suffer from the locking effect
either. For that reason we consider uh as being locking-free. Our multiscale
method is constructed to approximate uh on significantly coarser scales of order
H, and we call this method a locking-free multiscale method if the convergence
rates in H are independent of λ and the variations of A.

Locking and multiscale are two different characteristics that typically need
to be treated with different approaches, as a multiscale method is not neces-
sarily locking-free. In the following we show that the framework of the LOD
can be used for stabilizing P1 Lagrange finite elements in such a way that both
effects are reduced simultaneously. In particular we show that it is not neces-
sary to use higher order Lagrange elements, discontinuous Galerkin approaches,
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mixed finite elements or Crouzeix-Raviart finite elements as they are commonly
required for eliminating Poisson locking.

In this paper the error estimate for the ideal method (without localization)
in Lemma 3.2 is independent of λ and thus locking-free. The localization de-
pends on the contrast β/α, see Theorem 4.1. However, this ratio enters only
through a term that converges with exponential order to zero. Consequently,
the locking effect decays exponentially in the localized method. This is also
tested numerically in Section 5.

3.2. Generalized finite element. In this subsection we introduce a gen-
eralized finite element method. Let VH denote the same classical finite element
space as Vh, but with a coarser mesh size H > h. Let TH be the triangulation
associated with the space VH and assume that Th is a refinement of TH such
that VH ⊆ Vh. In addition to shape regular, we assume the family {TH}H>h to
be quasi-uniform.

We define NH and N̊H analogously to Nh and N̊h. Note that the mesh
width H is too coarse for the classical finite element solution (3.1) in VH to be
a good approximation. The aim is now to define a new (multiscale) space with
the same dimension as VH , but with better approximation properties.

To define such a multiscale space we need to introduce some notation. First,
let IH : Vh → VH denote an interpolation operator with the property that
IH ◦ IH = IH and

H−1
T ‖v − IHv‖L2(T ) + ‖∇IHv‖L2(T ) ≤ CI‖∇v‖L2(ωT ), ∀T ∈ TH , v ∈ Vh,

(3.5)

where

ωT := ∪{T̂ ∈ TH : T̂ ∩ T 6= ∅}.

For a shape regular mesh, the estimates in (3.5) can be summed to a global
estimate

H−1‖v − IHv‖L2(Ω) + ‖∇IHv‖L2(Ω) ≤ Cρ‖∇v‖L2(Ω),(3.6)

where Cρ depends on CI and the shape regularity parameter, ρ > 0;

ρ := max
T∈TH

ρT , with ρT :=
diamBT
diamT

, for T ∈ TH .

Here BT is the largest ball contained in T . For instance, we could choose
IiH = EiH ◦Πi

H , 1 ≤ i ≤ d, where Πi
H is the L2-projection onto P1(TH), the space

of functions that are affine on each triangle T ∈ TH and EiH : P1(TH) → VH
the averaging operator defined by

(EiH(v))(z) =
1

card{T ∈ TH : z ∈ T}
∑

T∈TH :z∈T
v|T (z),(3.7)

where z ∈ N̊H , see [28] for further details and other possible choices of IH .
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Let Vf denote the kernel to the operator IH

Vf := ker IH = {v ∈ Vh : IHv = 0}.

The space Vh can now be split into the two spaces Vh = VH ⊕ Vf , meaning that
vh ∈ Vh can be decomposed into vh = vH + vf , such that vH ∈ VH and vf ∈ Vf .
The kernel Vf is a detail space in the sense that it captures all features that are
not captured by the (coarse) space VH .

Let Rf : Vh → Vf be the Ritz projection onto Vf using the inner product
B(·, ·) such that

B(Rfv, w) = B(v, w), ∀w ∈ Vf , v ∈ Vh.(3.8)

Since vh = vH + vf with vH ∈ VH and vf ∈ Vf we have

vh −Rfvh = vH −RfvH , ∀vh ∈ Vh,

and we define the multiscale space

Vms = {vH −RfvH : vH ∈ VH}.(3.9)

Note that this space has the same dimension as VH , but contains fine scale
features. Indeed, with λz denoting the hat basis function in VH corresponding
to node z, the set

{λz −Rfλz : z ∈ N̊H},

is a basis for Vms. Moreover, we note that Vms is the orthogonal complement to
Vf with respect to the inner product B(·, ·). Thus the split Vh = Vms ⊕ Vf and
the following orthogonality holds for vms ∈ Vms and vf ∈ Vf

B(vms, vf) = B(vf , vms) = 0.(3.10)

To define a generalized finite element method we aim to replace the space
Vh with Vms in (3.1). Due to the inhomogeneous boundary conditions we also
need two extra corrections similar to the ones used in [13]. For the Dirichlet
condition we subtract Rfgh from the solution. For the Neumann condition we
define a correction b̃f ∈ Vf such that

B(b̃f , w) = (b, w)L2(ΓN ), ∀w ∈ Vf .(3.11)

We are now ready to define the generalized finite element method; find

ums = u0,ms + b̃f + gh −Rfgh,

such that u0,ms ∈ Vms and

B(u0,ms, v) = (f, v)L2(Ω) + (b, v)L2(ΓN ) − B(b̃f + gh −Rfgh, v), ∀v ∈ Vms.

(3.12)

Note that both b̃f = Rfgh = 0 on ΓD, so γums = γgh, and

B(ums, v) = (f, v)L2(Ω) + (b, v)L2(ΓN ), ∀v ∈ Vms,

as desired.
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Lemma 3.2. Let uh be the solution to (3.1) and ums the solution to (3.12).
Then

‖uh − ums‖H1(Ω) ≤ CHα−1‖f‖L2(Ω),(3.13)

where C depends on Cko and Cρ.

Proof. Define e := uh − ums. Since Vms ⊆ Vh, we have the Galerkin
orthogonality

B(e, v) = 0, ∀v ∈ Vms.

Recall that we can write e = (I−Rf)e+Rfe where (I−Rf)e ∈ Vms and Rfe ∈ Vf .
Using this we get

αC−2
ko ‖∇e‖

2
L2(Ω) ≤ B(e, e) = B(e,Rfe) = B(uh − ums, Rfe)

= (f,Rfe)L2(Ω) + (b, Rfe)L2(ΓN )

− B(u0,ms + b̃f + gh −Rfgh, Rfe)

= (f,Rfe)L2(Ω),

where have used the orthogonality (3.10) and the definitions (3.11) and (3.8) in
the last equality. Now, since Rfe ∈ Vf we have that IHRfe = 0 and using (3.6)
we get

αC−2
ko ‖∇e‖

2
L2(Ω) ≤ B(e, e) ≤ (f,Rfe− IHRfe)L2(Ω)(3.14)

≤ ‖f‖L2(Ω)‖Rfe− IHRfe‖L2(Ω) ≤ CρH‖f‖L2(Ω)‖∇e‖L2(Ω),

and (3.13) follows. �

4. Localization

The problem of finding Rfλz in (3.9) is posed in the entire fine scale space
Vf and thus computationally expensive. Moreover, the resulting basis functions
may have global support. However, as we show in this section, the basis func-
tions have exponential decay away from node z, which motivates a truncation
of the basis functions. This truncation significantly reduces the computational
cost and the resulting functions have local support.

We consider a localization strategy similar to the one proposed in [13].
We restrict the fine scale space Vf to patches ωk(T ) of coarse elements of the
following type; for T ∈ TH

ω0(T ) := int T,

ωk(T ) := int
(
∪ {T̂ ∈ TH : T̂ ∩ ωk−1(T ) 6= ∅}

)
, k = 1, 2, ...

Define Vf(ωk(T )) := {v ∈ Vf : v = 0 on (Ω \ ΓN ) \ ωk(K)} to be the restriction
of Vf to the patch ωk(T ). Note that the functions in Vf(ωk(T )) are zero on the
boundary ∂ωk(T ) \ ΓN .
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We proceed by noting that the Ritz projection Rf in (3.8) can be written
as the sum

Rf =
∑
T∈TH

RTf ,

where RTf : Vh → Vf and fulfills

B(RTf v, w) = B(v, w)T , ∀w ∈ Vf , v ∈ Vh, T ∈ TH ,(4.1)

where we define

B(v, w)T := (Aε(v) : ε(w))L2(T ), T ∈ TH .

We now aim to localize these computations by replacing Vf with Vf(ωk(T )).
Define RTf,k : Vh → Vf(ωk(T )) such that

B(RTf,kv, w) = B(v, w)T , ∀w ∈ Vf(ωk(T )), v ∈ Vh, T ∈ TH ,(4.2)

and set Rf,k :=
∑
T∈TH R

T
f,k. We can now define the localized multiscale space

Vms,k = {vH −Rf,kvH : vH ∈ VH}.(4.3)

Using the same techniques we also define localized versions of the Neumann
boundary correctors (3.11). Note that b̃f =

∑
T∈TH∩ΓN

b̃Tf where b̃Tf is defined
by

B(b̃Tf , w) = (b, w)L2(ΓN∩T ), ∀w ∈ Vf , T ∈ TH , T ∩ ΓN 6= ∅,

Thus, we define b̃Tf,k ∈ Vf(ωk(T )) such that

B(b̃Tf,k, w) = (b, w)L2(ΓN∩T ), ∀w ∈ Vf(ωk(T )), T ∈ TH , T ∩ ΓN 6= ∅,

and set b̃f,k =
∑
T∈TH b̃

T
f,k.

We are now ready to define a localized version of (3.12); find

ums,k = u0,ms,k + b̃f,k + gh −Rf,kgh,

such that u0,ms,k ∈ Vms,k and

B(u0,ms,k, v)(4.4)

= (f, v)L2(Ω) + (b, v)L2(ΓN ) − B(b̃f,k + gh −Rf,kgh, v), ∀v ∈ Vms,k.

As for the non-localized problem (3.12), we note that b̃f,k and Rf,k vanish on
ΓD, so γums,k = γgh, and

B(ums,k, v) = (f, v)L2(Ω) + (b, v)L2(ΓN ), ∀v ∈ Vms,k.

The main result in this paper is the following theorem.
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Theorem 4.1. Let uh be the solution to (3.1) and ums,k the solution to
(3.12). Then there exists θ ∈ (0, 1), depending on the contrast β/α, such that

‖uh − ums,k‖H1(Ω) ≤CHα−1‖f‖L2(Ω)

(4.5)

+ Ckd/2θk
√
β3

α5
(‖f‖L2(Ω) + ‖b‖L2(ΓN ) +

√
α‖gh‖B(Ω)),

where C and θ depends on Cko, ρ, and CI , but not on k, h, H, or the variations
of A.

To prove the a priori bound in Theorem 4.1 we first prove three lemmas.
In the proofs we use the cut-off functions ηTk ∈ VH with nodal values

ηTk (x) = 0, ∀x ∈ N ∩ ωk−1(T ),(4.6a)

ηTk (x) = 1, ∀x ∈ N ∩ (Ω \ ωk(T )).(4.6b)

These functions satisfy the following Lipschitz bound

‖∇ηTk ‖L∞(Ω) ≤ CH−1, T ∈ TH ,(4.7)

where C now depends on the quasi-uniformity. The proof technique relies on
the multiplication of a function in the fine scale space Vf with a cut-off function.
However, this product does not generally belong to the space Vf . To fix this, let
Ih : V → Vh denote the classical linear Lagrange interpolation onto Vh. Using
that IH in (3.7) is a projection we get

z := (I − IH)Ih(ηTk w) ∈ Vf(Ω \ ωk−2(T )), ∀w ∈ Vf ,

where I denotes the identity mapping. Note that the Lagrange interpolation
is needed since ηTk w 6∈ Vh. Furthermore, we have supp Ih(ηTk w) ⊆ Ω \ ωk−1(T )
and supp IHIh(ηTk R

T
f v) ⊆ Ω \ ωk−2(T ) and we conclude z ∈ Vf(Ω \ ωk−2(T )).

Lemma 4.2. For w ∈ Vf and z := (I−IH)IhηTk w ∈ Vf(Ω\ωk−2(T )) it holds
that supp(w − z) ⊆ ωk(T ) and

‖∇(w − z)‖L2(ωk(T )\ωk−2(T )) ≤ CI,η‖∇w‖L2(ωk+1(T )\ωk−3(T )),(4.8)

‖∇(w − z)‖L2(ωk(T )) ≤ C ′I,η‖∇w‖L2(ωk+1(T )),(4.9)

‖∇z‖L2(Ω\ωk−2(T )) ≤ C ′′I,η‖∇w‖L2(Ω\ωk−3(T )),(4.10)

where CI,η, C ′I,η, and C ′′I,η depends on CI , ρ, and the bound in (4.7), but not
on k, h, H, T , or the variations of A.

Proof. We have ηTk = 1 on Ω \ ωk(T ) and hence

w − z = w − (I − IH)w = 0, on Ω \ ωk(T ),

since IHw = 0 and it follows that supp(w − z) ⊆ ωk(T ).
Now, note that

w − z = (I − IH)(w − Ih(ηTk w)).
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Using the stability of IH in (3.5) we derive the bound

‖∇(I − IH)(w − Ih(ηTk w))‖L2(ωk(T )\ωk−2(T ))

≤ CI‖∇(w − Ih(ηTk w))‖L2(ωk+1(T )\ωk−3(T )).

Now, using that the Lagrange interpolation Ih is H1-stable for piecewise second
order polynomials on shape regular meshes and the bound (4.7) we get

‖∇Ih(ηTk w)‖L2(ωk+1(T )\ωk−3(T )) ≤ C‖∇(ηTk w)‖L2(ωk+1(T )\ωk−3(T ))

≤ C‖w∇ηTk ‖L2(ωk(T )\ωk−1(T )) + C‖ηTk∇w‖L2(ωk+1(T )\ωk−1(T ))

≤ CH−1‖w − IHw‖L2(ωk(T )\ωk−1(T )) + C‖∇w‖L2(ωk+1(T )\ωk−1(T ))

≤ C‖∇w‖L2(ωk+1(T )\ωk−2(T )),

where we also have utilized the bounded support of the cut-off function and the
bound of IH in (3.5). This completes the bound (4.8). The bounds in (4.9) and
(4.10) follow similarly. �

Lemma 4.3. For the Ritz projection (3.8) there exist θ ∈ (0, 1), such that

‖∇RTf v‖L2(Ω\ωk(T )) ≤ θk‖∇RTf v‖L2(Ω), v ∈ Vh,(4.11)

where θ depends on ρ and the contrast β/α, but not on k, T , h, H, or the
variations of A.

Proof. Fix an element T ∈ TH and let ηTk be a cut-off function as in (4.6),
and define z as in Lemma 4.2 with w = RTf v such that

z := (I − IH)Ih(ηTk R
T
f v) ∈ Vf(Ω \ ωk−2(T )).(4.12)

Since ηTk = 1 on Ω\ωk(T ), we have the identity IhηTk,lRTf v = RTf v on Ω\ωk(T ).

Using this and the bounds (2.7) for B(·, ·) we get

‖∇RTf v‖2L2(Ω\ωk(T )) = ‖∇(I − IH)RTf v‖2L2(Ω\ωk(T )) ≤ ‖∇z‖
2
L2(Ω)(4.13)

≤ C2
koα
−1B(z, z).

Now, due to (4.12) and (4.1), the following equality holds

B(RTf v, z) = B(v, z)T = 0,

since z does not have support on the element T . Using this and the fact that
supp(z −RTf v) ∩ supp z ⊆ ωk(T ) \ ωk−2(T ) we have

B(z, z) = B(z −RTf v, z) =

∫
ωk(T )\ωk−2(T )

Aε(z −RTf v) : ε(z) dx

(4.14)

≤ β‖∇(z −RTf v)‖L2(ωk(T )\ωk−2(T ))‖∇z‖L2(ωk(T )\ωk−2(T ))

≤ β‖∇(z −RTf v)‖L2(ωk(T )\ωk−2(T ))(‖∇(z −RTf v)‖L2(ωk(T )\ωk−2(T ))

+ ‖∇RTf v‖L2(ωk(T )\ωk−2(T )))

(4.8)

≤ CI,η(CI,η + 1)β‖∇RTf v‖2L2(ωk+1(T )\ωk−3(T )),
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Combining (4.13) and (4.14) we have

‖∇RTf v‖2L2(Ω\ωk(T )) ≤ C
′‖∇RTf v‖2L2(ωk+1(T )\ωk−3(T ))

≤ C ′(‖∇RTf v‖2L2(Ω\ωk−3(T )) − ‖∇R
T
f v‖2L2(Ω\ωk+1(T ))),

where C ′ = C2
koCI,η(CI,η + 1)β/α. Thus

‖∇RTf v‖2L2(Ω\ωk+1(T )) ≤
C ′

1 + C ′
‖∇RTf v‖2L2(Ω\ωk−3(T )).

An iterative application of this result and relabeling k + 1 → k yields (4.11),

with θ = (( C′

1+C′ )
1/4)1/2 < 1. �

Lemma 4.4. For the Ritz projections (4.1) and (4.2) we have the bound

‖
∑
T∈TH

∇(RTf v −RTf,kv)‖L2(Ω) ≤ Ckd/2θk
β

α

( ∑
T∈TH

‖∇RTf v‖2L2(Ω)

)1/2

, v ∈ Vh,

with θ as in Lemma 4.3 and C depends on Cko, C
′
I,η, and C ′′I,η.

Proof. Define ef :=
∑
T∈TH R

T
f v−RTf,kv and let ηTk+2 be the cut-off func-

tion as defined in (4.6). Since ef ∈ Vf , we define zTe := (I − IH)Ih(ηTk+2ef) as

in Lemma 4.2 and note that supp zTe ⊆ Ω \ ωk(T ). Thus, due to the fact that
suppRTf,kv ∩ supp zTe = ∅ and (4.1), we have

B(RTf v −RTf,kv, zTe ) = B(RTf v, z
T
e ) = B(v, zTe )T = 0.

Using this and the bounds (2.7) we derive

‖∇ef‖2L2(Ω) ≤ Ckoα
−1B(ef , ef) = Ckoα

−1
∑
T∈TH

B(RTf v −RTf,kv, ef)

(4.15)

= Ckoα
−1

∑
T∈TH

B(RTf v −RTf,kv, ef − zTe ).

≤ Cko

√
βα−1

∑
T∈TH

‖RTf v −RTf,kv‖B(Ω)‖∇(ef − zTe )‖L2(ωk+2(T )).

Now, we use Cauchy-Schwarz inequality for sums and Lemma 4.2 to get∑
T∈TH

‖RTf v −RTf,kv‖B(Ω)‖∇(ef − zTe )‖L2(ωk+2(T ))(4.16)

(4.9)

≤ C ′I,η

( ∑
T∈TH

‖RTf v −RTf,kv‖2B(Ω)

)1/2( ∑
T∈TH

‖∇ef‖2L2(ωk+3(T ))

)1/2

≤ C ′I,ηC ′ρkd/2
( ∑
T∈TH

‖RTf v −RTf,kv‖2B(Ω)

)1/2

‖∇ef‖L2(Ω).

In the last inequality we have used the total number of patches overlapping
an element T is bounded by C ′ρk

d/2, where C ′ρ is a constant depending on the
shape regularity of the mesh.
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It remains to bound ‖RTf v − RTf,kv‖B(Ω). For this purpose we define zv =

(I − IH)Ih(ηTk R
T
f v) as in Lemma 4.2. Recall that RTf v− zv ∈ Vf(ωk(T )). Now,

we use Galerkin orthogonality to derive

‖RTf v −RTf,kv‖B(Ω) ≤ ‖RTf v − w‖B(Ω), ∀w ∈ Vf(ωk(T )).

Thus, with w = RTf v − zv ∈ Vf(ωk(T )) we have

‖RTf v −RTf,kv‖B(Ω) ≤ ‖zv‖B(Ω) ≤
√
β‖∇zv‖L2(Ω) ≤

√
β‖∇zv‖L2(Ω\ωk−2)

≤ C ′′I,η
√
β‖∇RTf v‖L2(Ω\ωk−3).

Using Lemma 4.3 we thus have

‖∇(RTf v −RTf,kv)‖L2(Ω) ≤ C ′′I,η
√
βθk‖∇RTf v‖L2(Ω).(4.17)

Combining (4.15), (4.16), and (4.17), concludes the proof. �

Remark 4.5. Using the same techniques as in Lemma 4.3 and Lemma 4.4
we can prove (since the right hand side still has support only on a triangle
T ∈ TH) exponential decay also for the Neumann boundary correctors

‖∇(b̃Tf − b̃Tf,k)‖L2(Ω) ≤ Ckd/2θk
β

α

( ∑
T∈TH

‖∇b̃Tf ‖2L2(Ω)

)1/2

, v ∈ Vh,

with θ as in Lemma 4.3.

We are now ready to prove Theorem 4.1.

Proof of Theorem 4.1. Recall that uh = u0,h+gh and ums,k = u0,ms,k+

b̃f,k + gh −Rf,kgh. Due to (3.1) and (4.4) we have the Galerkin orthogonality

B(uh − ums,k, v) = 0, ∀v ∈ Vms,k,

which implies

‖uh − ums,k‖B(Ω) ≤ ‖uh − v − b̃f,k − gh +Rf,k‖B(Ω), ∀v ∈ Vms,k.

Let ums = u0,ms + b̃f + gh − Rfgh be the solution to (3.12). Since u0,ms ∈ Vms

and u0,ms,k ∈ Vms,k there exist vH , vH,k ∈ VH , such that

u0,ms = vH −RfvH , u0,ms,k = vH,k −Rf,kvH,k.

Using the Galerkin orthogonality with v = vH −Rf,kvH ∈ Vms,k we have

‖uh − ums,k‖B(Ω) ≤ ‖uh − vH +Rf,kvH − b̃f,k − gh +Rf,kgh‖B(Ω)

≤ ‖uh − vH +RfvH − b̃f − gh +RfgH‖B(Ω) + ‖Rf,kvH −RfvH‖B(Ω)

+ ‖b̃f,k − b̃f‖B(Ω) + ‖Rf,kgh −Rfgh‖B(Ω)),

From (3.14) in Lemma 3.2 we have

‖uh − vH +RfvH − b̃f − gh +RfgH‖B(Ω) = ‖uh − ums‖B(Ω)

≤ CρCko/
√
αH‖f‖L2(Ω),

65



Paper II

and due to Lemma 4.4 and (4.1) we have

‖Rf,kvH −RfvH‖2B(Ω) ≤ β‖∇(Rf,kvH −RfvH)‖2L2(Ω)

≤ Cβ3/α2kdθ2k
∑
T∈TH

‖∇RTf vH‖2L2(Ω)

≤ Cβ3/α2kdθ2k
∑
T∈TH

‖∇vH‖2L2(T )

= Cβ3/α2kdθ2k‖∇vH‖2L2(Ω).

Now, since u0,ms satisfies (3.12) we deduce the stability estimate

‖u0,ms‖B(Ω) ≤ C(1/
√
α(‖f‖L2(Ω) + ‖b‖L2(ΓN )) + ‖b̃f‖B(Ω) + ‖gh −Rfgh‖B(Ω))

≤ C/
√
α(‖f‖L2(Ω) + ‖b‖L2(ΓN ) +

√
α‖gh‖B(Ω)),

where we have used stability derived from (3.11) and (3.8) in the last inequality.
Hence, using that IHRfvH = 0 and the stability of IH (3.6), we get

‖∇vH‖L2(Ω) = ‖∇IH(vH −RfvH)‖L2(Ω) ≤ C‖∇u0,ms‖L2(Ω)

≤ C/
√
α‖u0,ms‖B(Ω) ≤ C/α(‖f‖L2(Ω) + ‖b‖L2(ΓN ) +

√
α‖gh‖B(Ω)).

Similarly, we deduce the bounds

‖b̃f,k − b̃f‖2B(Ω) ≤ Cβ
3/α2kdθ2k

∑
T∈TH

T∩ΓN 6=∅

‖∇b̃Tf ‖2L2(ΓN )

≤ Cβ3/α4kdθ2k‖b‖2L2(ΓN ).

‖Rf,kgh −Rfgh‖2B(Ω) ≤ Cβ
3/α2kdθ2k

∑
T∈TH

‖∇RTf gh‖2L2(Ω)

≤ Cβ3/α3kdθ2k‖gh‖2B(Ω).

Thus we have

‖∇(uh − ums,k)‖L2(Ω) ≤ Cko/
√
α‖uh − ums,k‖B(Ω)

≤ C/αH‖f‖L2(Ω) + C
√
β3/α5kd/2θk(‖f‖L2(Ω) + ‖b‖L2(ΓN ) +

√
α‖gh‖B(Ω)).

The proof is now complete. �

Remark 4.6. To achieve linear convergence in Theorem 4.1 the size of
the patches for the localization should be chosen proportional to logH−1, i.e.
k = c log(H−1) for some constant c.

5. Numerical Experiment

In this section we perform two numerical experiments to test the conver-
gence rate obtained in Theorem 4.1. The first experiment shows that linear
convergence is obtained, in the H1-norm, for a problem with multiscale data.
The second experiment shows that the locking effect is reduced for a problem
with high value of λ. We refer to [10] for a discussion on how to implement this
type of generalized finite elements efficiently.
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We consider an isotropic medium, see Remark 2.1, on the unit square in
R2. Recall that the stress tensor in the isotropic case takes the form

σ(u) = 2µε(u) + λ(∇ · u)I,

where µ and λ are the Lamé coefficients. For simplicity we consider only homo-
geneous Dirichlet boundary conditions, that is, ΓD = ∂Ω and g = 0. The body
forces are set to f = [1 1]ᵀ.

In the first experiment, we test the convergence on two different setups
for the Lamé coefficients, one with multiscale features, and one with constant
coefficients µ = λ = 1. For the problem with multiscale features we choose µ
and λ to be discontinuous on a Cartesian grid of size 2−5. The values at the
cells are chosen randomly between 0.1 and 10. The resulting coefficients are
shown in Figure 4.
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(a) Lamé coefficient µ
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(b) Lamé coefficient λ

Figure 4. Lamé coefficients with multiscale features.

For the numerical approximations we discretize the domain with a uniform
triangulation. The reference solution uh in (3.1) is computed using a mesh of

size h =
√

2 · 2−6, which is small enough to resolve the multiscale coefficients
in Figure 4. The generalized finite element (GFEM) solution in (4.4) is com-

puted on several meshes of decreasing size, H =
√

2 · 2−1, ...,
√

2 · 2−5 with
k = 1, 1, 2, 2, 3, which corresponds to k = d0.8 logH−1e. These solutions are
compared to the reference solution. For comparison we also compute the clas-
sical piecewise linear finite element (P1-FEM) solution on the meshes of size

H =
√

2 ·2−1, ...,
√

2 ·2−5. The error is computed using the H1 semi-norm ‖∇·‖
and plotted in Figure 5.

In Figure 5 we see that both methods, as expected, show linear convergence
for the problem with constant coefficients. For the problem with multiscale
coefficients we clearly see the advantages with the generalized finite element
method, which shows linear convergence also in this case, while the classical
finite element shows far from optimal convergence.
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Figure 5. Relative errors using GFEM (blue ◦) and P1-FEM
(red ∗) for the linear elasticity problem plotted against the
mesh size H. The dashed line is H.

For the second experiment we aim to test the locking effect. We consider a
problem from [6]. The domain is set to the unit square Ω = [0, 1] × [0, 1] and
gD = 0 on the boundary ΓD = ∂Ω. Furthermore, with µ = 1 and the right
hand side f = [f1 f2]ᵀ chosen as

f1 = π2
(

4 sin(2πy)(−1 + 2 cos(2πx))− cosπ(x+ y) +
2

1 + λ
sin(πx) sin(πy)

)
,

f2 = π2
(

4 sin(2πy)(1− 2 cos(2πx))− cosπ(x+ y) +
2

1 + λ
sin(πx) sin(πy)

)
,

the exact solution u = [u1 u2]ᵀ is given by

u1 = sin(2πy)(−1 + 2 cos(2πx)) +
1

1 + λ
sin(πx) sin(πy),

u2 = sin(2πy)(1− 2 cos(2πx)) +
1

1 + λ
sin(πx) sin(πy).

In this experiment we let λ = 103. The discretization of the domain remain the
same as in our first example, but the size of the reference mesh is set to h =√

2 ·2−7 which is sufficiently small for uh to be a relatively good approximation,
since h < 1/

√
λ. Indeed, using the knowledge of the exact solution we have

‖∇(Ih(u)−uh)‖L2(Ω)/‖∇Ih(u)‖L2(Ω) ≈ 0.15, where Ih is the Lagrangian nodal
interpolation onto Vh.

The GFEM and the classical P1-FEM solutions are computed for the val-
ues H =

√
2 · 2−1, ...,

√
2 · 2−6. The localization parameter is chosen to be

k = 1, 1, 2, 2, 3, 4 which corresponds to k = d0.8 logH−1e. The numerical ap-
proximations ums,k and uH are compared to the reference solution uh and the
error is computed using the H1-seminorm. The relative errors are plotted in
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Figure 6. Clearly, the classical finite element method suffers from locking ef-
fects for the coarser mesh sizes. However, the generalized finite element solution
shows linear convergence, that is, no locking effect is noted.
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Figure 6. Relative errors for the locking problem using
GFEM (blue ◦) and P1-FEM (red ∗) plotted against the mesh
size H. The dashed line is H.

69





References

[1] A. Abdulle: Analysis of a heterogeneous multiscale FEM for problems in
elasticity, Math. Models Methods Appl. Sci. 16 (2006), no. 4, p. 615–635.

[2] A. Abdulle and P. Henning: Localized orthogonal decomposition method
for the wave equation with a continuum of scales, to appear in Math.
Comp., 2016+.

[3] D. N. Arnold, R. S. Falk and R. Winther: Mixed finite element meth-
ods for linear elasticity with weakly imposed symmetry, Math. Comp. 76
(2007), no. 260, p. 1699-1723.
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A generalized finite element method for linear
thermoelasticity

Axel Målqvist1,2 and Anna Persson1

Abstract. We propose and analyze a generalized finite element method

designed for linear quasistatic thermoelastic systems with spatial multi-

scale coefficients. The method is based on the local orthogonal decompo-
sition technique introduced by Målqvist and Peterseim in [18]. We prove

convergence of optimal order, independent of the derivatives of the coef-
ficients, in the spatial H1-norm. The theoretical results are confirmed by

numerical examples.

1. Introduction

In many applications the expansion and contraction of a material exposed
to temperature changes are of great importance. To model this phenomenon a
system consisting of an elasticity equation describing the displacement coupled
with an equation for the temperature is used, see, e.g., [6]. The full system
consists of a hyperbolic elasticity equation coupled with a parabolic equation
for the temperature, see [8] for a comprehensive treatment of this formulation.
If the inertia effects are negligible, the hyperbolic term in the elasticity equation
can be removed. This leads to an elliptic-parabolic system, often referred to as
quasistatic. This formulation is discussed in, for instance, [22, 24]. In some
settings it is justified to also remove the parabolic term, which leads to an
elliptic-elliptic system, see, e.g., [22, 24]. Since the thermoelastic problem is
formally equivalent to the system describing poroelasticity, several papers on
this equation are also relevant, see, e.g., [5, 25].

In this paper we study the quasistatic case. Existence and uniqueness of a
solution to this system are discussed in [22] within the framework of linear de-
generate evolution equations in Hilbert spaces. It is also shown that this system
is essentially of parabolic type. Existence and uniqueness are also treated in
[24] (only two-dimensional problems) and in [23, 21] some results on the ther-
moelastic contact problem are presented. The classical finite element method
for the thermoelastic system is analyzed in [10, 24], where convergence rates of
optimal order are derived for problems with solution in H2 or higher.

When the elastic medium of interest is strongly heterogeneous, like com-
posite materials, the coefficients are highly varying and oscillating. Commonly,
such coefficients are said to have multiscale features. For these problems clas-
sical polynomial finite elements, as in [10, 24], fail to approximate the solution
well unless the mesh width resolves the data variations. This is due to the fact
that a priori bounds of the error depend on (at least) the spatial H2-norm of the

1Department of Mathematical Sciences, Chalmers University of Technology and Univer-
sity of Gothenburg, SE-412 96 Göteborg, Sweden.

2Supported by the Swedish Research Council and the Swedish Foundation for Strategic

Research.
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solution. Since this norm depends on the derivative of the diffusion coefficient,
it is of order ε−1 if the coefficient oscillates with frequency ε−1. To overcome
this difficulty, several numerical methods have been proposed, see for instance
[4, 3, 11, 18, 14].

In this paper we suggest a generalized finite element method based on the
techniques introduced in [18], often referred to as local orthogonal decomposition.
This method builds on ideas from the variational multiscale method [14, 15],
where the solution space is split into a coarse and a fine part. The coarse
space is modified such that the basis functions contain information from the
diffusion coefficient and have support on small patches. With this approach
the basis functions have good approximation properties locally. In [18] the
technique is applied to elliptic problems with an arbitrary positive and bounded
diffusion coefficient. One of the main advantages is that no assumptions on scale
separation or periodicity of the coefficient are needed. Recently, this technique
has been applied to several other problems, for instance, semilinear elliptic
equations [12], boundary value problems [11], eigenvalue problems [17], linear
and semilinear parabolic equations [16], and the linear wave equation [1].

The method we propose in this paper uses generalized finite element spaces
similar to those used [18] and [13], together with a correction building on the
ideas in [11, 15]. We prove convergence of optimal order that does not depend
on the derivatives of the coefficients. We emphasize that by avoiding these
derivatives, the a priori bound does not contain any constant of order ε−1,
although coefficients are highly varying.

In Section 2 we formulate the problem of interest, in Section 3 we first recall
the classical finite element method for thermoelasticity and then we define the
new generalized finite element method. In Section 4 we perform a localization
of the basis functions and in Section 5 we analyze the error. Finally, in Section 6
we present some numerical results.

2. Problem formulation

Let Ω ⊆ Rd, d = 2, 3, be a polygonal/polyhedral domain describing the
reference configuration of an elastic body. For a given time T > 0 we let
u : [0, T ] × Ω → Rd denote the displacement field and θ : [0, T ] × Ω → R the
temperature. To impose Dirichlet and Neumann boundary conditions, we let
ΓuD and ΓuN denote two disjoint segments of the boundary such that Γ := ∂Ω =
ΓuD ∪ ΓuN . The segments ΓθD and ΓθN are defined similarly.

We use (·, ·) to denote the inner product in L2(Ω) and ‖ · ‖ for the cor-
responding norm. Let H1(Ω) denote the classical Sobolev space with norm
‖v‖2H1(Ω) = ‖v‖2 + ‖∇v‖2 and let H−1(Ω) denote the dual space to H1. Fur-

thermore, we adopt the notation Lp([0, T ];X) for the Bochner space with the
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norm

‖v‖Lp([0,T ];X) =
(∫ T

0

‖v‖pX dt
)1/p

, 1 ≤ p <∞,

‖v‖L∞([0,T ];X) = ess sup
0≤t≤T

‖v‖X ,

where X is a Banach space equipped with the norm ‖ · ‖X . The notation
v ∈ H1(0, T ;X) is used to denote v, v̇ ∈ L2(0, T ;X). The dependence on the
interval [0, T ] and the domain Ω is frequently suppressed and we write, for
instance, L2(L2) for L2([0, T ];L2(Ω)). We also define the following subspaces
of H1

V 1 := {v ∈ (H1(Ω))d : v = 0 on ΓuD}, V 2 := {v ∈ H1(Ω) : v = 0 on ΓθD}.

Under the assumption that the displacement gradients are small, the (lin-
earized) strain tensor is given by

ε(u) =
1

2
(∇u+∇uᵀ).

Assuming further that the material is isotropic, Hooke’s law gives the (total)
stress tensor, see e.g. [21] and the references therein,

σ̄ = 2µε(u) + λ(∇ · u)I − αθI,
where I is the d-dimensional identity matrix, α is the thermal expansion coef-
ficient, and µ and λ are the so called Lamé coefficients given by

µ =
E

2(1 + ν)
, λ =

Eν

(1 + ν)(1− 2ν)
,

where E denotes Young’s elastic modulus and ν denotes Poisson’s ratio. The
materials of interest are strongly heterogeneous which implies that α, µ, and λ
are rapidly varying in space.

The linear quasistatic thermoelastic problem takes the form

−∇ · (2µε(u) + λ∇ · uI − αθI) = f, in (0, T ]× Ω,(2.1)

θ̇ −∇ · κ∇θ + α∇ · u̇ = g, in (0, T ]× Ω,(2.2)

u = 0, in (0, T ]× ΓuD,(2.3)

σ̄ · n = 0, in (0, T ]× ΓuN .(2.4)

θ = 0, on (0, T ]× ΓθD,(2.5)

∇θ · n = 0, on (0, T ]× ΓθN .(2.6)

θ(0) = θ0, in Ω,(2.7)

where κ is the heat conductivity parameter, which is assumed to be rapidly
varying in space.

Remark 2.1. For simplicity we have assumed homogeneous boundary data
(2.3)-(2.6). However, using techniques similar to the ones used in [11, 13] the
analysis in this paper can be extended to non-homogeneous situations.
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Assumptions. We make the following assumptions on the data

(A1) κ ∈ L∞(Ω,Rd×d), symmetric,

0 < κ1 := ess inf
x∈Ω

inf
v∈Rd\{0}

κ(x)v · v
v · v

, ∞ > κ2 := ess sup
x∈Ω

sup
v∈Rd\{0}

κ(x)v · v
v · v

,

(A2) µ, λ, α ∈ L∞(Ω,R), and

0 < µ1 := ess inf
x∈Ω

µ(x) ≤ ess sup
x∈Ω

µ(x) =: µ2 <∞.

Similarly, the constants λ1, λ2, α1, and α2 are used to denote the cor-
responding upper and lower bounds for λ and α.

(A3) f, ḟ ∈ L∞(L2), f̈ ∈ L∞(H−1), g ∈ L∞(L2), ġ ∈ L∞(H−1), and θ0 ∈
V 2.

To pose a variational form we multiply the equations (2.1) and (2.2) with
test functions from V 1 and V 2 and using Green’s formula together with the
boundary conditions (2.3)-(2.6) we arrive at the following weak formulation
[10]. Find u(t, ·) ∈ V 1 and θ(t, ·) ∈ V 2, such that,

(σ(u) : ε(v1))− (αθ,∇ · v1) = (f, v1), ∀v1 ∈ V 1,(2.8)

(θ̇, v2) + (κ∇θ,∇v2) + (α∇ · u̇, v2) = (g, v2), ∀v2 ∈ V 2,(2.9)

and the initial value θ(0, ·) = θ0 is satisfied. Here we use σ to denote the effective
stress tensor σ(u) := 2µε(u)+λ(∇·u)I and we use : to denote the Frobenius in-
ner product of matrices. Using Korn’s inequality we have the following bounds,
see, e.g., [7],

cσ‖v1‖2H1 ≤ (σ(v1) : ε(v1)) ≤ Cσ‖v1‖2H1 , ∀v1 ∈ V 1(2.10)

where cσ (resp. Cσ) depends on µ1 (resp. µ2 and λ2). Similarly, there are
constants cκ (resp. Cκ) depending on the bound κ1 (resp. κ2) such that

cκ‖v2‖2H1 ≤ (κ∇v2,∇v2) ≤ Cκ‖v2‖2H1 , ∀v2 ∈ V 2.(2.11)

Furthermore, we use the following notation for the energy norms induced by
the bilinear forms

‖v1‖2σ := (σ(v1) : ε(v1)), v1 ∈ V 1, ‖v2‖2κ := (κ∇v2∇v2), v2 ∈ V 2

Existence and uniqueness of a solution to (2.8)-(2.9) have been proved in
[22, 24]. There are also some papers on the solution to contact problems, see
[2, 23].

Theorem 2.2. Assume that (A1)-(A3) hold and that ∂Ω is sufficiently
smooth. Then there exist u and θ such that u ∈ L2(V 1), ∇ · u̇ ∈ L2(H−1),

θ ∈ L2(V 2), and θ̇ ∈ L2(H−1) satisfying (2.8)-(2.9) and the initial condition
θ(0, ·) = θ0.

Remark 2.3. We remark that the equations (2.1)-(2.7) also describe a
poroelastic system. In this case θ denotes the fluid pressure, κ the permeability
and viscosity of the fluid.
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3. Numerical approximation

In this section is we first recall some properties of the classical finite element
method for (2.8)-(2.9). In subsection 3.2 we propose a new numerical method
built on the ideas from [18]. The localization of this method is treated in
Section 4.

3.1. Classical finite element. First, we need to define appropriate finite
element spaces. For this purpose we let {Th}h>0 be a family of shape regular
triangulations of Ω with the mesh size hK := diam(K), for K ∈ Th. Further-
more, we denote the largest diameter in the triangulation by h := maxK∈Th hK .
We now define the classical piecewise affine finite element spaces

V 1
h = {v ∈ (C(Ω̄))d : v = 0 on ΓuD, v|K is a polynomial of deg. ≤ 1,∀K ∈ Th},

V 2
h = {v ∈ C(Ω̄) : v = 0 on ΓθD, v|K is a polynomial of deg. ≤ 1,∀K ∈ Th}.

For the discretization in time we consider, for simplicity, a uniform time
step τ such that tn = nτ for n ∈ {0, 1, ..., N} and Nτ = T .

Remark 3.1. The classical linear elasticity equation can in some cases
suffer from locking effects when using continuous piecewise linear polynomials
in both spaces (P1-P1 elements). These typically occur if ν is close to 1/2
(Poisson locking) or if the thickness of the domain is very small (shear locking).

In the coupled time-dependent problem locking can occur if θ̇ is neglected in
(2.2) and P1-P1 elements are used. The locking produces artificial oscillations
in the numerical approximation of the temperature (or pressure) for early time

steps. However, it shall be noted that in the case when θ̇ is not neglected, this
locking effect does not occur, see [20]. Thus, we consider a P1-P1 discretization
in this paper.

The classical finite element method with a backward Euler scheme in time
reads; for n ∈ {1, ..., N} find unh ∈ V 1

h and θnh ∈ V 2
h , such that

(σ(unh) : ε(v1))− (αθnh ,∇ · v1) = (fn, v1), ∀v1 ∈ V 1
h ,(3.1)

(∂̄tθ
n
h , v2) + (κ∇θnh ,∇v2) + (α∇ · ∂̄tunh, v2) = (gn, v2), ∀v2 ∈ V 2

h ,(3.2)

where ∂̄tθ
n
h := (θnh − θ

n−1
h )/τ and similarly for ∂̄tu

n
h. The right hand sides are

evaluated at time tn, that is, fn := f(tn) and gn := g(tn). Given initial data u0
h

and θ0
h the system (3.1)-(3.2) is well posed [10]. We assume that θ0

h ∈ V 1
h is a

suitable approximation of θ0. For u0
h we note that u(0) is uniquely determined

by (2.8) at t = 0, that is, u(0) fulfills the equation

(σ(u(0)) : ε(v1))− (αθ0,∇ · v1) = (f0, v1), ∀v1 ∈ V 1,

and we thus define u0
h ∈ V 1

h to be the solution to

(σ(u0
h) : ε(v1))− (αθ0

h,∇ · v1) = (f0, v1), ∀v1 ∈ V 1
h .(3.3)

The following theorem is a consequence of [10, Theorem 3.1]. The conver-
gence rate is optimal for the two first norms. However, it is not optimal for the
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L2-norm ‖θn − θnh‖. In [10] this is avoided by using second order continuous
piecewise polynomials for the displacement (P2-P1 elements). It is, however,
noted that the problem is still stable using P1-P1 elements. In this paper we
use P1-P1 elements and derive error bounds in the L∞(H1)-norm, of optimal
order, for both the displacement and the temperature.

Theorem 3.2. Let (u, θ) be the solution to (2.8)-(2.9) and {(unh, θnh)}Nn=1

be the solution to (3.1)-(3.2). Then for n ∈ {1, ..., N}

‖un − unh‖H1 +
( n∑
m=1

τ‖θm − θmh ‖2H1

)1/2

+ ‖θn − θnh‖ ≤ Cε−1(h+ τ),

where Cε−1 is of order ε−1 if the material varies on a scale of size ε.

Note that the constant involved in this error bound contains derivatives of
the coefficients. Hence, convergence only takes place when the mesh size h is
sufficiently small (h < ε). Throughout this paper, it is assumed that h is small
enough and V 1

h and V 2
h are referred to as reference spaces for the solution. Sim-

ilarly, unh and θnh are referred to as reference solutions. In Section 5 this solution
is compared with the generalized finite element solution. We emphasize that
the generalized finite element solution is computed in spaces of lower dimension
and hence not as computationally expensive.

In the following theorem we prove some regularity results for the finite
element solution.

Theorem 3.3. Let {unh}Nn=1 and {θnh}Nn=1 be the solution to (3.1)-(3.2).
Then the following bound holds( n∑

j=1

τ‖∂̄tujh‖
2
H1

)1/2

+
( n∑
j=1

τ‖∂̄tθjh‖
2
)1/2

+ ‖θnh‖H1(3.4)

≤ C(‖g‖L∞(L2) + ‖ḟ‖L∞(H−1) + ‖θ0
h‖H1)

If θ0
h = 0, then for n ∈ {1, ..., N}

‖∂̄tunh‖H1 + ‖∂̄tθnh‖+
( n∑
j=1

τ‖∂̄tθjh‖
2
H1

)1/2

(3.5)

≤ C
(
‖g‖L∞(L2) + ‖ġ‖L∞(H−1) + ‖ḟ‖L∞(H−1) + ‖f̈‖L∞(H−1)

)
.

If f = 0 and g = 0, then for n ∈ {1, ..., N}

‖∂̄tunh‖H1 + ‖∂̄tθnh‖+ t1/2n ‖∂̄tθnh‖H1 ≤ Ct−1/2
n ‖θ0

h‖H1 .(3.6)

Proof. From (3.1)-(3.2) and the initial data (3.3) we deduce that the fol-
lowing relation must hold for n ≥ 1

(σ(∂̄tu
n
h) : ε(v1))− (α∂̄tθ

n
h ,∇ · v1) = (∂̄tf

n, v1), ∀v1 ∈ V 1
h ,(3.7)

(∂̄tθ
n
h , v2) + (κ∇θnh ,∇v2) + (α∇ · ∂̄tunh, v2) = (gn, v2), ∀v2 ∈ V 2

h .(3.8)
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By choosing v1 = ∂̄tu
n
h and v2 = ∂̄tθ

n
h and adding the resulting equations we

have

cσ
2
‖∂̄tunh‖2H1 +

1

2
‖∂̄tθnh‖2 + (κ∇θnh ,∇∂̄tθnh) ≤ C(‖gn‖2 + ‖∂̄tfn‖2H−1).(3.9)

Note that the coupling terms cancel. By using Cauchy-Schwarz and Young’s
inequality we can bound

τ(κ∇θnh ,∇∂̄tθnh) = ‖κ1/2∇θnh‖2 − (κ∇θnh ,∇θn−1
h ) ≥ 1

2
‖θnh‖2κ −

1

2
‖θn−1
h ‖2κ.

Multiplying (3.9) by τ , summing over n, and using (2.10) gives

n∑
j=1

τ‖∂̄tujh‖
2
H1 +

n∑
j=1

τ‖∂̄tθjh‖
2 + ‖θnh‖2H1 ≤ C

n∑
j=1

τ(‖gj‖2 + ‖∂̄tf j‖2H−1)

+ C‖θ0
h‖H1 ,

which is bounded by the right hand side in (3.4).
For the bound (3.5) we note that the following relation must hold for n ≥ 2

(σ(∂̄tu
n
h) : ε(v1))− (α∂̄tθ

n
h ,∇ · v1) = (∂̄tf

n, v1), ∀v1 ∈ V 1
h ,(3.10)

(∂̄2
t θ
n
h , v2) + (κ∇∂̄tθnh ,∇v2) + (α∇ · ∂̄2

t u
n
h, v2) = (∂̄tg

n, v2), ∀v2 ∈ V 2
h .(3.11)

Now choose v1 = ∂̄2
t u

n
h and v2 = ∂̄tθ

n
h and add the resulting equations to get

(σ(∂̄tu
n
h) : ε(∂̄2

t u
n
h)) + (∂̄2

t θ
n
h , ∂̄tθ

n
h) + (κ∇∂̄tθnh ,∇∂̄tθnh)

= (∂̄tf
n, ∂̄2

t u
n
h) + (∂̄tg

n, ∂̄tθ
n
h).

Multiplying by τ and using Cauchy-Schwarz and Young’s inequality gives

1

2
‖∂̄tunh‖2σ +

1

2
‖∂̄tθnh‖2 + Cτ‖∂̄tθnh‖2H1 ≤

1

2
‖∂̄tθn−1

h ‖2 +
1

2
‖∂̄tun−1

h ‖2σ
+ τ(∂̄tf

n, ∂̄2
t u

n
h) + C‖∂̄tgn‖2H−1 .

Summing over n and using (2.10) now gives

‖∂̄tunh‖2H1 + ‖∂̄tθnh‖2 +

n∑
j=2

τ‖∂̄tθjh‖
2
H1 ≤ C

(
‖∂̄tu1

h‖2H1 + ‖∂̄tθ1
h‖2

+

n∑
j=2

τ
(
(∂̄tf

j , ∂̄2
t u

j
h) + ‖∂̄tgj‖2H−1

))
.

Here we use summation by parts to get
n∑
j=2

τ(∂̄tf
j , ∂̄2

t u
j
h) = (∂̄tf

n, ∂̄tu
n
h)− (∂̄tf

1, ∂̄tu
1
h)−

n∑
j=2

τ(∂̄2
t f

j , ∂̄tu
j−1
h )

≤ C
(

max
1≤j≤n

‖∂̄tf j‖H−1 +

n∑
j=2

τ‖∂̄2
t f

j‖H−1

)
max

1≤j≤n
‖∂̄tujh‖H1 ,

and max1≤j≤n ‖∂̄tujh‖H1 can now be kicked to the left hand side.
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To estimate ∂̄tθ
1
h and ∂̄tu

1
h we choose v1 = ∂̄tu

1
h and v2 = ∂̄tθ

1
h in (3.7)-(3.8)

for n = 1. We thus have, since θ0
h = 0,

‖∂̄tu1
h‖2H1 + ‖∂̄tθ1

h‖2 +
1

τ
‖θ1
h‖2H1 ≤ C(‖∂̄tf1‖2H−1 + ‖g1‖2).

The observation that 1
τ ‖θ

1
h‖2H1 = τ‖∂̄tθ1

h‖2H1 completes the bound (3.5).
Now assume f = 0 and g = 0 and note that the following holds for n ≥ 2,

(σ(∂̄2
t u

n
h) : ε(v1))− (α∂̄2

t θ
n
h ,∇ · v1) = 0, ∀v1 ∈ V 1

h ,

(∂̄2
t θ
n
h , v2) + (κ∇∂̄tθnh ,∇v2) + (α∇ · ∂̄2

t u
n
h, v2) = 0, ∀v2 ∈ V 2

h .

Choosing v1 = ∂̄2
t u

n
h, v2 = ∂̄2

t θ
n
h and adding the resulting equations gives

(σ(∂̄2
t u

n
h) : ε(∂̄2

t u
n
h)) + (∂̄2

t θ
n
h , ∂̄

2
t θ
n
h) + (κ∇∂̄tθnh ,∇∂̄2

t θ
n
h) = 0,

where, again, the coupling terms cancel. The two first terms on the left hand
side are positive and can thus be ignored. Multiplying by τ and t2n gives after
using Cauchy-Schwarz and Young’s inequality

t2n‖∂̄tθnh‖2κ ≤ t2n−1‖∂̄tθn−1
h ‖2κ + (t2n − t2n−1)‖∂̄2

t θ
n−1
h ‖2κ.

Note that t2n− t2n−1 ≤ 3τtn−1, where we use that tn ≤ 2tn−1 if n ≥ 2. Summing
over n now gives

t2n‖∂̄tθnh‖2κ ≤ t21‖∂̄tθ1
h‖2κ + 3

n∑
j=2

τtj−1‖∂̄tθj−1
h ‖2κ.

To bound the last sum we choose v1 = ∂̄2
t u

n
h, v2 = ∂̄tθ

n
h in (3.10)-(3.11), now

with f = 0 and g = 0. Adding the resulting equations gives

(∂̄2
t θ
n
h , ∂̄tθ

n
h) + (κ∇∂̄tθnh ,∇∂̄tθnh) + (σ(∂̄tu

n
h) : ε(∂̄2

t u
n
h)) = 0,

Multiplying by τ and tn gives after using Cauchy-Schwarz inequality

tn
2
‖∂̄tunh‖2σ +

tn
2
‖∂̄tθnh‖2 + cκτtn‖∂̄tθnh‖2H1

≤ tn−1

2
‖∂̄tun−1

h ‖2σ +
tn−1

2
‖∂̄tθn−1

h ‖2 +
τ

2
‖∂̄tun−1

h ‖2σ +
τ

2
‖∂̄tθn−1

h ‖2.

Summing over n and using (2.10) thus gives

cσtn
2
‖∂̄tunh‖2H1 +

tn
2
‖∂̄tθnh‖2 +

n∑
j=2

τtj‖∂̄tθjh‖
2
H1

≤ Cσt1
2
‖∂̄tu1

h‖2H1 +
t1
2
‖∂̄tθ1

h‖2 + C

n∑
j=2

τ
(
‖∂̄tuj−1

h ‖2H1 + ‖∂̄tθj−1
h ‖2

)
.

To bound the last sum in this estimate we choose v1 = ∂̄tu
n
h, v2 = ∂̄tθ

n
h in

(3.7)-(3.8) and multiply by τ to get

cστ‖∂̄tunh‖2H1 + τ‖∂̄tθnh‖2 +
1

2
‖θnh‖2κ ≤

1

2
‖θn−1
h ‖2κ.

82



Numerical approximation

Summing over n and using (2.11) gives

C

n∑
j=1

τ
(
‖∂̄tθjh‖

2 + ‖∂̄tujh‖
2
H1

)
+
cκ
2
‖θnh‖2H1 ≤

Cκ
2
‖θ0
h‖2H1 .(3.12)

It remains to bound t21‖∂̄tθ1
h‖2H1 , t1‖∂̄tθ1

h‖2, and t1‖∂̄tu1
h‖H1 . For this purpose

we recall that t1 = τ and use (3.12) for n = 1 to get

t1‖∂̄tu1
h‖H1 + t1‖∂̄tθ1

h‖2 + t21‖∂̄tθ1
h‖2H1

≤ C(τ(‖∂̄tu1
h‖2H1 + ‖∂̄tθ1

h‖2) + ‖θ1
h‖2H1 + ‖θ0

h‖2H1) ≤ C‖θ0‖2H1 .

Finally, we have that

tn‖∂̄tunh‖2H1 + tn‖∂̄tθnh‖2 ≤ C‖θ0‖2H1 , t2n‖∂̄tθnh‖2H1 ≤ C‖θ0‖2H1 ,

and thus (3.6) follows. �

3.2. Generalized finite element. In this section we shall derive a gen-
eralized finite element method. First we define V 1

H and V 2
H analogously to V 1

h

and V 2
h , but with a larger mesh size H > h. In addition, we assume that the

family of triangulations {TH}H>h is quasi-uniform and that Th is a refinement
of TH such that V 1

H ⊆ V 1
h and V 2

H ⊆ V 2
h . Furthermore, we use the notation

N = N 1 ×N 2 to denote the free nodes in V 1
H × V 2

H . The aim is now to define
a new (multiscale) space with the same dimension as V 1

H × V 2
H , but with better

approximation properties. For this purpose we define an interpolation operator
IH = (I1

H , I
2
H) : V 1

h × V 2
h → V 1

H × V 2
H with the property that IH ◦ IH = IH and

for all v = (v1, v2) ∈ V 1
h × V 2

h

H−1
K ‖v − IHv‖L2(K) + ‖∇IHv‖L2(K) ≤ CI‖∇v‖L2(ωK), ∀K ∈ TH ,(3.13)

where

ωK := int {K̂ ∈ TH : K̂ ∩K 6= ∅}.

Since the mesh is assumed to be shape regular, the estimates in (3.13) are also
global, i.e.,

H−1‖v − IHv‖+ ‖∇IHv‖ ≤ C‖∇v‖,(3.14)

where C is a constant depending on the shape regularity parameter, γ > 0;

γ := max
K∈TH

γK , with γK :=
diamBK
diamK

, for K ∈ TH ,(3.15)

where BK is the largest ball contained in K.
One example of an interpolation that satisfies the above assumptions is

IiH = EiH ◦ Πi
H , i = 1, 2. Here Πi

H denotes the piecewise L2-projection onto
P1(TH) (P1(TH)d if i = 1), the space of functions that are affine on each triangle
K ∈ TH . Furthermore, E1

H is an averaging operator mapping (P1(TH))d into
V 1
H , by (coordinate wise)

(E1,j
H (v))(z) =

1

card{K ∈ TH : z ∈ K}
∑

K∈TH :z∈K
vj |K(z), 1 ≤ j ≤ d,
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where z ∈ N 1. E2
H mapping P1

H to V 2
H is defined similarly. For a further

discussion on this interpolation and other available options we refer to [19].
Let us now define the kernels of I1

H and I2
H

V 1
f := {v ∈ V 1

h : I1
Hv = 0}, V 2

f := {v ∈ V 2
h : I2

Hv = 0}

The kernels are fine scale spaces in the sense that they contain all features that
are not captured by the (coarse) finite element spaces V 1

H and V 2
H . Note that

the interpolation leads to the splits V 1
h = V 1

H ⊕V 1
f and V 2

h = V 2
H ⊕V 2

f , meaning
that any function v1 ∈ V 1

h can be uniquely decomposed as v1 = v1,H +v1,f , with
v1,H ∈ V 1

H and v1,f ∈ V 1
f , and similarly for v2 ∈ V 2

h .
Now, we introduce a Ritz projection onto the fine scale spaces. For this we

use the bilinear forms associated with the diffusion in (2.8)-(2.9). The projection
of interest is thus Rf : V 1

h ×V 2
h → V 1

f ×V 2
f , such that for all (v1, v2) ∈ V 1

h ×V 2
h ,

Rf(v1, v2) = (R1
f v1, R

2
f v2) fulfills

(σ(v1 −R1
f v1) : ε(w1)) = 0, ∀w1 ∈ V 1

f ,(3.16)

(κ∇(v2 −R2
f v2),∇w2) = 0, ∀w2 ∈ V 2

f .(3.17)

Note that this is an uncoupled system and R1
f and R2

f are classical Ritz projec-
tions.

For any (v1, v2) ∈ V 1
h × V 2

h we have, due to the splits of the spaces V 1
h and

V 2
h above, that

v1 −R1
f v1 = v1,H −R1

f v1,H , v2 −R2
f v2 = v2,H −R2

f v2,H .

Using this we define the multiscale spaces

V 1
ms := {v −R1

f v : v ∈ V 1
H}, V 2

ms := {v −R2
f v : v ∈ V 2

H}.(3.18)

Clearly V 1
ms×V 2

ms has the same dimension as V 1
H×V 2

H . Indeed, with λ1
x denoting

the hat function in V 1
H at node x and λ2

y the hat function in V 2
H at node y, such

that

V 1
H × V 2

H = span{(λ1
x, 0), (0, λ2

y) : (x, y) ∈ N},

a basis for V 1
ms × V 2

ms is given by

{(λ1
x −R1

f λ
1
x, 0), (0, λ2

y −R2
f λ

2
y) : (x, y) ∈ N}.(3.19)

Finally, we also note that the splits V 1
h = V 1

ms ⊕ V 1
f and V 2

h = V 2
ms ⊕ V 2

f

hold, which fulfill the following orthogonality relation

(σ(v1) : ε(w1) = 0, ∀v1 ∈ V 1
ms, w1 ∈ V 1

f ,(3.20)

(κ∇v2,∇w2) = 0, ∀v2 ∈ V 2
ms, w2 ∈ V 2

f(3.21)
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3.2.1. Stationary problem. For the error analysis in Section 5 it is con-
venient to define the Ritz projection onto the multiscale space using the bi-
linear form given by the stationary version of (2.8)-(2.9). We thus define
Rms : V 1

h ×V 2
h → V 1

ms×V 2
ms, such that for all (v1, v2) ∈ V 1

h ×V 2
h , Rms(v1, v2) =

(R1
ms(v1, v2), R2

msv2) fulfills

(σ(v1 −R1
ms(v1, v2)) : ε(w1))− (α(v2 −R2

msv2),∇ · w1) = 0, ∀w1 ∈ V 1
ms,

(3.22)

(κ∇(v2 −R2
msv2),∇w2) = 0, ∀w2 ∈ V 2

ms.(3.23)

Note that we must have R2
ms = I −R2

f , but R1
ms 6= I −R1

f in general.
The Ritz projection in (3.22)-(3.23) is upper triangular. Hence, when solv-

ing for R1
ms(v1, v2) the term (αR2

msv2,∇ · w1) in (3.23) is known. Since this
term has multiscale features and appears on the right hand side, we impose a
correction on R1

ms(v1, v2) inspired by the ideas in [11] and [15]. The correction

is defined as the element R̃fv2 ∈ V 1
f , which fulfills

(σ(R̃fv2) : ε(w1)) = (αR2
msv2,∇ · w1), ∀w1 ∈ V 1

f ,(3.24)

and we define R̃1
ms(v1, v2) = R1

ms(v1, v2) + R̃fv2.
Note that the Ritz projections are stable in the sense that

‖R̃1
ms(v1, v2)‖H1 ≤ C(‖v1‖H1 + ‖v2‖H1), ‖R2

msv2‖H1 ≤ C‖v2‖H1 .(3.25)

Remark 3.4. The problem to find R̃fv2 is posed in the entire fine scale
space and is thus computationally expensive to solve. The aim is to localize
these computations to smaller patches of coarse elements, see Section 4.

To derive error bounds for this projection we define two operators A1 :
V 1
h × V 2

h → V 1
h and A2 : V 2

h → V 2
h such that for all (v1, v2) ∈ V 1

h × V 2
h we have

(A1(v1, v2), w1) = (σ(v1) : ε(w1))− (αv2,∇ · w1), ∀w1 ∈ V 1
h ,(3.26)

(A2v2, w2) = (κ∇v2,∇w2), ∀w2 ∈ V 2
h .(3.27)

Lemma 3.5. For all (v1, v2) ∈ V 1
h × V 2

h it holds that

‖v1 − R̃1
ms(v1, v2)‖H1 ≤ C(H‖A1(v1, v2)‖+ ‖v2 −R2

msv2‖)(3.28)

≤ CH(‖A1(v1, v2)‖+ ‖v2‖H1),

‖v2 −R2
msv2‖H1 ≤ CH‖A2v2‖.(3.29)

Proof. It follows from [18] that (3.29) holds, since (3.23) is an elliptic
equation of Poisson type. Using an Aubin-Nitsche duality argument as in, e.g.,
[16], we can derive the following estimate in the L2-norm

‖v2 −R2
msv2‖ ≤ CH‖v2 −R2

msv2‖H1 ≤ CH‖v2‖H1 ,

which proves the second inequality in (3.28).

It remains to bound ‖v1 − R̃1
ms(v1, v2)‖H1 . Recall that any v ∈ V 1

h can be
decomposed as

v = v −R1
f v +R1

f v = (I −R1
f )v +R1

f v,
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where (I − R1
f )v ∈ V 1

ms. Using the orthogonality (3.20) and that (σ(·) : ε(·)) is
a symmetric bilinear form we get

(σ(R̃1
ms(v1, v2)) : ε(v)) = (σ(R1

ms(v1, v2) + R̃fv2) : ε((I −R1
f )v +R1

f v))

= (σ(R1
ms(v1, v2)) : ε((I −R1

f )v)) + (σ(R̃fv2) : ε(R1
f v)).

Due to (3.22) and (3.24) we thus have

(σ(R1
ms(v1, v2)) : ε((I −R1

f )v)) + (σ(R̃fv2) : ε(R1
f v))

= (σ(v1) : ε((I −R1
f )v))− (α(v2 −R2

msv2),∇ · (I −R1
f )v)

+ (αR2
msv2,∇ ·R1

f v)

= (A1(v1, v2), (I −R1
f )v) + (αR2

msv2,∇ · v).

Define e := v1 − R̃1
ms(v1, v2). Using the above relation together with (3.26) we

get the bound

cσ‖e‖2H1 ≤ (σ(e) : ε(e)) = (σ(v1) : ε(e))− (A1(v1, v2), (I −R1
f )e)

− (αR2
msv2,∇ · e)

= (A1(v1, v2), R1
f e) + (α(v2 −R2

msv2),∇ · e)
≤ ‖A1(v1, v2)‖‖R1

f e‖+ C‖v2 −R2
msv2‖‖e‖H1

Since R1
f e ∈ V 1

f we have due to (3.13)

‖R1
f e‖ = ‖R1

f e− I1
HR

1
f e‖ ≤ CH‖R1

f e‖H1 ≤ CH‖e‖H1 ,

where we have used the stability ‖R1
f v‖H1 ≤ C‖v‖H1 for v ∈ V 1

h . The first
inequality in (3.28) now follows. �

Remark 3.6. Without the correction R̃f the error bound (3.28) would
depend on the derivatives of α,

‖v1 −R1
ms(v1, v2)‖H1 ≤ Cα′(H‖A1(v1, v2)‖+ ‖v2 −R2

msv2‖),

where α′ is large if α has multiscale features.

3.2.2. Time-dependent problem. A generalized finite element method with
a backward Euler discretization in time is now defined by replacing V 1

h with
V 1

ms and V 2
h with V 2

ms in (3.1)-(3.2) and adding a correction similar to (3.24).
The method thus reads; for n ∈ {1, ..., N} find ũnms = unms +unf , with unms ∈ V 1

ms,
unf ∈ V 1

f , and θnms ∈ V 2
ms, such that

(σ(ũnms) : ε(v1))− (αθnms,∇ · v1) = (fn, v1), ∀v1 ∈ V 1
ms,(3.30)

(∂̄tθ
n
ms, v2) + (κ∇θnms,∇v2) + (α∇ · ∂̄tũnms, v2) = (gn, v2), ∀v2 ∈ V 2

ms,(3.31)

(σ(unf ) : ε(w1))− (αθnms,∇ · w1) = 0, ∀w1 ∈ V 1
f .(3.32)

where θ0
ms = R2

msθ
0
h. Furthermore, we define ũ0

ms := u0
ms + u0

f , where u0
f ∈ V 1

f is
defined by (3.32) for n = 0 and u0

ms ∈ V 1
ms, such that

(σ(ũ0
ms) : ε(v1))− (αθ0

ms,∇ · v1) = (f0, v1), ∀v1 ∈ V 1
ms.(3.33)
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Lemma 3.7. The problem (3.30)-(3.31) is well-posed.

Proof. Given un−1
ms , θn−1

ms , and un−1
f , the equations (3.30)-(3.32) yields

a square system. Hence, it is sufficient to prove that the solution is unique.
Let v1 = unms − un−1

ms in (3.30) and v2 = τθnms in (3.31) and add the resulting
equations to get

(σ(unms) : ε(unms − un−1
ms )) + (σ(unf ) : ε(unms − un−1

ms )) + τ(∂̄tθ
n
ms, θ

n
ms)

+ cκτ‖θnms‖2H1 + (α∇ · (unf − un−1
f ), θnms,k)

≤ (fn, unms − un−1
ms ) + τ(gn, θnms).

Using the orthogonality (3.20) and (3.32) this simplifies to

(σ(unms) : ε(unms − un−1
ms )) + τ(∂̄tθ

n
ms, θ

n
ms) + cκτ‖θnms‖2H1 + cσ‖unf ‖2H1

≤ (fn, unms − un−1
ms ) + τ(gn, θnms) + (σ(unf ) : ε(un−1

f )).

Now, using that (σ(·) : ε(·)) is a symmetric bilinear form we get the following
identity

(σ(v) : ε(v − w)) =
1

2
(σ(v) : ε(v)) +

1

2
(σ(v − w) : ε(v − w))(3.34)

− 1

2
(σ(w) : ε(w)),

and using Cauchy-Schwarz and Young’s inequality we derive

(fn, unms − un−1
ms ) ≤ C‖fn‖H−1 +

1

2
(σ(unms − un−1

ms ) : ε(unms − un−1
ms )).

This, together with the estimate τ(∂̄tθ
n
ms, θ

n
ms) ≥ 1

2‖θ
n
ms‖2− 1

2‖θ
n−1
ms ‖2 and (2.10),

leads to
cσ
2
‖unms‖2H1 +

1

4
‖θnms‖2 + cκτ‖θnms‖2H1 +

cσ
2
‖unf ‖2H1

≤ C(‖fn‖2H−1 + τ‖gn‖2 + ‖θn−1
ms ‖2 + ‖un−1

ms ‖2H1 + ‖un−1
f ‖2H1).

Hence, a unique solution exists. �

4. Localization

In this section we show how to truncate the basis functions, which is moti-
vated by the exponential decay of (3.9). We consider a localization inspired by
the one proposed in [11], which is performed by restricting the fine scale space
to patches of coarse elements defined by the following; for K ∈ TH

ω0(K) := int K,

ωk(K) := int
(
∪ {K̂ ∈ TH : K̂ ∩ ωk−1(K) 6= ∅}

)
, k = 1, 2, ...

Now let V 1
f (ωk(K)) := {v ∈ V 1

f : v(z) = 0 on (Ω\ΓuN )\ωk(K)} be the restriction
of V 1

f to the patch ωk(T ). We define V 2
f (ωk(K)) similarly.

The localized fine scale space can now be used to approximate the fine scale
part of the basis functions in (3.9), which significantly reduces the computational
cost for these problems. Let (·, ·)ω denote the L2 inner product over a subdomain
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ω ⊆ Ω and define the local Ritz projection RKf,k : V 1
h × V 2

h → V 1
f (ωk(K)) ×

V 2
f (ωk(K)) such that for all (v1, v2) ∈ V 1

h ×V 2
h , RKf,k(v1, v2) = (RK,1f,k v1, R

K,2
f,k v1)

fulfills

(σ(RK,1f,k v1) : ε(w1))ωk(K) = (σ(v1) : ε(w1))K , ∀w1 ∈ V 1
f (ωk(K)),(4.1)

(κ∇(RK,2f,k v2),∇w2)ωk(K) = (κ∇v2,∇w2)K , ∀w2 ∈ V 2
f (ωk(K)).(4.2)

Note that if we replace ωk(K) with Ω in (4.1)-(4.2) and denote the resulting

projection RKf (v1, v2) = (RK,1f v1, R
K,2
f v2), then for all (v1, v2) ∈ V 1

h × V 2
h we

have

Rf(v1, v2) =
∑
K∈TH

RKf (v1, v2) =
∑
K∈TH

(RK,1f v1, R
K,2
f v2).

Motivated by this we now define the localized fine scale projection as

Rf,k(v1, v2) :=
∑
K∈TH

RKf,k(v1, v2) =
∑
K∈TH

(RK,1f,k v1, R
K,2
f,k v2),(4.3)

and the localized multiscale spaces

V 1
ms,k := {v1 −R1

f,kv1 : v1 ∈ V 1
H}, V 2

ms,k := {v2 −R2
f,kv2 : v2 ∈ V 2

H},(4.4)

with the corresponding localized basis

{(λ1
x −R1

f,kλx, 0), (0, λ2
y −R2

f,kλy) : (x, y) ∈ N}.(4.5)

4.1. Stationary problem. In this section we define a localized version of
the stationary problem (3.22)-(3.23). Let Rms,k : V 1

h × V 2
h → V 1

ms,k × V 2
ms,k,

such that for all (v1, v2) ∈ V 1
h × V 2

h , Rms,k(v1, v2) = (R1
ms,k(v1, v2), R2

ms,kv2).
The method now reads; find

R̃1
ms,k(v1, v2) = R1

ms,k(v1, v2) +
∑
K∈TH

R̃Kf,kv2, where R̃Kf,kv2 ∈ V 1
f (ωk(K)),

and R2
ms,kv2 such that

(σ(v1 − R̃1
ms,k(v1, v2)) : ε(w1))

− (α(v2 −R2
ms,kv2),∇ · w1) = 0, ∀w1 ∈ V 1

ms,k,(4.6)

(κ∇(v2 −R2
ms,kv2),∇w2) = 0, ∀w2 ∈ V 2

ms,k.(4.7)

(σ(R̃Kf,kv2) : ε(w))− (αR2
ms,kv2,∇ · w)K = 0, ∀w ∈ V 1

f (wk(K)).(4.8)

Note that the Ritz projection is stable in the sense that

‖R̃1
ms,k(v1, v2)‖H1 ≤ C(‖v1‖H1 + ‖v2‖H1), ‖R2

ms,kv2‖H1 ≤ C‖v2‖H1 .(4.9)

The following two lemmas give a bound on the error introduced by the
localization.
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Lemma 4.1. For all (v1, v2) ∈ V 1
h × V 2

h , there exists ξ ∈ (0, 1), such that

‖R1
f,kv1 −R1

f v1‖2H1 ≤ Ckdξ2k
∑
K∈TH

‖RK,1f v1‖2H1 ,(4.10)

‖R2
f,kv2 −R2

f v2‖2H1 ≤ Ckdξ2k
∑
K∈TH

‖RK,2f v2‖2H1 ,(4.11)

‖R̃f,kv2 − R̃fv2‖2H1 ≤ Ckdξ2k
∑
K∈TH

‖R̃Kf v2‖2H1 .(4.12)

The bounds (4.10)-(4.11) are direct results from [13], while (4.12) follows
by a slight modification of the right hand side. We omit the proof here.

The next lemma gives a bound for the localized Ritz projection.

Lemma 4.2. For all (v1, v2) ∈ V 1
h × V 2

h there exist ξ ∈ (0, 1) such that

‖v1 − R̃1
ms,k(v1, v2)‖H1 ≤ C(H + kd/2ξk)(‖A1(v1, v2)‖+ ‖v2‖H1),(4.13)

‖v2 −R2
ms,kv2‖H1 ≤ C(H + kd/2ξk)‖A2v2‖.(4.14)

Proof. It follows from [11] that (4.14) holds. To prove (4.13) we let vH ∈
V 1
H and vH,k ∈ V 1

H be elements such that

R1
ms(v1, v2) = vH −R1

f vH , R1
ms,k(v1, v2) = vH,k −R1

f,kvH,k.

Define e := v1 − R̃1
ms,k(v1, v2). From (4.6)-(4.7) we get have the following

identity for any z ∈ V 1
ms,k

(σ(e) :ε(e))− (α(v2 −R2
ms,kv2),∇ · e)

= (σ(e) : ε(v1 − z − R̃f,kv1))− (α(v2 −R2
ms,kv2),∇ · (v1 − z − R̃f,kv2)).

Using this with z = vH −R1
f,kvH ∈ V 1

ms,k we get

cσ‖e‖2H1 ≤ (σ(e) : ε(e)) = (σ(e) : ε(v1 − vH −R1
f,kvH − R̃fv1))

− (α(v2 −R2
ms,kv2),∇ · (v1 − vH −R1

f,kvH − R̃f,kv2))

+ (α(v2 −R2
ms,kv2),∇ · e).

Now, using Cauchy-Schwarz and Young’s inequality we get

‖e‖2H1 ≤ C(‖v1 − vH −R1
f,kvH − R̃f,kv2‖2H1 + ‖v2 −R2

ms,kv2‖2),

where the last term is bounded in (4.14). For the first term we get

‖v1 − vH −R1
f,kvH − R̃f,kv2‖H1

≤ ‖v1 − (vH −R1
f vH + R̃fv2)‖H1 + ‖R1

f vH −R1
f,kvH‖H1

+ ‖R̃fv2 − R̃f,kv2‖2H1

≤ ‖v1 − R̃1
ms(v1, v2)‖H1 + ‖R1

f vH −R1
f,kvH‖H1 + ‖R̃fv2 − R̃f,kv2‖H1 ,
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where the first term on the right hand side is bounded in Lemma 3.5. For the
second term we use Lemma 4.1 to get

‖R1
f vH −R1

f,kvH‖2H1 ≤ Ckdξ2k
∑
K∈TH

‖RK,1f vH‖2H1 ≤ Ckdξ2k
∑
K∈TH

‖vH‖2H1(K)

= Ckdξ2k‖vH‖2H1 = Ckdξ2k‖IH(vH −R1
f vH)‖2H1

= Ckdξ2k‖IHR1
ms(v1, v2)‖2H1 ≤ Ckdξ2k‖R1

ms(v1, v2)‖2H1 .

We can bound this further by using (3.25) and (3.26), such that

‖R1
ms(v1, v2)‖H1 ≤ C(‖v1‖H1 + ‖v2‖H1) ≤ C(‖A1(v1, v2)‖+ ‖v2‖H1).

Similar arguments, using Lemma 4.1 and (4.8), prove

‖R̃fv2 − R̃f,kv2‖H1 ≤ Ckd/2ξk‖v2‖H1 ,

and (4.13) follows. �

Remark 4.3. To preserve linear convergence, the localization parameter
k should be chosen such that k = c log(H−1) for some constant c. With this
choice of k we get kd/2ξk ∼ H and we get linear convergence in Lemma 4.2.

We note that the orthogonality relation (3.20) does not hold when V 1
ms is

replaced by V 1
ms,k. However, we have that V 1

ms,k and V 1
f are almost orthogonal

in the sense that

(σ(v) : ε(w)) ≤ Ckd/2ξk‖v‖H1‖w‖H1 , ∀v ∈ V 1
ms,k, w ∈ V 1

f .(4.15)

To prove this, note that v = vH,k −R1
f,kvH,k for some vH,k ∈ V 1

H , and

(σ(v) : ε(w)) = (σ(vH,k −R1
f vH,k) : ε(w)) + (σ(R1

f vH,k −R1
f,kvH,k) : ε(w))

= (σ(R1
f vH,k −R1

f,kvH,k) : ε(w))

≤ Cσ‖R1
f vH,k −R1

f,kvH,k‖H1‖w‖H1 ,

where we have used that vH,k − R1
f vH,k ∈ V 1

ms and the orthogonality (3.20).
Due to Lemma 4.1 we now have

‖R1
f vH,k −R1

f,kvH,k‖2H1 ≤ Ckdξ2k
∑
K∈TH

‖RK,1f vH,k‖2H1

≤ Ckdξ2k
∑
K∈TH

‖vH,k‖2H1(K)

= Ckdξ2k‖vH,k‖2H1 = Ckdξ2k‖IH(vH,k −R1
f,kvH,k)‖2H1

= Ckdξ2k‖IHv‖2H1 ≤ Ckdξ2k‖v‖2H1 ,

and (4.15) follows.
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4.2. Time-dependent problem. A localized version of (3.30)-(3.32) is
now defined by replacing V 1

ms with V 1
ms,k and V 2

ms with V 2
ms,k. The method thus

reads; for n ∈ {1, ..., N} find

ũnms,k = unms,k +
∑
K∈TH

un,Kf,k , with unms,k ∈ V 1
ms,k, u

n,K
f,k ∈ V

1
f (ωk(K)),

and θnms,k ∈ V 2
ms,k, such that

(σ(ũnms,k) : ε(v1))− (αθnms,k,∇ · v1) = (fn, v1), ∀v1 ∈ V 1
ms,k,(4.16)

(∂̄tθ
n
ms,k, v2) + (κ∇θnms,k,∇v2)

+ (α∇ · ∂̄tũnms,k, v2) = (gn, v2), ∀v2 ∈ V 2
ms,k,

(4.17)

(σ(un,Kf,k ) : ε(w1))− (αθnms,k,∇ · w1)K = 0, ∀w1 ∈ V 1
f (ωk(K)).(4.18)

where θ0
ms,k = R2

ms,kθ
0
h. Furthermore, we define ũ0

ms,k = u0
ms,k +

∑
K∈TH u

0,K
f,k ,

where u0,K
f,k ∈ V 1

f (ωk(K)) is defined by (4.18) for n = 0 and u0
ms,k ∈ V 1

ms such
that

(σ(ũ0
ms,k) : ε(v1))− (αθ0

ms,k,∇ · v1) = (f0, v1), ∀v1 ∈ V 1
ms,k.(4.19)

We also define unf,k :=
∑
K∈TH u

n,K
f,k . Note that for unf we have due to (3.32)

(σ(unf ) : ε(w1))− (αθnms,∇ · w1) = 0, ∀w1 ∈ V 1
f .

For the localized version unf,k this relation is not true. Instead, we prove the
following lemma.

Lemma 4.4. For w1 ∈ V 1
f , it holds that

|(σ(unf,k) : ε(w1))− (αθnms,k,∇ · w1)| ≤ Ckd/2ξk‖θnms,k‖‖w1‖H1 .

Proof. Note that from (4.18) we have

(σ(un,Kf,k ) : ε(w1))− (αθnms,k,∇ · w1)K = 0, ∀w1 ∈ V 1
f (ωk(K)).(4.20)

This equation can be viewed as the localization of the following problem. Find
znf ∈ V 1

f , such that

(σ(znf ) : ε(w1))− (αθnms,k,∇ · w1) = 0, ∀w1 ∈ V 1
f .(4.21)

Now, [13, Lemma 4.4] gives the bound

‖znf − unf,k‖2H1 ≤ Ckdξ2k
∑
K∈TH

‖zn,Kf ‖2H1

where znf =
∑
K∈TH z

n,K
f such that

(σ(zn,Kf ) : ε(w1))− (αθnms,k,∇ · w1)K = 0, ∀w1 ∈ V 1
f .

91



Paper III

Using this we derive the bound

‖znf − unf,k‖2H1 ≤ Ckdξ2k
∑
K∈TH

‖zn,Kf ‖2H1 ≤ Ckdξ2k
∑
K∈TH

‖θnms,k‖2L2(K)(4.22)

= Ckdξ2k‖θnms,k‖2.

Now, to prove the lemma we use (4.21) and Cauchy-Schwarz inequality to get

|(σ(unf,k) : ε(w1))− (αθnms,k,∇ · w1)| = |(σ(unf,k − znf ) : ε(w1))|
≤ Cσ‖unf,k − znf ‖H1‖w1‖H1 .

Applying (4.22) finishes the proof.
�

The proof can be modified slightly to show the following bound

|(σ(∂̄tu
n
f,k) : ε(w1))− (α∂̄tθ

n
ms,k,∇ · w1)| ≤ Ckd/2ξk‖∂̄tθnms,k‖‖w1‖H1 .(4.23)

Also note that it follows, by choosing w1 = unf,k and w1 = ∂̄tu
n
f,k respectively,

that

‖unf,k‖H1 ≤ C‖θnms,k‖, ‖∂̄tunf,k‖H1 ≤ C‖∂̄tθnms,k‖.(4.24)

To prove that (4.16)-(4.18) is well posed, we need the following condition
on the size of H.

Assumptions. We make the following assumption on the size of H.

(A4) H ≤ min

(
1

4Cco
, cσ

(Cco+Cort)

)
, where Cco is the constant in Lemma 4.4

and Cort is the constant in the almost orthogonal property (4.15).

Lemma 4.5. Assuming (A4) the problem (4.16)-(4.18) is well-posed.

Proof. This proof is similar the proof of Lemma 3.7, but we need to
account for the lack of orthogonality and the fact that (3.32) is not satisfied.

Given un−1
ms,k, θn−1

ms,k, and un−1
f,k =

∑
K u

n−1,K
f,k , the equations (4.16)-(4.18)

yields a square system, so it is sufficient to prove that the solution is unique.
Choosing v1 = unms,k − u

n−1
ms,k in (4.16) and v2 = τθnms,k in (4.17) and adding the

resulting equations we get

(σ(unms,k) : ε(unms,k − un−1
ms,k)) + (σ(unf,k) : ε(unms,k − un−1

ms,k)) + τ(∂̄tθ
n
ms,k, θ

n
ms,k)

+ cκτ‖θnms,k‖2H1 + (α∇ · (unf,k − un−1
f,k ), θnms,k)

≤ (fn, unms,k − un−1
ms,k) + τ(gn, θnms,k).

Now, using (3.34) and

(fn, unms,k − un−1
ms,k) ≤ C‖fn‖H−1 +

1

2
(σ(unms,k − un−1

ms,k) : ε(unms,k − un−1
ms,k)).
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together with the estimate τ(∂̄tθ
n
ms,k, θ

n
ms,k) ≥ 1

2‖θ
n
ms,k‖2 − 1

2‖θ
n−1
ms,k‖2, gives

cσ
2
‖unms,k‖2H1 +

1

4
‖θnms,k‖2 + cκτ‖θnms,k‖2H1 + (σ(unf,k) : ε(unms,k))

+ (α∇ · unf,k, θnms,k)

≤ C‖fn‖2H−1 +
τ

2
‖gn‖2 +

Cσ
2
‖un−1

ms,k‖
2
H1 +

1

2
‖θn−1

ms,k‖
2

+ (σ(ũnf,k) : ε(un−1
ms,k)) + (α∇ · un−1

f,k , θnms,k).

Using Lemma 4.4 we have

(α∇ · unf,k, θnms,k) = (αθnms,k,∇ · unf,k)− (σ(unf,k) : ε(unf,k)) + (σ(unf,k) : ε(unf,k))

≥ −|(αθnms,k,∇ · unf,k)− (σ(unf,k) : ε(unf,k))|+ cσ‖unf,k‖2H1

≥ −Ccok
d/2ξk‖unf,k‖H1‖θnms,k‖+ cσ‖unf,k‖2H1 .

and the almost orthogonal property (4.15) gives

|(σ(unf,k) : ε(unms,k))| ≥ −Cortk
d/2ξk‖unf,k‖H1‖unms,k‖H1 .

Now, using that k should be chosen such that linear convergence is obtained,
see Remark 4.3, that is kd/2ξk ∼ H, we conclude after using Young’s inequality
that

(
cσ
2
− CortH

2
)‖unms,k‖2H1 + (

1

8
− CcoH

2
)‖θnms,k‖2 + cκ‖θnms,k‖2H1

+ (cσ −
(Cco + Cort)H

2
)‖unf,k‖2H1

≤ C(‖fn‖2H−1 + τ‖gn‖2 + ‖un−1
ms,k‖

2
H1 + ‖θn−1

ms,k‖
2 + ‖un−1

f,k ‖
2
H1),

where assumption (A4) guarantees that the coefficients are positive. Hence, a
unique solution exists. �

5. Error analysis

In this section we analyze the error of the generalized finite element method.
The results are based on assumption (A4). In the analysis we utilize the follow-
ing property, which is similar to Lemma 4.4.

Lemma 5.1. Let ẽnf,k := R̃f,kθ
n
h −unf,k and ηnθ := R2

ms,kθ
n
h − θnms,k. Then, for

w1 ∈ V 1
f , it holds that

|(σ(ẽnf,k) : ε(w1))− (αηnθ ,∇ · w1)| ≤ Ckd/2ξk‖ηnθ ‖‖w1‖H1 .

Proof. The proof is similar to the proof of Lemma 4.4. We omit the
details. �

This can be modified slightly to show the following bound

|(σ(∂̄tẽ
n
f,k) : ε(w1))− (α∂̄tη

n
θ ,∇ · w1)| ≤ Ckd/2ξk‖∂̄tηnθ ‖‖w1‖H1 .(5.1)
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Also note that it follows, by choosing w1 = ẽnf,k and w1 = ∂̄tẽ
n
f,k respectively,

that

‖ẽnf,k‖H1 ≤ C‖ηnθ ‖, ‖∂̄tẽnf,k‖H1 ≤ C‖∂̄tηnθ ‖.(5.2)

Theorem 5.2. Assume that (A4) holds. Let {unh}Nn=1 and {θnh}Nn=1 be the
solutions to (3.1)-(3.2) and {ũnms,k}Nn=1 and {θnms,k}Nn=1 the solutions to (4.16)-

(4.18). For n ∈ {1, ..., N} we have

‖unh − ũnms,k‖H1 + ‖θnh − θnms,k‖H1 ≤ C(H + kd/2ξk)
(
‖g‖L∞(L2) + ‖ġ‖L∞(H−1)

+ ‖f‖L∞(L2) + ‖ḟ‖L∞(L2) + ‖f̈‖L∞(H−1)

+ t−1/2
n ‖θ0

h‖H1

)
.

The proof of Theorem 5.2 is based on two lemmas.

Lemma 5.3. Assume that θ0
h = 0 and (A4) holds. Let {unh}Nn=1 and {θnh}Nn=1

be the solutions to (3.1)-(3.2) and {ũnms,k}Nn=1 and {θnms,k}Nn=1 the solutions to

(4.16)-(4.18). For n ∈ {1, ..., N} we have

‖unh − ũnms,k‖H1 + ‖θnh − θnms,k‖H1 ≤ C(H + kd/2ξk)
(
‖g‖L∞(L2) + ‖ġ‖L∞(H−1)

+ ‖f‖L∞(L2) + ‖ḟ‖L∞(L2) + ‖f̈‖L∞(H−1)

)
.

Proof. We divide the error into the terms

unh − ũnms,k = unh − R̃1
ms,k(unh, θ

n
h) + R̃1

ms,k(unh, θ
n
h)− ũnms,k =: ρ̃nu + η̃nu ,

θnh − θnms,k = θnh −R2
ms,kθ

n
h +R2

ms,kθ
n
h − θnms,k =: ρnθ + ηnθ .

We also adopt the following notation

ẽnf,k := R̃f,kθ
n
h − unf,k, ηnu := η̃nu − ẽnf,k = R1

ms,k(unh, θ
n
h)− unms,k.

From (3.2) it follows that

(κ∇θnh ,∇v2) = (gn − ∂̄tθnh −∇ · ∂̄tunh, v2), ∀v2 ∈ V 2
h ,

so by Lemma 4.2 we have the bound

‖ρnθ ‖H1 ≤ C(H + kd/2ξk)‖P 2
hg

n − ∂̄tθnh −∇ · ∂̄tunh‖,

where P 2
h denotes the L2-projection onto V 2

h . Theorem 3.3 now completes this
bound. Similarly, (3.1) gives

(σ(unh) : ε(v1))− (αθnh ,∇ · v1) = (fn, v1), ∀v1 ∈ V 1
h ,

so, again, by Lemma 4.2 we get

‖ρ̃nu‖H1 ≤ C(H + kd/2ξk)(‖fn‖+ ‖θnh‖H1),

which can be further bounded by using Theorem 3.3. To bound η̃nu and ηnθ we
note that for v1 ∈ V 1

ms,k

(σ(η̃nu) :ε(v1))− (αηnθ ,∇ · v1)(5.3)

= (σ(R̃1
ms,k(unh, θ

n
h)) : ε(v1))− (αR2

ms,kθ
n
h ,∇ · v1)− (fn, v1)

= (σ(unh) : ε(v1))− (αθnh ,∇ · v1)− (fn, v1) = 0,
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where we have used the Ritz projection (4.6), and the equations (3.1) and (4.16).
Similarly, for v2 ∈ V 2

ms,k we have

(∂̄tη
n
θ , v2) + (κ∇ηnθ ,∇v2) + (α∇ · ∂̄tη̃nu , v2)

= (∂̄tR
2
ms,kθ

n
h , v2) + (κ∇R2

ms,kθ
n
h ,∇v2) + (α∇ · ∂̄tR̃1

ms,k(unh, θ
n
h), v2)

− (gn, v2)

= (−∂̄tρnθ , v2) + (−α∇ · ∂̄tρ̃nu, v2)

For simplicity, we denote ρn := ρnθ + α∇ · ρ̃nu such that

(∂̄tη
n
θ , v2) + (κ∇ηnθ ,∇v2) + (α∇ · ∂̄tη̃nu , v2) = (−∂̄tρn, v2), ∀v2 ∈ V 2

ms,k(5.4)

Now, choose v1 = ∂̄tη
n
u and v2 = ηnθ and add the resulting equations. Note that

the coupling terms on the left hand side results in the term (α∇ · ∂̄tẽnf,k, ηnθ ).
We conclude that

(σ(η̃nu) : ε(∂̄tη
n
u)) + (∂̄tη

n
θ , η

n
θ ) + (κ∇ηnθ ,∇ηnθ ) = (−∂̄tρn, ηnθ )− (α∇ · ∂̄tẽnf,k, ηnθ ),

and by splitting the first term

(σ(ηnu) : ε(∂̄tη
n
u)) + (∂̄tη

n
θ , η

n
θ ) + (κ∇ηnθ ,∇ηnθ )(5.5)

= (−∂̄tρn, ηnθ )− (σ(ẽnf,k) : ε(∂̄tη
n
u))− (α∇ · ∂̄tẽnf,k, ηnθ ).

Using Lemma 5.1 we can bound

−(α∇ · ∂̄tẽnf,k, ηnθ ) ≤ |(α∇ · ∂̄tẽnf,k, ηnθ )− (σ(ẽnf,k) : ε(∂̄tẽ
n
f,k))|(5.6)

− (σ(ẽnf,k) : ε(∂̄tẽ
n
f,k))

≤ Ckd/2ξk‖∂̄tẽnf,k‖H1‖ηnθ ‖ − (σ(ẽnf,k) : ε(∂̄tẽ
n
f,k)),

and the almost orthogonal property (4.15) together with (5.2) gives

−(σ(ẽnf,k) : ε(∂̄tη
n
u)) ≤ Ckd/2ξk‖ẽnf,k‖H1‖∂̄tηnu‖H1 ≤ Ckd/2ξk‖ηnθ ‖‖∂̄tηnu‖H1 .

(5.7)

Thus, multiplying (5.5) by τ and using Cauchy-Schwarz and Young’s inequality
we get

Cτ‖ηnθ ‖2H1 +
1

2
(‖ηnu‖2σ + ‖ẽnf,k‖2σ − ‖η̃n−1

u ‖2σ − ‖ẽn−1
f,k ‖

2
σ) +

1

2
(‖ηnθ ‖2 − ‖ηn−1

θ ‖2)

≤ Cτ‖∂̄tρn‖2H−1 + Cτkd/2ξk‖ηnθ ‖(‖∂̄tηnu‖H1 + ‖∂̄tẽnf,k‖H1),

where ‖ηnθ ‖ ≤ C‖ηnθ ‖H1 can be kicked to the left hand side. Summing over n
gives

C

n∑
j=1

τ‖ηjθ‖
2
H1 +

1

2
(‖ηnu‖2σ + ‖ẽnf,k‖2σ) +

1

2
‖ηnθ ‖2

≤ cσ
2
‖η̃0
u‖2H1 + C

n∑
j=1

τ(‖∂̄tρj‖2H−1 + kdξ2k(‖∂̄tηju‖2H1 + ‖∂̄tẽjf,k‖
2
H1)),
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where we have used that η0
θ = 0. Furthermore, we note that if θ0

h = 0, then

R̃f,kθ
0
h = 0 and u0

f,k = 0. Hence, e0
f,k = 0. From (4.19) and (3.3) we have, if

θ0
h = θ0

ms,k = 0, for v1 ∈ V 1
ms,k,

(σ(u0
ms,k) : ε(v1)) = (f0, v1) = (σ(u0

h) : ε(v1)) = (σ(R1
ms,k(u0

h, 0)) : ε(v1)),

so also η0
u = 0.

To bound ∂̄tρ
j
θ and α∇ · ∂̄tρ̃ju we note that due to (3.1) and (3.3), ∂̄tu

n
h and

∂̄tθ
n
h satisfy the equation

(σ(∂̄tu
n
h) : ε(v1))− (α∂̄tθ

n
h ,∇ · v1) = (∂̄tf

n, v1), ∀v1 ∈ V 1
h .

Hence, by Lemma 4.2 and the Aubin-Nitsche duality argument we have

‖∂̄tρjθ‖H−1 ≤ ‖∂̄tρjθ‖ ≤ C(H + kd/2ξk)‖∂̄tρjθ‖H1(5.8)

≤ C(H + kd/2ξk)‖∂̄tθjh‖H1 ,

and for ∂̄tρ̃
j
u we get

‖α∇ · ∂̄tρ̃ju‖H−1(5.9)

≤ α2‖∇ · ∂̄tρ̃ju‖ ≤ C‖∂̄tρ̃ju‖H1 ≤ C(H + kd/2ξk)(‖∂̄tf j‖+ ‖∂̄tθjh‖H1).

Thus, using (2.10), we arrive at the following bound

n∑
j=1

τ‖ηjθ‖
2
H1 + ‖ηnu‖2H1 + ‖ẽnf,k‖2H1 + ‖ηnθ ‖2(5.10)

≤ C(H + kd/2ξk)2
n∑
j=1

τ
(
‖∂̄tθjh‖

2
H1 + ‖∂̄tf j‖2

)
+ Ckdξ2k

n∑
j=1

τ(‖∂̄tηju‖2H1 + ‖∂̄tẽjf,k‖
2
H1),

where we apply Theorem 3.3 to the first sum on the right hand side. If we
can find an upper bound on

∑n
j=1 τ(‖∂̄tηju‖2H1 + ‖∂̄tẽjf,k‖2), then (5.10) gives

a bound for ‖η̃nu‖H1 ≤ ‖ηnu‖H1 + ‖ẽnf,k‖H1 . This is done next, and we bound

‖ηnθ ‖H1 at the same time. For this purpose, we choose v2 = ∂̄tη
n
θ in (5.4) and

note that it follows from (5.3) that

(σ(∂̄tη̃
n
u) : ε(∂̄tη

n
u))− (α∂̄tη

n
θ ,∇ · ∂̄tηnu) = 0.(5.11)

This also holds for n = 1 since η0
θ = 0 and η̃0

u = 0. Thus, by adding the resulting
equations, we have

cσ‖∂̄tηnu‖2H1 + ‖∂̄tηnθ ‖2 + (κ∇ηnθ ,∇∂̄tηnθ )

= (−∂̄tρn, ∂̄tηnθ )− (σ(∂̄tẽ
n
f,k) : ε(∂̄tη

n
u))− (α∇ · ∂̄tẽnf,k, ∂̄tηnθ )

≤ ‖∂̄tρn‖‖∂̄tηnθ ‖+ Cortk
d/2ξk‖∂̄tẽnf,k‖H1‖∂̄tηnu‖H1

− (α∇ · ∂̄tẽnf,k, ∂̄tηnθ )
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where we have used (4.15). For the last term we use Lemma 5.1 to achieve

−(α∇ · ∂̄tẽnf,k, ∂̄tηnθ ) ≤ Ccok
d/2ξk‖∂̄tẽnf,k‖H1‖∂̄tηnθ ‖ − (σ(∂̄tẽ

n
f,k) : ε(∂̄tẽ

n
f,k)).

Thus, we have

cσ(‖∂̄tηnu‖2H1 + ‖∂̄tẽnf,k‖2H1) + ‖∂̄tηnθ ‖2 + (κ∇ηnθ ,∇∂̄tηnθ )

≤ ‖∂̄tρn‖‖∂̄tηnθ ‖+ Cortk
d/2ξk‖∂̄tẽnf,k‖H1‖∂̄tηnu‖H1

+ Ccok
d/2ξk‖∂̄tẽnf,k‖H1‖∂̄tηnθ ‖,

and using Young’s inequality we deduce

(cσ −
Cortk

d/2ξk

2
)‖∂̄tηnu‖2H1 + (cσ −

(Cort + Cco)kd/2ξk

2
)‖∂̄tẽnf,k‖2H1)

+ (
1

2
− Ccok

d/2ξk

2
)‖∂̄tηnθ ‖2 + (κ∇ηnθ ,∇∂̄tηnθ ) ≤ C‖∂̄tρn‖2,

where assumption (A4) guarantees that the coefficients are positive. Multiplying
by τ , using that τ(κ∇ηnθ ,∇∂̄tηnθ ) ≥ 1/2(‖ηnθ ‖κ − ‖η

n−1
θ ‖κ), and summing over

n we derive

n∑
j=1

τ(‖∂̄tηju‖2H1 + ‖∂̄tẽjf,k‖
2
H1 + ‖∂̄tηjθ‖

2) + ‖ηnθ ‖2H1

≤ C
n∑
j=1

τ‖∂̄tρj‖2 ≤ C(H + kd/2ξk)

n∑
j=1

τ(‖∂̄tf j‖2 + ‖∂̄tθjh‖
2
H1),

where we have used that η0
θ = 0, the bound (2.11), and (5.8)-(5.9). We can now

apply Theorem 3.3. Thus, the lemma follows for ‖θnh − θnms,k‖H1 . Moreover,

this bounds the last terms in (5.10), which completes the proof. �

Lemma 5.4. Assume that f = 0 and g = 0, and that (A4) holds. Let
{unh}Nn=1 and {θnh}Nn=1 be the solutions to the system (3.1)-(3.2) and {ũnms,k}Nn=1

and {θnms,k}Nn=1 be the solutions to (4.16)-(4.18). For n ∈ {1, ..., N} we have

‖unh − ũnms,k‖H1 + t1/2n ‖θnh − θnms,k‖H1 ≤ C(H + kd/2ξk)‖θ0
h‖H1 .(5.12)

Proof. As in the proof of Lemma 5.3 we split the error into two parts

unh − ũnms,k = ρ̃nu + η̃nu , θnh − θnms,k = ρnθ + ηnθ ,

where Lemma 4.2 and Theorem 3.3 gives

‖ρnθ ‖H1 ≤ C(H + kd/2ξk)‖ − ∂̄tθnh −∇ · ∂̄tunh‖ ≤ C(H + kd/2ξk)t−1/2
n ‖θ0

h‖H1 ,

‖ρ̃nu‖H1 ≤ C(H + kd/2ξk)‖θnh‖H1 ≤ C(H + kd/2ξk)‖θ0
h‖H1 .

Now, note that (5.4) and (5.11) holds also when f = 0 and g = 0. In particular,
(5.11) holds also for n = 1 due to the definition of u0

ms,k and u0
h in (4.19) and

97



Paper III

(3.3) respectively. By choosing v2 = ∂̄tη
n
θ and adding the resulting equations

we derive

cσ‖∂̄tηnu‖2H1 + ‖∂̄tηnθ ‖2 + (κ∇ηnθ ,∇∂̄tηnθ ) + (σ(∂̄tẽ
n
f,k) : ε(∂̄tη

n
u))

+ (α∇ · ∂̄tẽnf,k, ∂̄tηnθ ) ≤ ‖∂̄tρn‖‖∂̄tηnθ ‖.

Recall ρn = ρnθ +α∇· ρ̃nu. As in the proof of Lemma 5.3 we get from Lemma 5.2

(α∇ · ∂̄tẽnf,k, ∂̄tηnθ ) ≥ −Ccok
d/2ξk‖∂̄tẽnf,k‖H1‖∂̄tηnθ ‖+ (σ(∂̄tẽ

n
f,k) : ε(∂̄tẽ

n
f,k)).

and from (4.15)

(σ(ẽnf,k) : ε(∂̄tη
n
u)) ≥ −Cortk

d/2ξk‖∂̄tẽnf,k‖H1‖∂̄tηnu‖H1 .

Hence, we have

(cσ −
Cortk

d/2ξk

2
)‖∂̄tηnu‖2H1 + (cσ −

(Cort + Cco)kd/2ξk

2
)‖∂̄tẽnf,k‖2H1

+ (
1

2
− Ccok

d/2ξk

2
)‖∂̄tηnθ ‖2 + (κ∇ηnθ ,∇∂̄tηnθ ) ≤ ‖∂̄tρn‖2,

and assumption (A4) guarantees that the coefficients are positive. Multiplying
by τt2n, using that τ(κ∇ηnθ ,∇∂̄tηnθ ) ≥ 1/2(‖ηnθ ‖2κ − ‖η

n−1
θ ‖2κ) and t2n − t2n−1 ≤

3τtn−1, for n ≥ 2, now give

Cτt2n(‖∂̄tηnu‖2H1 + ‖∂̄tẽnf,k‖2H1 + ‖∂̄tηnθ ‖2) +
t2n
2
‖ηnθ ‖2κ −

t2n−1

2
‖ηn−1
θ ‖2κ

≤ Cτt2n‖∂̄tρn‖2 + Cτtn−1‖ηn−1
θ ‖2κ.

Note that this inequality also holds for n = 1, since η0
θ = 0 (recall θ0

ms,k =

R2
ms,kθ

0
h). Summing over n gives and using (2.11)

C

n∑
j=1

τt2j (‖∂̄tηju‖2H1 + ‖∂̄tẽjf,k‖
2
H1 + ‖∂̄tηjθ‖

2) + cκt
2
n‖ηnθ ‖2H1

(5.13)

≤ C
n∑
j=1

τt2j‖∂̄tρj‖2 + C

n−1∑
j=1

τtj‖ηjθ‖
2
H1 ,

and since fn = 0 and gn = 0, Lemma 4.2 and the Aubin-Nitsche trick as in
(5.8) together with Theorem 3.3 give

‖∂̄tρj‖ ≤ ‖∂̄tρjθ‖+ α2‖∂̄tρju‖H1(5.14)

≤ C(H + kd/2ξk)(‖∂̄tθjh‖H1 + ‖∇ · ∂̄tujh‖)

≤ C(H + kd/2ξk)t−1
j ‖θ

0
h‖H1 .
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To bound the last sum on the right hand side in (5.13) we choose v1 = ∂̄tη
n
u

and v2 = ηnθ in (5.4) and (5.3) and add the resulting equations. This gives

(σ(ηnu) : ε(∂̄tη
n
u)) + (∂̄tη

n
θ , η

n
θ ) + (κ∇ηnθ ,∇ηnθ )

= (−∂̄tρn, ηnθ )− (σ(ẽnf,k) : ε(∂̄tη
n
u))− (α∇ · ∂̄tẽnf,k, ηnθ ),

where the use of (5.6) and (5.7) gives

(σ(ηnu) : ε(∂̄tη
n
u)) + (σ(ẽnf,k) : ε(∂̄tẽ

n
f,k)) + (∂̄tη

n
θ , η

n
θ ) + (κ∇ηnθ ,∇ηnθ )

≤ ‖∂̄tρn‖‖ηnθ ‖+ Ckd/2ξk‖ηnθ ‖(‖∂̄tηnu‖H1 + ‖∂̄tẽnf,k‖H1).

Multiplying by τtn and using that tn − tn−1 = τ we get

Cτtn‖ηnθ ‖2H1 +
tn
2

(‖ηnu‖2σ + ‖ẽnf,k‖2σ)− tn−1

2
(‖ηn−1

u ‖2σ + ‖ẽn−1
f,k ‖

2
σ)

+
tn
2
‖ηnθ ‖2 −

tn−1

2
‖ηn−1
θ ‖2

≤ Ctnτ(‖∂̄tρn‖‖ηnθ ‖+ kd/2ξk‖ηnθ ‖(‖∂̄tηnu‖H1 + ‖∂̄tẽnf,k‖H1)

+ Cτ(‖ηn−1
u ‖2σ + ‖ẽn−1

f,k ‖
2
σ + ‖ηn−1

θ ‖2)

≤ Ct2nτ‖∂̄tρn‖2 + Cyt
2
nτk

dξ2k(‖∂̄tηnu‖2H1 + ‖∂̄tẽnf,k‖2H1)

+ Cτ(‖η̃n−1
u ‖2σ + ‖ẽn−1

f,k ‖
2
σ + ‖ηn−1

θ ‖2 + ‖ηnθ ‖2),

where we have used Young’s (weighted) inequality on the form, τtnab ≤ τt2na2 +
τb2/4, in the last step. For the second term we have used the inequality with an
additional Cy, i.e. τtnab ≤ Cyτt

2
na

2 + (4Cy)−1τb2. Note that Cy can be made
arbitrarily small. Summing over n and using (2.10) now gives

C

n∑
j=1

τtj‖ηjθ‖
2
H1 +

cσtn
2

(‖ηnu‖2H1 + ‖ẽnf,k‖2H1) +
tn
2
‖ηnθ ‖2(5.15)

≤ C
n∑
j=1

τt2j‖∂̄tρj‖2 + Cyk
dξ2k

n∑
j=1

τt2j (‖∂̄tηju‖2H1 + ‖∂̄tẽjf,k‖
2
H1))

+ C

n∑
j=0

τ(‖ηju‖2H1 + ‖ẽjf,k‖
2
H1 + ‖ηjθ‖

2).

We can now use (5.13) to deduce

n∑
j=1

τt2j (‖∂̄tηju‖2H1 + ‖∂̄tẽjf,k‖
2
H1) ≤ C

n∑
j=1

τt2j‖∂̄tρj‖2 + C

n−1∑
j=1

τtj‖ηjθ‖
2
H1 .
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Using this in (5.15) gives

C

n∑
j=1

τtj‖ηjθ‖
2
H1 +

cσtn
2

(‖ηnu‖2H1 + ‖ẽnf,k‖2H1) +
tn
2
‖ηnθ ‖2(5.16)

≤ C
n∑
j=1

τt2j‖∂̄tρj‖2 + Cyk
dξ2k

n∑
j=1

τtj‖ηjθ‖
2
H1

+ C

n∑
j=0

τ(‖ηju‖2H1 + ‖ẽjf,k‖
2
H1 + ‖ηjθ‖

2).

Since Cy now can be made arbitrarily small the term Cyk
dξ2k

∑n
j=1 τtj‖η

j
θ‖2H1

can be moved to the left hand side. To estimate the last sum on the right hand
side in (5.16) we multiply (5.4) by τ and sum over n to get

(ηnθ − η0
θ , v2) + (κ∇

n∑
j=1

τηjθ,∇v2) + (α∇ · η̃nu − η̃0
u, v2) = (−ρn + ρ0, v2),

(5.17)

where we note that η0
θ = 0 and η̃0

u = 0. By choosing v1 = ηnu in (5.3) and
v2 = ηnθ in (5.17) and adding the resulting equations we get

cσ‖ηnu‖2H1 + ‖ηnθ ‖2 + (κ

n∑
j=1

τ∇ηjθ,∇η
n
θ )

≤ ‖ − ρn + ρ0‖‖ηnθ ‖ − (σ(ẽnf,k) : ε(ηnu))− (α∇ · ẽnf,k, ηnθ ).

≤ ‖ − ρn + ρ0‖‖ηnθ ‖+ Cortk
d/2ξk‖ẽnf,k‖H1‖ηnu‖H1 + Ccok

d/2ξk‖ẽnf,k‖H1‖ηnθ ‖
− cσ‖ẽnf,k‖2H1 ,

where we have used the almost orthogonal property (4.15) and Lemma 4.4. We
conclude that

(cσ−
Cortk

d/2ξk

2
)‖ηnu‖2H1 + (cσ −

(Cort + Cco)kd/2ξk

2
)‖ẽnf,k‖2H1(5.18)

+ (
1

2
− Ccok

d/2ξk

2
)‖ηnθ ‖2 + (κ

n∑
j=1

τ∇ηjθ,∇η
n
θ ) ≤ C‖ − ρn + ρ0‖2,

and assumption (A4) guarantees positive coefficients. Now, note that we have
the bound (

κ

n∑
j=1

τ∇ηjθ,∇η
n
θ

)
=

(
κ

n∑
j=1

τ∇ηjθ, ∂̄t
( n∑
j=1

τ∇ηjθ

))

≥ 1

2τ

(
‖

n∑
j=1

τηjθ‖
2
κ − ‖

n−1∑
j=1

τηiθ‖2κ
)
,
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with the convention that
∑0
j=1 τη

j
θ = 0. Multiplying (5.18) by τ , summing over

n, and using (2.11) thus gives
n∑
j=1

τ(‖ηju‖2H1 + ‖ẽjf,k‖
2
H1 + ‖ηjθ‖

2) +
cκ
2
‖

n∑
j=1

τηjθ‖
2
H1(5.19)

≤ C
n∑
j=1

τ‖ − ρj + ρ0‖2

≤ C(H + kd/2ξk)2
n∑
j=1

τ‖θ0
h‖2H1 ≤ C(H + kd/2ξk)2tn‖θ0

h‖2H1 .

Here we have used the Aubin-Nitsche duality argument, Lemma 4.2 and Lemma
3.3 to deduce

‖ρj‖ ≤ ‖ρjθ‖+ C‖ρju‖H1 ≤ C(H + kd/2ξk)(‖ρjθ‖H1 + ‖θnh‖H1)

≤ C(H + kd/2ξk)‖θnh‖H1 ≤ C(H + kd/2ξk)‖θ0
h‖H1 , j ≥ 0.

Combining (5.13), (5.14), (5.16), and (5.19) we get

t2n‖ηnθ ‖2H1 + tn‖ηnu‖2H1 + tn‖ẽnf,k‖2H1 ≤ C(H + kd/2ξk)2tn‖θ0
h‖2H1 ,

which completes the proof. �

Proof of Theorem 5.2. Since the problem is linear we can split the so-
lution

unh = ūnh + ûnh, θnh = θ̄nh + θ̂nh ,

where ūnh and θ̄nh solves (3.1)-(3.2) with f = 0 and g = 0 and ûnh and θ̂nh solves
(3.1)-(3.2) with θ0 = 0. The theorem now follows by applying Lemma 5.3 and
Lemma 5.4. �

6. Numerical examples

In this section we perform two numerical examples. For a discussion on
how to implement the type of generalized finite element efficiently described in
this paper we refer to [9].

The first numerical example models a composite material which is preheated
to a fix temperature and at time t0 = 0 the piece is subject to a cool-down.

The domain is set to be the unit square Ω = [0, 1] × [0, 1] and we assume
that the temperature has a homogeneous Dirichlet boundary condition, that is
ΓθD = ∂Ω and ΓθN = ∅. For the displacement we assume the bottom boundary to
be fix and for the remaining part of the boundary we prescribe a homogeneous
Neumann condition, that is ΓuD = [0, 1]× 0 and ΓuN = ∂Ω \ ΓuD.

The composite is assumed to be built up according to Figure 7. The white
part in the figure denotes a background material and the black parts an insulated
material. The black squares are of size 2−5 × 2−5. We assume that the Lamé
coefficients µ and λ take the values µ1 and λ1 on the insulated material, and µ2

and λ2 on the background material. In this experiment we have set µ1/µ2 = 10

101



Paper III

and λ1/λ2 = 50. Similarly, using subscript 1 for the insulated material and
subscript 2 for the background material, we set α1/α2 = 10 and κ = κi · I,
for i = 1, 2, where I is the 2-dimensional identity matrix and κ1/κ2 = 10.
Furthermore, we have chosen to set f = [0, 0]ᵀ (no external body forces) and
g = −10.

Figure 7. Composite material on the unit square. One black
square is of size 2−5 × 2−5.

The initial data must be zero on the boundary ΓθD, so we have chosen to
put θ0 = 500x(1− x)y(1− y) and θ0

h to the L2-projection of θ0 to V 2
h . For the

generalized finite element solution we have chosen θ0
ms,k = R2

ms,kθ
0
h and ũ0

ms,k is

given by (4.19).
The domain is discretized using a uniform triangulation. The reference

solution is computed on a mesh of h =
√

2·2−6 which resolves the fine parts (the
black squares) in the material. The generalized finite element method (GFEM)
in (4.16)-(4.18) is computed for five decreasing values of the mesh size, namely,

H =
√

2 · 2−1,
√

2 · 2−2, ...,
√

2 · 2−5, with the patch sizes k = 1, 1, 2, 2, 3. For
comparison, we also compute the corresponding classical finite element (FEM)
solution on the coarse meshes using continuous piecewise affine polynomials for
both spaces (P1-P1). The solutions satisfies (3.1)-(3.2) with h replaced by H
and are denoted unH and θnH respectively for n = 1, ..., N . When computing these
solutions we have evaluated the integrals exactly to avoid quadrature errors.

We have chosen to set T = 1 and τ = 0.05 for all values of H and for the
reference solution. The solutions are compared at the time point N .

Note that the implementation of the corrections un,Kf,k in (4.18) given by

(σ(un,Kf,k ) : ε(w1))− (αθnms,k,∇ · w1)K = 0, ∀w1 ∈ V 1
f (ωk(K)),

should not be computed explicitly at each time step. It is more efficient to
compute xKy , given by

(σ(xKy ) : ε(w1))− (α(λ2
y −R2

f,kλ
2
y),∇ · w1)K = 0, ∀w1 ∈ V 1

f (ωk(K)),
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where {(·, y) ∈ N : λ2
y − R2

f,kλ
2
y} is the basis for V 2

ms,k. Now, since θnms,k =∑
y β

n
y (λ2

y −R2
f,kλ

2
y), we have the identity

unf,k =
∑
K

un,Kf,k =
∑
K

∑
y

βny x
K
y .

With this approach, we only need to compute xKy once before solving for the
system (4.16)-(4.17) for n = 1, ..., N .

The relative errors in the H1-seminorm ‖∇·‖ are shown in Figure 8. The left
graph shows the relative errors for the displacement, ‖∇(ũNms,k − uNh )‖/‖∇uNh ‖
and ‖∇(uNH − uNh )‖/‖∇uNh ‖. The right graph shows the error for the temper-
ature ‖∇(θNms,k − θNh )‖/‖∇θNh ‖ and ‖∇(θNH − θNh )‖/‖∇θNh ‖. As expected the
generalized finite element shows convergence of optimal order and outperforms
the classical finite element.
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Figure 8. Relative errors using GFEM (blue ◦) and P1-P1
FEM (red ∗) for the linear thermoelasticity problem plotted
against the mesh size H. The dashed line is H.

The second example shows the importance of the additional correction
(4.18), which is designed to handle multiscale behavior in the coefficient α.
The computational domain, the spatial and the time discretization, and the
patch sizes remain the same as in the first example. However, we let ΓD = ∂Ω
and ΓN = ∅ in this case.

To test the influence of α we let the other coefficients be constants, µ = λ =
1 and κ = I, where the I is the 2-dimensional identity matrix. The coefficient
α takes values between 0.1 and 10 according to Figure 9. The boxes are of size
2−5 × 2−5 and, hence, the reference mesh of size h =

√
2 · 2−6 is sufficiently

small to resolve the variations in α.
The initial data is set to θ0 = x(1−x)y(1−y) and θ0

h is the L2-projection of
θ0 onto V 2

h . For the generalized finite element solution we have chosen θ0
ms,k =

R2
ms,kθ

0
h and ũ0

ms,k is given by (4.19), as in our first example. Furthermore, we

have chosen to set f = [1 1]ᵀ and g = 10.
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Figure 9. A plot of the coefficient α.

The generalized finite element method (GFEM) in (4.16)-(4.18) is computed
for the five decreasing values of the mesh size used in the first example. For
comparison, we compute the generalized finite element without the additional
correction on unms,k. In this case the system (4.16)-(4.18) simplifies to

(σ(unms,k) : ε(v1))− (αθnms,k,∇ · v1) = (fn, v1), ∀v1 ∈ V 1
ms,k,

(∂̄tθ
n
ms,k, v2) + (κ∇θnms,k,∇v2) + (α∇ · ∂̄tunms,k, v2) = (gn, v2). ∀v2 ∈ V 2

ms,k

The relative errors in the H1-seminorm are shown in Figure 8. The graph shows
the errors for the displacement with correction for α, ‖∇(ũNms,k − uNh )‖/‖∇uNh ‖
and the error without correction for α ‖∇(uNms,k − uNh )‖/‖∇uNh ‖. As expected
the GFEM with correction for α shows convergence of optimal order and out-
performs the GFEM without correction for α. This is due to the fact that the
constant in (4.13) (and hence also the constant in Theorem 5.2) depends on the
variations in α.
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Figure 10. Relative errors for the displacement u using
GFEM with correction for α (blue ◦) and GFEM without cor-
rection for α (black �) for the linear thermoelasticity problem
plotted against the mesh size H. The dashed line is H.

105





References

[1] A. Abdulle and P. Henning: Localized orthogonal decomposition method
for the wave equation with a continuum of scales, to appear in Math.
Comp., 2016+.

[2] K.T. Andrews and P. Shi and M. Shillor and S. Wright: Thermoelastic
contact with Barber’s heat exchange condition, Appl. Math. Optim. 28
(1993), no. 1, p. 11–48.
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