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Abstract

In this work, multiscale methods for simulation of paper making are developed. The
emphasis is on simulation of the paper forming process and simulation of the mechanical
properties of paper sheets.

To simulate paper forming, a novel fiber-fiber interaction method is proposed. The
method is developed to handle contact forces active on scales down to tens of nanome-
tres. The DLVO theory, based on van der Waals and electrostatic forces, governs the
fiber-fiber interaction together with a repulsion force developed to assure numerical sta-
bility for fiber motion resolved with discrete time stepping. The interaction method is
incorporated as one of four sub-models in a fiber suspension model. The other three sub-
models are a fluid model governed by Navier-Stokes equations, a fiber model governed
by beam theory, and a fluid-fiber and fiber-fluid interaction model based on an immersed
boundary method and experimental drag force expressions. The fiber suspension model
is used to simulate fiber lay downs onto an industrial forming fabric. The resulting vir-
tual fiber sheets are investigated by simulation of the air flow through the sheets. The
simulated permeabilities agree well with experimental data for sheets with low density.
The proposed framework is able to create three-dimensional fiber networks which can
be used for investigation of mechanical or penetration properties of the sheets.

The flow conditions during the initial state of paper forming is studied by simulating
the flow over cylinder configurations and three industrial forming fabrics. The impact
from the structures on the upstream flow is analysed. Novel impact measures are defined
to improve the characterization of forming fabrics and their impact on the flow.

For simulation of the mechanical properties of paper sheets, a numerical multiscale
method for discrete network models is developed. A fiber network model is proposed,
representing fibers and bonds as edges and nodes. In the numerical multiscale method,
the fiber network is approximated by a coarse grid, which together with bilinear basis
functions defines a low-dimensional coarse space. The coarse space is modified by solv-
ing sub-local problems resulting in corrections of the bilinear basis functions. The result-
ing corrected basis spans a low-dimensional multiscale space with good approximation
properties for unstructured heterogeneous networks with highly varying properties. Nu-
merical examples show that the proposed method has optimal order convergence rates
for such complex networks.

Keywords: Paper making, Fiber suspension flow, Virtual paper sheets, Multiscale meth-
ods, Fiber-fiber interaction, Lay down simulations, Fluid structure interaction, Forming
fabric flow, Numerical upscaling, Fiber network model
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Nomenclature

Flow over forming fabrics and cylinders
µ Dynamic viscosity of fluid Ns/m2

ρ Fluid density kg/m3

AΓ
a Area-measure 1

d Cylinder/thread diameter m
DΓ Variation-measure 1
DΓ

a Length related variation-measure 1
g Normalized horizontal surface spacing 1
IΓ
a Velocity field indicator function 1
l Normalized vertical surface spacing 1
LΓ

a Length-measure 1
LB Distance from cylinder to boundary parallel to main stream velocity m
LI Distance from inlet to closest cylinder m
LO Distance from outlet to closest cylinder m
MΓ Maximum value function 1
mΓ Minimum value function 1
Re Reynolds number based on cylinder/thread diameter 1
S Surface spacing m
Sx Horizontal surface spacing m
Sy Vertical surface spacing m
V0 Mainstream velocity m/s

Multiscale method for network models
h̄i Average length of edges connected to degree of freedom i m
M Set of indices of active degrees of freedom of coarse nodes
φi Correction vector for basis vector i 1
πH Bilinear weighted interpolant
ρ Patch size parameter 1

xiii



xiv Nomenclature

ũms Multiscale solution vector of localized problem m
Ṽms Localized multiscale space
|||·||| Energy norm
BH Basis vector matrix (prolongation matrix) 1
CH Restriction matrix 1
d Dimension of the space the network resides in
F Load vector N
H Size of the coarse grid elements m
K Connectivity matrix N/m
m Total number of degrees of freedom of coarse nodes 1
mH Number of active degrees of freedom of coarse nodes 1
n Total number of degrees of freedom of network nodes 1
u Solution vector m
ums Multiscale solution vector m
V Solution space
Vms Multiscale space
VH Coarse space
W Detail space
F̄ Scaled load vector N/m2

F̌ Load vector with constrained degrees of freedom N
Ǩ Connectivity matrix with constrained degrees of freedom N/m
Λi Bilinear basis function of coarse node i 1
λi Interpolation of bilinear basis function Λi 1

Fiber network model
(i, j) Edge connecting nodes i and j
(i, j, l) Edge pair connecting nodes i, j and l
∆Lij Length change of edge (i, j) m
∆θijl Total angle change of edge pair (i, j, l) rad
δθji Angle change of edge (i, j) rad
δi Displacement of node i m
ηijl Stiffness parameter of edge pair (i, j, l) Pa
γijl Poisson parameter of edge pair (i, j, l) 1
ẑ Out-of-plane normal 1
κijl Angular resistance parameter of edge pair (i, j, l) Pa
E Set of edges
N Set of node indices
P Set of edge pairs
daij Direction vector of edge (i, j) with respect to node a 1
F Node load vector N
F I
a(i, j), F II

a (i, j, l), F III
a (i, j, l) The three force contributions N

K Elasticity/connectivity matrix N/m
kij Stiffness parameter of edge (i, j) Pa
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K I
ij ,K

II
ijl,K

III
ijl Element matrices N/m

Lij Length of edge (i, j) m
N Total number of nodes 1
nj
ji, n

j
jl Edge normals of edge pair (i, j, l) 1

pi Position of node i m
u Node displacement vector m
Vijl Joint volume parameter of edge pair (i, j, l) m3

wij Width of edge (i, j) m
z Out-of-plane thickness of edges m

Suspension model and paper forming simulation framework
d̄ Mean diameter of fiber cross section m
F̄i Averaged force for contact point i N
Ȳ 0

1 , Ȳ
0
2 Effective surface potentials of two interacting contact points 1

∆p Pressure drop Pa
∆t Fiber time step s
n̂ Direction vector pointing between two contact points 1
κ Inverse of the Debye length 1/m
µ Dynamic viscosity of fluid Ns/m2

ψd,i Diffuse double layer potential of contact point i V
ρ Fluid density kg/m3

σ0
i Surface charge of contact point i C/m2

ṽrel Relative velocity between contact points m/s
ε Liquid permittivity F/m
ai(t) Acceleration of contact point i m/s2

A12 Hamaker constant J
ai,0 Intrinsic acceleration of the fiber corresponding to contact point i m/s2

Bi(h) Bell functions 1
CD Drag coefficient 1
D Fiber diameter m
e Elementary charge C
fD Drag force per unit length N/m
FE Electrostatic force N
Fi Total force acting on contact point i N
FD
i Drag force acting on contact point i N
FG
i Gravitational force acting on contact point i N
FS Steric repulsion force N
FW van der Waals force N
F I
i,j Total contact force acting on point i from interaction with point j N
FS,i Components of the steric repulsion force N
gE(h) Short range extension of the electrostatic force N
gW (h) Short range extension of the van der Waals force N
h Surface separation distance between two contact points m
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h0 Minimum DLVO distance constant m
hmin Minimal possible separation distance between two contact points m
hR Parameter of the steric repulsion force m
hS Parameter of the steric repulsion force m
k Boltzmann constant J/K
L Fiber length m
M Number of contact points 1
mi Mass of contact point i kg
N Number of fibers 1
p Fluid pressure Pa
pi(t) Position of contact point i m
R Distance between contact points m
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Re Reynolds number of flow over fiber 1
T Temperature K
t Time s
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1. Introduction

Paper making is an over thousand years old craftsmanship. For the majority
of this time, various hand making methods have been used. During the 19th
century, the paper making process was industrialized and today paper machines
all over the world produce immense amounts of paper. In 2013, the production
amounted to 403 million tons of paper and cardboard [56]. Worldwide, on
average about 60 kilograms of paper is used per person annually [2]. The main
categories of products are publication paper, packaging paper and tissue paper.

The environmental impact of the paper industry is major in terms of energy
consumption, chemical utilization and water usage. However, the base com-
ponent in paper materials, the fiber, is a renewable resource. Therefore, the
paper industry has a great potential to contribute to sustainability, and when
developing countries are increasing their demand of classic paper products at
the same time as the developed world searches for new ways to use paper, the
paper industry will play an important role. Not only in terms of improving the
sustainability of the process as such, but also in terms of developing new paper
based materials.

The process of paper making is complex, and to improve paper products,
increase the efficiency of the process, and develop new materials, innovative and
advanced investigation methods are required. Experimental methods are one
important approach, but due to the complexity of the process, many aspects of
interest are difficult to measure and evaluate with experiments alone. Therefore,
a necessary aid is the growing method of computer simulations, an approach
which is based on mathematical modelling and high performance computing.

Paper consists of fibers and additional particles bonded together in a net-
work structure. The configuration of this fiber network, together with the prop-

1



2 Chapter 1. Introduction

erties of the individual fibers and the bonds between them, are directly govern-
ing the main properties of paper. In the forming section of a paper machine, a
fiber suspension flows down onto a woven fabric. When the suspension reaches
the fabric, the fibers lay down and the paper sheet is formed.

Three important topics mentioned above - the properties of paper, the struc-
ture of paper, and the forming of the paper sheet - give rise to two important
questions. Firstly, how do the conditions during the forming process, such as
the fabric geometry or the flow features, affect the resulting structure of the
paper sheet? Secondly, how are properties such as stiffness and strength, or
permeability and penetration, depending on the structure of the paper? The
goal of this work is not to directly give answers to these questions, but to study
and develop methods which can be used to investigate these questions in detail
through simulation.

To facilitate studies of the questions in the previous paragraph, this work
aims to develop efficient methods for simulation of the forming process, and
for simulation of the mechanical properties of paper. The forming simulations
should be able to investigate the flow conditions during forming, the effect of
the forming fabric, and create realistic paper structures that can be used in the
second simulation tool. The framework for simulation of mechanical proper-
ties should ultimately be able to study important characteristics such as tensile
strength, tensile stiffness, bending stiffness, out-of-plane strength and fracture
propagation of macroscale paper samples.

One great challenge when modelling paper and its production process is
the multiscale features of paper. Paper is a heterogeneous macroscale material
whose properties are depending on the microscale structure of fibers bonded to-
gether. Moreover, paper is produced in huge machines, several orders of magni-
tude larger than single fibers. To simulate paper forming and paper properties,
methods are needed that can surmount the multiscale challenge, otherwise the
computational cost will be too large.

In this work, a paper forming simulation framework is presented. The
framework is based on a fiber suspension model with a novel fiber-fiber inter-
action method which includes the physical interaction forces present in paper
forming. Lay down simulations are performed and the resulting virtual sheets
are investigated by simulation of the air flow. The fundamentals of the upstream
flow during the initial sheet formation are studied by simulation of the flow over
cylinder configurations and industrial forming fabrics. Moreover, a numerical
upscaling method for discrete fiber networks is proposed, enabling large scale
simulation of mechanical properties of paper while still including single fibers
and bonds.
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1.1 Background
The main constituent of paper is fibers, often wood fibers, but non-wood fibers
such as cotton is also used. See Figure 1.1 for a microscope image of a paper
sheet, visualising single wood fibers bonded together. During the logging pro-
cess, timber is felled and transported to sawmills where the wood is chipped
into small parts called wood chips. In a pulp mill, the wood chips are separated
into individual fibers. This process is called pulping and the resulting mass of
free fibers is called pulp. The fiber separation is achieved by mechanical or
chemical means, or by a combination of the two, depending on the desired fiber
properties. Next, the pulp is delivered to a paper mill. In an integrated mill,
both the pulp and paper mill are located at the same site.

Figure 1.1: Scanning electron microscope (SEM) image of a paper sheet. The
real size of the image is approximately 2.6×1.9 mm2. Picture courtesy of Al-
bany International.

Before the paper is created in a paper machine, the pulp is prepared to var-
ious degrees depending on the type of paper produced. During the bleaching
process, the brightness of the pulp is increased. The most important preparation
is the refining process, during which the pulp is treated mechanically to increase
the surface area and conformability of the fibers, leading to improved bonding.
Lastly, before entering the paper machine, in the stock preparation, the pulp
is mixed with water and additives. A dilute suspension is important to enable
the creation of a uniform paper sheet. Additives are added to improve the end
product or to aid during the process. The resulting mixture, called stock, is then
ready to enter the paper machine.

In the first part of the paper machine (see Figure 1.2 for a schematic overview
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of a paper machine), the fiber suspension is contained in the headbox. The head-
box is a device that by pressure injects the suspension uniformly down onto the
wire, an endless woven fabric which runs at high speed and on which the fiber
web is built up, see Figure 1.3 for a snapshot of a wire. The aim of this part
of the machine, called the wet-end or the forming section, is to build up the
fiber web and to remove a large content of water through the holes of the wire.
In a classic fourdrinier machine, one wire is used. For twin wire formers, the
suspension is injected such that the web goes in between two wires and the
dewatering takes places on both sides. The wire is often called forming fabric.

Figure 1.2: A schematic overview of a paper machine.

After the forming section, the paper moves on to the pressing section, where
large rolls compress the sheet to further remove water and smooth the paper
surface. Next, the fiber web goes into the largest and most energy consuming
part of the paper machine, the dryer section. With dryer felts and circulation
of heat through air, most of the remaining water content is removed. Lastly, in
the calender section, the paper is finished off by passing trough rolls to improve
surface properties such as smoothness and gloss.

In this work, methods for investigation of paper through simulation are de-
veloped and studied. The process described above is comprehensive, and the
scope of this work covers two main topics. First, simulation of the forming sec-
tion where the basic paper structure is built up, together with a simple approach
for simulation of pressing. Second, the resulting paper structure and how to
simulate its mechanical properties are considered.

To simulate paper forming, a mathematical model has to be developed which
describes how the fiber suspension flows down onto the forming fabric. Such a
model has to capture the dynamics of single fibers, the complex fluid flow over
the fabric, the interaction between fibers and fluid, and the interaction between
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Figure 1.3: Triangulation of a small piece of a double layer forming fabric. The
planar dimension of the fabric is 6.9×3.7 mm2 and the height is 0.6 mm. The
top side is where the fibers lay down.

fibers and between fibers and fabric.
Motion of single and multiple fibers in fluids has been studied since the

beginning of the twentieth century [15, 16, 34], while simulations of particle
motion in fluids were first accomplished in the middle of the 1980s [5]. In these
first simulations, the particles were spheres and the fluid motion fixed, such as
shear flow. During the following years, the models were extended to increas-
ing complexity. The first fiber-like objects were studied in the beginning of the
1990s, by composing chains of spheres [68]. Later on, elements such as prolate
spheroids [53] and also cylinders [55, 63, 64] were used to build up the fibers.
Simultaneously, the complexity of the fluid was increased and in the end of the
1990s, flow governed by the Navier-Stokes equations was studied [61]. Differ-
ent types of contact models were utilized during the progress. In this work, the
fibers are modelled as beams, and the Navier-Stokes equations are solved using
an immersed boundary method, enabling the flow over real industrial forming
fabrics to be studied. Moreover, a novel method for calculating the chemical
and physical interaction between fibers is developed, based on DLVO contact
forces, known to be present between fibers [27]. DLVO is a theory of interac-
tion between colloidal particles, based on van der Waals and electrostatic forces,
named after Derjaguin, Landau, Verwey and Overbeek [10, 65].

The proposed fiber suspension model is the basis of the simulation frame-
work presented in this work. The model and the framework are presented in
Paper I, Paper II and Paper VI. The framework is used to simulate a simplifica-
tion of the paper forming process, with thousands of fibers flowing down onto
an industrial fabric. The resulting virtual paper sheets are studied by simulation
of the air flow through the sheets.
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Moreover, in Paper IV, the framework is used to study the fundamentals of
upstream flow over forming fabrics. An increased understanding of this topic is
desirable since the flow condition in the forming section governs the build up of
the paper structure, which in the end defines the mechanical properties of paper.
The study is initiated by first investigating flow over different configurations of
cylinders, representing a two-dimensional simplification of fabrics. Flow over
one and two cylinders has been studied extensively earlier, with emphasis on the
downstream wake behaviour and mainly for large Reynolds numbers [71, 72].
However, the upstream features of flow over cylinders have not been inves-
tigated to any larger extent. The Reynolds regime in the forming section is
10-80 [18]. For flow over one cylinder, the transition from steady to unsteady
flow occurs around Re = 40. This leads to a drastic change of the downstream
flow behaviour. In this work, the upstream flow over different cylinders is in-
vestigated in the Reynolds number range 10-80. The studied configurations are
one cylinder, two cylinders, and one and two rows of cylinders. To compare the
flow properties for the different configurations, measures are proposed which
characterize the impact from the structure on the upstream flow.

Experimental characterization of fabrics and their flow properties is an ad-
mittedly difficult task, due to the laborious nature of experimental measure-
ments during paper making [36]. One common measure for characterization of
fabrics is the CFM-value, quantifying the air flow per area through the fabric
at a pressure drop of 125 Pa. However, this value alone does not give a proper
flow characterization of fabrics. In this work, the flow over fabrics is simulated,
and the measures proposed during the cylinder study are applied to the fabrics.
Three different industrial forming fabrics are investigated and their properties
are characterized. Moreover, also the drainage marking of the fabrics are inves-
tigated by analysing the periodicity of the upstream flow field.

In the second main topic of this work, the mechanical properties of paper is
considered. To simulate mechanical properties of paper, one popular approach
is to model the paper as a fiber network (see Figure 1.4), including each single
fiber and the bonds in-between. There exists several such models with various
complexity. Common for all these models are that they are built up of single
elements representing the fibers, and that the elements are connected in some
way. The network structure is in some works modelled as a regular lattice [67],
but more commonly the network has an unstructured configuration as in real
paper. The fibers are in the simplest cases modelled as rigid straight rods, and
in more complex models, beams are used. No matter which model that is em-
ployed, investigation of fiber networks at a large scale and in three dimensions
leads to numerical problems of huge size with high computational cost. To over-
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come this difficulty, multiscale methods can be utilized. However, few methods
have been developed for discrete networks. In this work, a numerical multiscale
method for fiber networks is developed.

Figure 1.4: A fiber network representation of a small piece of a virtual paper
sheet. The size of the network is 3×3 mm2.

As a starting point for simulation of the mechanical properties of the virtual
sheets attained from the forming simulations, and as a basis for the development
of the multiscale method, a basic fiber network model is developed in this work.
The network is modelled as consisting of edges and nodes. The fibers are repre-
sented as chains of edges and the fibers are connected to each other with mutual
nodes or bonding edges. The governing equations for the network is attained
by force equilibrium equations at each node. Three types of forces act at the
nodes when they are displaced. First, a classic spring force resisting changes in
length of the edges. Second, an angular spring force resisting changes in angles
between connected edges. Third, a force acting to resist changes in the total
length of pairs of edges, giving an effect similar to the Poisson effect.

Multiscale methods, also referred to as upscaling techniques, are much
more common for partial differential equations (PDE) than for discrete net-
work problems. Methods for numerical solution of PDE:s are often based
on the idea of homogenization. Two examples are the Heterogeneous mul-
tiscale method [66], and the Multiscale finite element method [29]. A more
recent method with relevance to this work, is the Localized orthogonal decom-
position method (LOD) [46], which is inspired by the Variational multiscale
method [28]. In regard of network models, multiscale methods have been de-
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veloped for solving problems of material conductivity [14, 31], flow in porous
medium [8], and traffic flows [9]. A few works on multiscale methods for fiber
networks also exist, such as [3]. In this work, the LOD method is extended and
modified for solving discrete fiber networks. The resulting numerical upscal-
ing method is applicable to unstructured networks with varying fiber and bond
properties, enabling investigation of the mechanical properties of macroscale
paper sheets while still including the effects of single fibers and bonds. The
proposed multiscale method gives optimal order convergence rate for unstruc-
tured and random networks. The network model and the numerical multiscale
method are presented in Paper III and Paper V.

History of the research project

This work is part of the research and development project ISOP (Innovative
Simulation of Paper) which is carried out at Fraunhofer-Chalmers Research
Centre (FCC)1 in collaboration with companies from the Swedish paper in-
dustry. The main purpose of the ISOP project is to predict macroscopic paper
properties with industrially relevant accuracy through microstructure simula-
tions. To accomplish this, mathematical models are being developed and im-
plemented in IBOFlow2 (Immersed Boundary Octree Flow Solver), an incom-
pressible finite-volume based fluid solver developed at FCC.

The ISOP project started in January 2009, and the fourth three-year phase
started in 2018. The project has three main modelling tracks: paper forming,
edge wicking, and paper network modelling. These three tracks have been sup-
ported by several experimental campaigns. Single ply and two ply paper sheets
were manufactured in a controlled environment at Packaging Greenhouse, and
the paper pulp, retention, sizing and fillers were varied. Several experiments
were performed to support the modelling tracks. From the experiments, air per-
meabilities, pressurized edge wick, contact angles, tensile strength, tensile stiff-
ness, bending resistance, z-strength, and pore size distribution were extracted.

In the paper forming track, the model presented in this work has been de-
veloped. The aim of the model is to simulate the forming section of a paper
machine and to use the resulting virtual paper board model as an input to the
other tracks. The model was first published by Mark and co-workers in 2011
and 2012 [41, 62]. In these works, the fibers were modelled as beams, and the
immersed boundary method [44] was used to handle the interaction between
fluid and fibers. In this thesis, the paper forming model has been extended and
refined to handle physical fiber contact forces. Further, a more advanced fiber

1http://www.fcc.chalmers.se/
2http://www.fcc.chalmers.se/software/ips/iboflow/
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model [59] is included.
The simulated paperboard model or tomography is used as input for the

edge wicking simulations. In edge wicking, the fluid penetration into the open
edge of the paperboard is modelled. To calculate this, a multiscale framework
has been developed. On the fiber microscale, a pore morphology method is
used to calculate capillary pressure curves, and one-phase flow simulations per-
formed in the active pores to calculate the relative permeabilities. The result is a
database of capillary pressure curves and relative permeabilities as a function of
saturation and porosity. The database is used as input for a two-phase flow sim-
ulation on a 2D virtual macro sheet to calculate the penetration of fluid in the pa-
per. For details, see the resulting publications from 2012 and 2015 [35, 42, 43].

The newest part of the project was started in 2017, and is the development of
a fiber network model and a multiscale method which will be used to investigate
mechanical properties of paper, and especially the virtual paper sheets attained
from the paper forming simulations.

The developed models have been integrated on the Industrial Path Solutions
(IPS) software platform3, and the modules IPS Edge Wicking and IPS Paper
Forming have been delivered to the ISOP partners.

1.2 Outline of thesis
The outcome of this thesis work is divided into five topics which are described
in one chapter each. The five topics are the following:

• Fiber suspension model (with the fiber-fiber interaction model).

• Paper forming simulation framework.

• Fabric flow investigation.

• Fiber network model.

• Multiscale method for discrete network models.

Each of these five chapters starts with a short motivation. For some topics, a
review of earlier works in the corresponding field is included. Thereafter an
overview of the theory and methods is given, summarizing the more detailed
presentations in the papers. Selected results are presented where appropriate.
Some additional contents not included in the papers are also added.

3http://industrialpathsolutions.se/
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Following the five chapters of main contributions, a chapter with discussion
and future work is given. After that chapter, short summaries of the six included
papers are given, and lastly the six papers are included in their full length.



2. Fiber Suspension Model

The basic structure of paper is created during the lay down process in the form-
ing section of the paper machine. Since the structure of the fiber sheet governs
the properties of the paper product, it is important to study this process in detail.
However, the complexity is significant due to the apparent scale differences and
multi-physic features. The width of a paper machine can be ten meters. Fibers
have a length of up to some millimeters and a width of around twenty microme-
ters. Moreover, the interaction forces present in a fluid suspension, for example
electrostatic and van der Waals forces, act on distances of tens of nanometers.

In this work, a fiber suspension model is presented which takes into account
each single fiber, the complex fluid flow, the interaction between fibers and
fluid, and the interaction between the fibers and also the forming fabric. To
make such a detailed model computationally applicable, a novel method for the
calculation of the fiber-fiber and fiber-fabric interaction has been developed.

For a general suspension flow, that is, a fluid flow containing immersed
objects, a general model can be assumed to consist of the following four sub-
models:

• Fluid model.

• Object model.

• Fluid-object and object-fluid interaction model.

• Object-object interaction model.

In this work, such a model is proposed and it is used to simulate the lay down
process in the paper machine. In Figure 2.1, an illustration of the fiber suspen-
sion model during a lay down simulation is shown.

11
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Figure 2.1: An illustration of the fiber suspension model and its sub-models for
the case of a fiber lay down onto a forming fabric.

The fluid model predicts the behaviour of the fluid, and is in this work gov-
erned by the incompressible Navier-Stokes equations. The object model de-
scribes the immersed objects, and the choice can vary, depending on the type
of included objects. Here fibers, modelled as beams, and a static rigid fabric
are considered. The interaction between the fluid and objects is handled by an
immersed boundary method for the object’s effect on the fluid, and an empir-
ical drag force relation for the fluid’s effect on the fibers. The model for the
interaction between objects is based on the DLVO forces. This novel interac-
tion model makes it possible to resolve contact forces varying considerably over
nanoscale, without requiring the fiber time step to be reduced, and is one of the
main contributions of this work.

In Section 2.1, a summary of earlier works of simulation of suspension flows
is presented. In the following four sections, the four sub-models are described.
Lastly, the fiber-fiber interaction model is investigated by simulation of collision
of two fibers.
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2.1 Simulation methods for suspension flows
In this section, a review of simulation methods for suspension flows, with em-
phasize on fiber suspension flows, is presented. Before the simulation meth-
ods are presented, two paragraphs about theoretical and experimental works are
given.

In 1922, Jeffery published a work [34] where he theoretically derived the
motion of a single prolate spheroid in shear flow. The resulting equations show
that the orbit of a prolate spheroid is periodic with no tendency to set its axes
aligned in any particular direction. Jeffery’s equations are often referred to, and
compared with, when fiber motion in shear flow is investigated.

During the 1950s and 1960s, Mason and co-workers [15, 16] performed
experiments with important results. They investigated fiber motion in shear
flow and found results in accordance to Jeffery’s equations, but also extending
to flexible particles. The resultant fiber configurations are frequently used for
comparison when developing simulation methods for fibers.

An early work on simulation of suspension flows was performed by Bossis
and Brady in the mid 1980s [5, 6]. Their method, called Stokesian dynam-
ics, was used to simulate a suspension of spherical particles in a shear flow
at low Reynolds numbers. They considered solid rigid particles in a Newto-
nian fluid, whose motion was governed by Newton’s second law. Two types of
forces were considered to act on the particles, hydrodynamic forces and con-
tact forces. By assuming a low Reynolds number, a large Péclet number, and
absence of Brownian motion, the inertia could be neglected, reducing the com-
plexity of the governing equations. For the hydrodynamic force, Bossis and
Brady used theory derived by Brenner and co-workers [7, 22], applied to linear
shear flow. The particle velocities were resolved and the new particle positions
attained by time stepping, using a Runge-Kutta scheme. The model was used
to simulate a monolayer of spherical particles. The interaction between parti-
cles was calculated from a repulsive force expression with a singularity at zero
separation.

In the beginning of the 1990s, Yamamota and Matsuoaka developed a model
for simulation of fibers [68–70]. In their approach, a fiber was modelled as
built up of spheres with fixed radius. The spheres were bonded pairwise with
three types of connections, including stretching, bending, and torsion, respec-
tively. The three kinds of connections were governed by spring relations. The
fiber motion was governed by the Newton-Euler equations. Linear shear flow
was assumed and the governing equations were solved using a finite difference
technique. A single fiber in shear flow was simulated and the resulting fiber



14 Chapter 2. Fiber Suspension Model

configurations were compared with the experimental results of Mason and co-
workers [15,16]. In addition to simulations of a single fiber, multiple fibers were
investigated. In the multi-body study, lubrication forces were used between the
spheres, and a repulsive force was employed for the shortest separations to en-
sure numerical stability.

In 1997, Ross and Klingenberg [53] published a work with an approach
similar to that of Yamamoto and Matsuoaka, but instead of spheres, the fibers
were modelled as consisting of several prolate spheroids connected through ball
and socket joints. With prolate spheroids, the number of fiber components re-
duces compared to spheres, leading to faster simulations. On the other hand,
ball and socket joints remove the possibility of stretching, which introduces
the necessity of connection constraints, keeping the joints together. Ross and
Klingenberg argued that extensibility could be neglected since it is typically
small compared to other deformations. The bending and twisting torques of
the ball and socket joints were governed by spring relations as in the model
of Yamamota and Matsuoaka. The hydrodynamic force and torque acting on
the spheroids were similar, and the governing equations of the spheroid motion
were the same equations as Yamamota and Matsuoaka used, except that the
joint constrains were included and the particle inertia was neglected.

Ross and Klingenberg used their model to simulate a single fiber in shear
flow and compared the results to Forgacs and Mason [15, 16]. They also sim-
ulated multiple fibers and investigated rheological properties. When multiple
fibers were used, a repulsive force between spheroids was employed.

In 1998, Stockie and Green [61] presented a new approach for simulation of
fiber suspensions. They incorporated full two-way coupling between fiber and
fluid by using the immersed boundary method by Peskin [51], and employed
the Navier-Stokes equations to resolve the fluid motion. Their fiber model was
fundamentally different from the previously described methods. A fiber was
modelled as a flexible composition of force-bearing filaments, assumed to be
massless and occupy zero volume. A force was introduced in the momentum
equation of the Navier-Stokes equations which was non-zero except on the fiber.
The fiber was forced to move at the same velocity as the surrounding fluid. By
expressing the fiber density as the gradient of a potential function, resistance
to stretching and bending was included. Stockie and Green used Hooke’s law
to govern the deformation of the fiber. The model was used to simulate a fiber
in shear flow in two dimensions. The results showed some disagreement with
previous simulations and theory, which all neglected the effect from the fibers
on the fluid, indicating that this interaction is important.

In 2000 and subsequent years, Schmid, Switzer and Klingenberg [55,63,64]
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published works similar to that of Ross and Klingenberg, but now with fibers
that were modelled as composed of cylinders instead of prolate spheroids. Us-
ing this model they simulated several fibers in shear flow and investigated floc-
culation. In 2002, Stockie [60] extended his earlier model to three dimensions
and investigated an elastic fiber in shear flow. The fiber was described using
several layers and fibrils.

In 2007 and 2008, Lindström and Uesaka, published works [37, 38] where
the fibers were built up of cylindrical elements, as in the work of Schmid and
co-workers. Three new features compared to Schmid and co-workers were that
the inertia of the elements was included, that the fluid flow was governed by
the incompressible Navier-Stokes equations, and that two-way coupling was
included. The two-way coupling was incorporated using boundary conditions
derived by Hirasaki and Hellums [26]. Contact forces between fibers were also
included, similar to the work of Yamamota and Matsuoaka [70].

In 2011 and 2012, Mark and co-workers [41, 62] presented a new approach
by modelling the fibers as beams governed by the Euler-Bernoulli beam equa-
tion in a co-rotational formulation. The fluid flow was governed by the Navier-
Stokes equations, and a two-way coupling was included using a second-order
accurate immersed boundary method [44]. The contact between fibers was
modelled using a penalty method including elastic and inelastic collisions and
friction. The fluid-fiber interaction was evaluated by simulating a fiber which
was attached to a wall and exposed to a cross flow. Further fiber simulations
were performed and compared with Jeffery’s equations and the experimental
results of Mason and co-workers.

In this thesis, the work of Mark and co-workers is extended to enable simu-
lation of the paper forming process. A more advanced beam model is used and
a novel fiber-fiber interaction model is developed. In the following sections, the
four sub-models of the fiber suspension model are presented.

2.2 Fluid model
In this work, the fluid, in which the fibers are immersed, is governed by the
Navier-Stokes equations, consisting of the momentum and the continuity equa-
tion

ρ
∂u

∂t
+ ρu · ∇u− µ∇2u = −∇p,

∇ · u = 0.
(2.1)
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where u is the fluid velocity, t is the time, p is the pressure, and ρ and µ are the
density and dynamic viscosity of the fluid respectively.

The fluid flow is solved using the already existing incompressible finite-
volume based fluid solver IBOFlow (Immersed Boundary Octree Flow Solver).
The SIMPLEC method [11] is utilized to couple the momentum and pressure
equations, and the fluid domain is discretized on a dynamic Cartesian octree
grid. The octree grid structure permits fast refining and coarsening of the mesh.
The variables are stored in a co-located configuration, and the Rhie-Chow in-
terpolation [52] is adopted to suppress pressure oscillations.

IBOFlow is well-validated and is used in a wide range of applications in
other projects. It is used for spay painting in the automotive industry with cou-
pled simulations of air flow, electromagnetic fields and paint droplets [12, 39].
Moreover, IBOFlow is used for simulation of transient viscoelastic fluid flow
[32], conjugate heat transfer [48], contact angles and surface wettabilities [19],
and 3D bioprinting [20].

2.3 Object model
Two types of immersed objects are considered: fibers and forming fabrics. The
fibers are modelled as beams using a finite-strain rod model developed by Simo
and Vu-Quoc [57–59]. The model is a non-linear rod model including finite
bending, shearing and extension, permitting deformations which are arbitrar-
ily large in regard to rotation and strain. This is in contrast to the Bernoulli
beam equations, which are only applicable to small deflections, more suitable
for large static beams. The fabrics are considered rigid and static, and are repre-
sented by a surface triangulation or a volume mesh. The fabric geometries are
scanned from real industrial fabrics.

To solve the fiber equations, Simo and Vu-Quoc used the finite element
method in space together with Newton-Raphson iteration to handle the non-
linearity. In time, they employed an implicit time stepping algorithm based on
the Newmark scheme [47]. In this work, the time algorithm has been upgraded
to an extension proposed by Ibrahimbegovic and Al Mikdad [30].

For the forthcoming presentation, it is worth remembering that each fiber
is discretized into elements with nodes at the element end points. Each fiber is
solved separately every time step and the size of the fiber time step is denoted
∆t.
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2.4 Fluid-object and object-fluid interaction model
The effect from the immersed objects on the fluid is handled by the second-
order accurate immersed boundary method developed by Mark an co-workers
[40, 44]. The hybrid mirroring immersed boundary method constrains the fluid
velocity to the velocity of the immersed surface by an implicit boundary con-
dition. A fictitious velocity field is created inside the body, which is excluded
from the continuity equation to ensure zero mass flux over the boundary.

The effect from the fluid on the fibers is calculated by an empirical drag
force relation derived from experiments. The drag force per unit length, fD,
acting on a fiber is assumed to be given by the expression

fD =
1

2
ρCDd̄|vrel|vrel, (2.2)

where CD is the drag coefficient, d̄ is the mean diameter of a fiber cross section,
and vrel is the relative velocity of the fiber and fluid calculated at the center of
the fiber cross section. The drag coefficient is calculated according to

CD =





9.689

Re0.78

(
1 + 0.147Re0.82

)
, if Re < 5,

9.689

Re0.78

(
1 + 0.227Re0.5

)
, if Re ∈ [5, 40),

9.689

Re0.78

(
1 + 0.0838Re0.82

)
, if Re ∈ [40, 400],

(2.3)

which originates from [54]. The Reynolds number is defined as

Re =
ρ|vrel|d̄
µ

, (2.4)

where µ is the dynamic viscosity of the fluid.

2.5 Object-object interaction model
When investigating suspension flows, it is customary to initially consider one
single object immersed in a fluid. If self-contact is neglected, the three models
presented in the preceding sections, the fluid model, the object model, and the
fluid-object and object-fluid interaction model, are sufficient to describe the
suspension flow. When multiple objects are immersed in a fluid, an additional
phenomenon is introduced: the interaction between objects.

The interaction between immersed objects in a suspension becomes more
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influential when the concentration increases. For dilute suspensions, the inter-
action can often be neglected. For higher concentrations, the effect can be of
major importance. High numerical cost and numerical instability are two diffi-
culties which have to be dealt with when modelling interaction between a large
number of objects.

Object interaction is usually calculated by using formulas for the contact
force between pair of objects. Such contact forces normally depends on the
surface separation in a way such that the force magnitude increases when the
surfaces are approaching, and eventually ends up in a singularity. This singu-
larity is one reason that could lead to numerical instability, especially when the
objects are moved in discrete steps each time step.

Another aspect of interaction forces is that physical and chemical forces,
for example those included in the DLVO theory [10, 65], the van der Waals and
electrostatic forces, are active on the nanoscale. These apparent variations over
small distances require the motion of the objects to be resolved with very small
time steps which is time-consuming.

In this work, a novel model for computing the interaction effects between
fibers, and fibers and fabric, is presented. The model is developed to resolve
contact forces acting at small scales without requiring the time step of the fiber
motion to be reduced. It includes a steric repulsion force adopted to, in a numer-
ically stable way, manage the repulsive forces acting on the smallest separation
distances where overlaps occur.

The model is based on so-called contact points which are distributed over
the fibers. Between these contact points the contact forces are calculated. The
force formulas used in this work are the DLVO forces together with the steric
repulsion force mentioned above. By solving the motion of the contact points
locally during each fiber time step, average forces can be calculated which are
added to the fibers and incorporated into the fiber beam equations.

2.5.1 Equation system for contact point motion
In this section, the system of ordinary differential equations governing the mo-
tion of the contact points is derived. A contact point is a moving point at which
a contact force is calculated.

Consider a fiber suspension with N objects at time t. For each object, a
number of contact points is chosen. Let the total number of contact points
for all objects be M , and for contact point i, denote its position, velocity, and
acceleration at time t by pi(t), vi(t), and ai(t), all belonging to R3, 1 ≤ i ≤M .
See Figure 2.2 for an illustration of fibers with contact points distributed along
the centerlines.
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Figure 2.2: A two-dimensional illustration of three fibers and contact points
distributed along the centerlines.

Combining the differential relation between position and acceleration,
d2p

dt2
=

a, and Newton’s second law, F = ma, the following differential equation for
the position of contact point i is attained:

d2pi
dt2

=
Fi
mi

, (2.5)

where mi denotes the mass related to contact point i, and Fi is the total force
acting at position pi. In this model, the following forces are considered to act
on contact point i:

• FG
i - The gravitational force.

• FDi - The drag force from the fluid.

• F Ii,j - The contact force from interaction with contact point j.

• miai,0 - The force from the intrinsic acceleration of the object, assumed
to be constant during a fiber time step.

Inserting the forces into (2.5), results in the following system of second order
differential equations:

d2pi
dt2

= ai,0 +
1

mi


FGi + FDi +

∑

j∈Ji
F Ii,j


 , 1 ≤ i ≤M, (2.6)

where Ji is the set of indices of the contact points that contact point i interacts
with.

The second order system (2.6) is rewritten as a first order system by intro-
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ducing the variables

yi(t) =

{
pi(t), 1 ≤ i ≤M,

vi−M (t), M + 1 ≤ i ≤ 2M.
(2.7)

This results in the following initial value problem for the motion of the contact
points:





ẏi(t) = yi+M ,

ẏi+M (t) = ai,0 +
1

mi

(
FGi + FDi +

∑
j∈Ji

F Ii,j

)
,

{
yi(t0) = pi(t0),

yi+M (t0) = vi(t0),

1 ≤ i ≤M, (2.8)

where the initial positions and velocities of the contact points at time t0 are
given.

2.5.2 Calculation procedure
In this section, it is explained how the equation system (2.8) is used at each fiber
time step during a simulation to calculate the interaction which is transformed
into forces and moments that are added to the fiber equation. The system (2.8) is
solved using the Adam-Moulton based ODE-solver SUNDIALS CVODE [25].

Given a time step at time t0, contact points are distributed over the fibers
(see Paper VI for details about the distribution). The velocity vi(t0) and the
intrinsic acceleration ai,0, are extracted from the fibers at the position pi(t0) for
each contact point included in the equation system (see Section 2.5.3 for how
the contact points included are chosen). The system is solved during the time
step ∆t, and the resulting positions of the contact points at time t0 + ∆t are
used to calculate an averaged force F̄i using the Newmark-Wilson scheme [30].
The resulting force F̄i is set to act at position pi(t0). To include the force in the
fiber equation, the force is transformed to the nodes of the fiber element which
the contact point belongs to, such that the total force and moment acting on the
fiber element are preserved, assuming rigidity of the element.

2.5.3 Simplification of equation system
The system of differential equations (2.8), governing the motion of the contact
points will be very large if many fibers are considered. Solving such a large
system is computationally demanding. Therefore, two simplifications are em-
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ployed to reduce the size of the system.
In the simulations in this work, the system is solved only for pairs of contact

points. Using this simplification, for a given contact point, the system is solved
several times with different interacting contact points. This still implies a lot of
calculations, most often between contact points whose interaction is very small.
Hence one further simplification is used, which is, for a given contact point, to
only solve the interaction with the closest contact point at each interacting fiber.

2.5.4 DLVO theory
The contact force between fibers, F Ii,j , in equation system (2.8), is based on
the DLVO theory. The DLVO theory (Derjaguin and Landau [10], Vervey and
Overbeek [65]) describes force interactions between particles dispersed in a
liquid. The idea of the DLVO theory is to calculate the total interaction through
summation of forces arising from the following two separate phenomena:

• van der Waals forces,

• electrostatic forces.

Van der Waals forces are dipolar and multipolar forces. They are mostly attrac-
tive, while electrostatic forces are due to electric double layers and depend on
the sign and magnitude of the surface charge of the interacting objects. While
electrostatic forces are only non-zero when the surfaces are charged, van der
Waals forces are present in almost all situations.

An example of a van der Waals force curve is shown to the left in Figure 2.3.
The curve describes the force acting on a single object interacting with another
object and depends on the surface separation distance. Negative values indicate
attraction. As can be seen, the magnitude increases as the separation decreases.
To the right in Figure 2.3, an electrostatic force curve is plotted for an object
interacting with an equally charged object, and hence the value of the force is
positive, which indicates repulsion.

In the DLVO theory, the two separate force contributions are added. To
the left in Figure 2.4, the total DLVO force resulting from addition of the two
forces in Figure 2.3 is plotted. It can be seen that at large separations, there is
a small attractive force, but that its magnitude is very close to zero. When the
objects get closer the attractive force becomes more significant. At a separation
distance of about 3 nm the force changes sign. This point, where the force is
zero, is called the secondary minimum, since the interaction energy is locally
smallest there. It is a state of equilibrium, where the objects are stuck together
at constant separation distance. However, a relatively small external force could
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Figure 2.3: The two forces included in the DLVO theory. To the left the van der
Waals force and to the right the electrostatic force.

separate two objects stuck in this minimum.
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Figure 2.4: Graphs of DLVO forces acting on a single particle in contact with
another particle. To the left, the forces in Figure 2.3 have been combined to a
single DLVO curve. To the right, the resulting DLVO force is shown when the
surface charge of the particles has been decreased.

To reach a stronger state of attraction between objects, the repulsive maxi-
mum at 2-3 nm has to be overcome. It is an attractive state called the primary
minimum where a much larger force is required to separate the objects. The
force curve to the left in Figure 2.4 indicates that objects closer than 2 nm will
continue to attract and eventually collapse into each other. This is in reality
prevented by steric repulsive forces arising from overlap of electron clouds. At
sufficiently small separation distances the DLVO theory is not reliable.

If the surface charge of the objects is decreased, a resulting DLVO force
curve could look like the one to the right in Figure 2.4. It can be seen that
the repulsive hill no longer exists and therefore the objects stick together more
easily.
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Since the magnitude of the DLVO force is nonzero only at small surface
distances, attraction will only occur if the particles are positioned very close to
each other. In the following two sections, a description of the two DLVO force
components, van der Waals and electrostatic, is presented.

2.5.4.1 Van der Waals contribution

Van der Waals interactions describe forces acting between atoms and molecules.
These intermolecular interactions act on very small separation distances and
are in most cases attractive. Van der Waals interactions are due to the three
following types of forces:

• Keesom forces,

• Debye forces,

• London forces,

which all occur due to electrostatic interactions between molecular dipoles or
multipoles and differ in whether the dipole or multipole is permanently or tem-
porarily induced. The Keesom forces describe interactions between two perma-
nent poles, London forces between two temporarily induced poles, and Debye
forces between permanent and temporarily induced poles. Keesom and De-
bye forces can be analysed by electrostatic theory while London forces require
quantum physics [1].

To calculate the resulting van der Waals forces on macroscopic objects,
Hamaker [21] utilized the energy additivity principle by summation over all
interacting atoms and molecules. In the case of two spherical objects, Hamaker
[21] derived an expression for the energy which for h/ri � 1 [1] reduces to

VW = −A12

6h

(
r1r2

r1 + r2

)
. (2.9)

A force formula for the van der Waals interaction is obtained by the negative

gradient of the potential, −dV
dh

, which gives

FW = −A12

6h2

(
r1r2

r1 + r2

)
. (2.10)

The included parameters are the radii r1 and r2 of the two spheres, the
surface separation distance h, and the Hamaker constant A12. The Hamaker
constant Aij is a compact way of describing all constants involved in the van
der Waals interaction.
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2.5.4.2 Electrostatic contribution

In principle all surfaces get charged to some extent when immersed in a liquid
media. The charging is usually due to one of three mechanisms, dissociation
of ionic groups on the surface, adsorption of ions from the liquid medium, or
quantum mechanical charge transfer between atoms in surfaces brought very
close to each other. Irrespectively of charging mechanism, a so called electric
double layer is created, consisting of the inner layer surface charge and a sec-
ond layer of oppositely charged counterions [33]. The establishment of double
layers enables electrical interactions between particle surfaces in liquids, even-
tually leading to repulsive and attractive forces between the particles.

A common starting point for calculations of interactions between particles
in suspensions is the Poisson-Boltzmann equation. As this equation is non-
linear and an analytical solution often is hard to find (except for simple cases
such as that of two planar surfaces) a common method is to deal with the lin-
earised version. It is also common to limit the work to the interaction between
two spherical objects [1].

The introduction of approximations gives restrictions on the intervals in
which the solution is valid. Bell et al. [4] have derived an approximate solu-
tion to the non-linear Poisson-Boltzmann equation for the interaction between
two colloidal spheres, resulting in

FE = 4πε

(
kT

e

)2

Ȳ 0
1 Ȳ

0
2

r1r2

R2
· (1 + κR)e−κ(R−r1−r2), (2.11)

where FE is the force due to interaction between the two spheres, ε the per-
mittivity of the liquid medium, k the Boltzmann constant, and T the absolute
temperature of the solution. Moreover, ri, i ∈ {1, 2}, are the radii of the first
and second sphere respectively, R is the distance between the centers of the
spheres, Ȳ 0

i is the effective surface potential, e is the elementary charge, and κ
is the inverse of the Debye length. This solution is valid for any potential but
only for distances between the spheres satisfying κ(R − r1 − r2) > 1. The
Debye length 1/κ is a property of the electric double layer describing how far
out from the surface the electrostatic effects are significant. It is a property
dependent only on the liquid solution and not on the surface charge [33]. An
approximate formula for the effective surface potential of a spherical double
layer in a 1:1 electrolyte (consisting of equally many ions of valency +1 as−1)
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is found in [1] as

Ȳ 0
i =

8 tanh

(
eψd,i
4kT

)

1 +

[
1− 2riκ+ 1

(riκ+ 1)2
tanh

(
eψd,i
4kT

)]1/2
. (2.12)

The diffuse double layer potential ψd,i is unknown in (2.12). It is common that
the surface charge σ0

i is known but not the diffuse double layer potential. A
relation between the two quantities reads [1]

σ0
i = 2 sinh

(
eψd,i
2kT

)
+

4

κri
tanh

(
eψd,i
4kT

)
, (2.13)

from which ψd,i can be found by iteration, and hence Ȳ 0
i and the force in (2.11)

can be calculated.

2.5.4.3 Extension of DLVO forces

The DLVO force formulas are inaccurate at the smallest separations and
they diverge towards negative infinity when the separation goes to zero. The
formulas are therefore not used for separation distances smaller than h0. To get
a smooth translation at h = h0, the formulas are extended to h = 0. For the
van der Waals and electrostatic forces, two splines are used to smoothly let the
function reach zero at zero separation. The new formulas have the forms

FW (h) =




−A12

6h2

(
r1r2

r1 + r2

)
, h ≥ h0,

gW (h), h < h0,

(2.14)

FE(h) =





4πε

(
kT

e

)2

Ȳ 0
1 Ȳ

0
2

r1r2

R2
(1 + κR)e−κ(R−r1−r2), h ≥ h0,

gE(h), h < h0.

(2.15)

The functions, gi(h), i ∈ {E,W}, are defined as

gi(h) =





0, h ≤ 0,

aih
2, 0 ≤ h < h0

2
,

bih
2 + cih+ di,

h0

2
≤ h < h0,

(2.16)
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where the constant coefficients ai, bi, ci and di are chosen such that

Fi

(
h0

2

)
= gi

(
h0

2

)
,

F ′i

(
h0

2

)
= g′i

(
h0

2

)
,

Fi(h0) = gi(h0),

F ′i (h0) = g′i(h0).

(2.17)

This choice guarantees smoothness preventing unstable behaviour. The result-
ing coefficients can be seen in the Appendix of Paper VI.

The extension of the van der Waals and electrostatic formulas are plotted in
Figure 2.5 to the left and right, respectively. Adding these two extended force
formulas results in the extended DLVO force illustrated in Figure 2.6.
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Figure 2.5: The theoretical van der Waals and electrostatic formulas only apply
at separation distances larger than h0. The formulas are therefore extended
using splines to smoothly reach zero at zero separation distance. The transitions
between the curves are marked with arrows.
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Figure 2.6: The curves in Figure 2.5 are added to form a total DLVO force
curve. The sum of the extensions is shown in red and the sum of the theoretical
curves in blue. The transition between the curves is marked with an arrow.
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2.5.5 Steric repulsion force
In addition to the DLVO forces, a steric repulsion force is included in the in-
teraction force between fibers, F Ii,j . The purpose of the steric repulsion force,
FS , is to prevent objects from passing into each other and to repel objects that
overlap. Since the simulation framework uses discrete time stepping, fibers can
partially overlap after a time step. This constitutes extra requirements on the
construction of a numerically stable steric repulsion force. The force developed
in this work consists of four different forces according to

FS =

4∑

i=1

FS,i, (2.18)

and they are only nonzero for separations h < h0. The four forces are given by

FS,1 = max

(
0, B1

2

t2R

hR − h− tRṽrel
1
m1

+ 1
m2

)
, (2.19)

FS,2 = B2
ṽrel|ṽrel|

hS

(
1
m1

+ 1
m2

) , (2.20)

FS,3 = B3
ṽrel|ṽrel|

hmin
1000

(
1
m1

+ 1
m2

) , (2.21)

FS,4 = B4
ṽrel|ṽrel|

hS

(
1
m1

+ 1
m2

) . (2.22)

The functions Bi = Bi(h), i = 1, 2, 3, 4, are bell-like with the purpose of
constraining the action of the forces to certain separation distances. The explicit
forms of the bell functions can be seen in the Appendix of Paper VI. The masses
of the two contact points are denoted m1 and m2, and hmin = −r1 − r2, where
r1 and r2 are the two representative radii of the contact points. The separation
hmin represents the minimum possible separation distance before the points pass
through each other.

The scalar valued function ṽrel is the relative velocity of the contact points
projected onto the direction vector n̂:

ṽrel = −n̂ · vrel, (2.23)

where vrel = v2 − v1. The direction vector is a unit vector pointing between
the contact points, directed away from the contact point considered. The dis-
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tances hR and hS are separations chosen as fixed parameters. Similarly tR is a
reference time.

The first force, FS,1, acts at separations h < hR and the instantaneous value
is calculated such that the separation will be equal to hR in time tR neglect-
ing all other forces and velocities. The value is also adjusted to not give any
attraction but only repulsion. This force acts to separate contact points.

The second force, FS,2, prevents contact points from reaching a separation
h = −r1 − r2, that is, to prevent them from passing through each other. The
third and fourth force, FS,3 and FS,4, both damp the velocities of the contact
points when they are moving away from each other so that the repulsive velocity
that is built up during the intersection stage will not lead to that the DLVO forces
are being ignored.

2.6 Testing of object-object interaction model
In this section, some basic testing of the object-object interaction model is pre-
sented. Two test cases have been studied, one where two parallel fibers collide,
and one where two parallel fibers pass each other with a slight touch. In the first
case, it is investigated whether the contact model can handle head-on collision,
and in the second case, the adhesive contribution from the van der Waals force
is investigated.

2.6.1 Collision test
In the collision test, two cylindrical fibers with lengthL = 0.1 mm and diameter
D = 14µm are positioned in parallel to the y-axis in the x-y-plane with an
initial surface separation of h = 12µm. One of the fibers is held moving at a
constant speed of v = 50 mm/s in direction towards the other fiber. The fibers
collide and the moving fibers pushes the other fiber forward. This is illustrated
in Figure 2.7.

(a) t = 0.0 ms. (b) t = 0.2 ms. (c) t = 0.4 ms. (d) t = 1.0 ms.

Figure 2.7: Collision between two cylindrical fibers. The right fiber is moving
with a constant speed of v = 50 mm/s to the left. The black dot is a static
reference point.
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2.6.2 Adhesion test
In the adhesion test, two cylindrical fibers with length L = 0.1 mm and diame-
ter D = 14µm are positioned in parallel to the y-axis in the x-y-plane with an
initial surface separation of h = 12µm. One fiber is translated ∆z = 12µm
in the direction of the z-axis and is held at a constant speed v in the x-direction
towards the other fiber. The two fibers touch each other, and depending on the
speed, the adhesion becomes long-lived or short-lived. For v = 10 mm/s the
adhesion becomes long-lived and for v = 50 mm/s short-lived. This can be
seen in Figure 2.8 for the case of v = 10 mm/s and in Figure 2.9 for the case of
v = 50 mm/s .

(a) t = 0.0 ms. (b) t = 0.5 ms. (c) t = 1.0 ms. (d) t = 1.5 ms. (e) t = 2.0 ms.

(f) t = 2.5 ms. (g) t = 3.0 ms. (h) t = 3.5 ms. (i) t = 4.0 ms. (j) t = 4.5 ms.

(k) t = 5.0 ms. (l) t = 5.5 ms. (m) t = 6.0 ms. (n) t = 6.5 ms. (o) t = 7.0 ms.

Figure 2.8: Long-lived adhesion after partial collision between two cylindrical
fibers. The originally right fiber is moving with a constant velocity v = 10
mm/s to the left. The black dot is a static reference point.
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(a) t = 0.0 ms. (b) t = 0.2 ms. (c) t = 0.3 ms. (d) t = 0.4 ms. (e) t = 0.5 ms.

(f) t = 0.6 ms. (g) t = 0.7 ms. (h) t = 0.8 ms. (i) t = 0.9 ms. (j) t = 1.3 ms.

Figure 2.9: Short-lived adhesion after partial collision between two cylindri-
cal fibers. The fiber which is originally located to the right is moving with a
constant velocity v = 50 mm/s to the left. The black dot is a static reference
point.



32 Chapter 2. Fiber Suspension Model



3. Paper Forming Simulation
Framework

The motivation behind the suspension flow model presented in the preceding
chapter was to enable simulation of the lay down process in the forming section
of a paper machine. In the forming section, a fiber suspension, consisting of
paper pulp diluted into water, is injected through the head box. The suspension
flows down onto a forming fabric moving at high speed, and the paper structure
starts to form while most of the water passes through the holes of the fabric.

By implementing the suspension model presented in Chapter 2 into the fluid
solver IBOFlow, a framework has been created that can be used to simulate the
process described. In this chapter, the different parts of the framework are pre-
sented. The lay down simulations are performed with a domain fully filled with
a fluid into which fibers are generated. At the lower part of the domain a small
piece of an industrial forming fabric is held static and the fluid is accelerated
over the fabric by an applied pressure drop. The resulting flow moves the fibers
downwards onto the fabric and a paper sheet is build up.

An additional feature that is included is a method to press the fiber structure
by letting a rigid plane move at constant velocity down onto the web, forcing
the fibers together and decreasing the thickness of the sheet.

In Section 3.1, the setup of the simulation domain is described, and in Sec-
tion 3.2, the simulation procedure is outlined. Thereafter, the forming fabric is
presented in Section 3.3, and in Section 3.4, the pressing approach is explained.
Lastly, some results from the lay down simulations are given.
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3.1 Simulation domain
The simulation domain is an axis-aligned rectangular box whose horizontal pla-
nar dimension is equal to the dimension of the piece of forming fabric. A piece
of 3 × 3 mm2 is used in the simulations. The height of the domain is adapted
to the number of fibers generated. The forming fabric is positioned with its
lower side 2 mm from the bottom of the domain. A snapshot of the domain
with forming fabric is shown in Figure 3.1.

Figure 3.1: The simulation domain used for the lay down simulations. At a
distance of 2 mm from the bottom, a 3 × 3 mm2 piece of a forming fabric is
held static. A pressure drop accelerates the fluid in the domain.

The domain contains a fluid which is accelerated by a pressure drop across
the domain in the vertical direction. This setup, with a domain constantly filled
with a fluid resembles the film that is present in the real process. The fluid
flow is determined by the following boundary conditions: at the four vertical
boundaries a symmetry boundary condition is used, that is,

∂vi
∂xj

= 0, i ∈ {1, 2, 3},

∂p

∂xj
= 0,

(3.1)

where j ∈ {1, 2} depends on the boundary considered. At the top boundary,
the pressure is set fixed and the velocity is governed by a Neumann condition



3.1. Simulation domain 35

in the following way:

∂vi
∂x3

= 0, i ∈ {1, 2, 3},

p = ∆p,

(3.2)

where ∆p is a prescribed pressure drop. Similarly for the bottom boundary:

∂vi
∂x3

= 0, i ∈ {1, 2, 3},

p = 0.

(3.3)

To prevent fibers from falling off the fabric at the boundaries of the domain,
a cyclic boundary condition for the contact detection is used. Fibers close to
one side detect fibers that are close on the opposite side. See Figure 3.2 for an
illustration of the cyclic boundary condition for fiber-fiber contact.

Figure 3.2: Illustration of how the fiber geometries are interpreted cyclically for
the fiber-fiber interaction calculation. The simulation domain is viewed from
above and two fibers are included, showing how they are represented when
going out over the boundary.
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3.2 Simulation procedure
The procedure of a paper forming lay down simulation is as follows:

1. The forming fabric is loaded into the simulation domain.

2. Fibers are randomly generated into the simulation domain.

3. Time stepping:

(a) The fluid flow is computed by solving the Navier-Stokes equations
resolving the object-fluid interaction by the immersed boundary method.

(b) The interaction between fibers are solved locally using the fiber-
fiber coupling model.

(c) The resulting object-object interaction is transformed into forces
and torques, which are added to the fiber equation.

(d) The motion of the fibers is calculated using the fiber model.

If one-way coupling is used, which means that the fluid affects the fibers, but
the fibers do not affect the fluid, step 3 (a) only has to be performed once. In
that case, only the fluid flow over the forming fabric is resolved, and the fluid
flow can be loaded from file directly at the beginning of the simulation, which
saves substantial time. If fully two-way coupling is used, step 3 (a) is performed
in each time step. Other approaches are to update the fluid flow not every time
step but more seldom, or to only include fibers that are close to the fabric when
calculating the effect on the fluid. For a description of the fiber generation, see
Paper VI.

3.3 Forming fabric
The forming fabric used in the lay down simulations is a 3× 3 mm2 piece of a
PRINTEX Q13 eight-shed double layer fabric from Albany International 1. The
height of the fabric is 0.637 mm. The geometry of the fabric is generated from
tomography images and described numerically by a triangulation. In Figure 3.3
the forming fabric is visualized.

When calculating the interaction between fibers and fabric the contact points
on the fabric are chosen in the following way: for a given contact point on a
fiber, the closest node of the fabric triangulation is found. If this point is close
enough to the contact point of the fiber, the surface normal at the closest point

1http://www.albint.com/en-us/Pages/default.aspx
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Figure 3.3: A 3×3 mm2 piece of a forming fabric represented by a triangulation.

on the triangulation is used to define a plane. The closest point in this plane is
used as interacting contact point.

3.4 Pressing
In the pressing section of a paper making machine, the paper sheet is pressed
between large rolls under high pressure. In this simulation framework, a sim-
plified approach of pressing has been employed.

After a lay down simulation, when the paper sheet has formed on the form-
ing fabric, the velocity field of the fluid is set to zero, and a horizontal rigid
plane is inserted. The plane moves downward at constant velocity to compact
the sheet structure. In the current implementation, no force is driving the plate,
and no resulting force from the fibers is calculated. Therefore at some point the
plate will force the fibers together so much that they start to intersect unrealis-
tically. Hence it is manually chosen when the pressing is finished.

The interaction between fibers and the plane is calculated similarly as to the
interaction with the forming fabric. For each contact point on a fiber, the closest
point on the press plate is used as the interacting contact point.

3.5 Lay down simulations
The simulation framework is used to simulate lay down of paper sheets with
different density and the resulting virtual sheets are compared to experiments
by simulating the air flow through the sheets. In this section, a review of the
simulation results is presented. For a complete presentation of the simulation
parameters, the experimental setup and the simulation results, see Paper VI.
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The simulations are performed using one-way coupling, meaning that the
fibers do not affect the fluid. With this simplification, the fluid flow over the
fabric alone is initially simulated to steady state. The resulting flow field is
used during the whole lay down process. This simplification drastically reduces
the simulation time since two-way coupling is very expensive. However, the
self-healing phenomenon taking place during the real forming process, where
the fluid flow is continuously changing when fibers lay down, is not taken into
account. Hence, the comparison between experiments and simulations gives
indications about the influence of this effect.

The lay down simulations are performed for two different types of fibers,
fibers with circular fiber cross-section and fibers with rectangular fiber cross-
section. For each case, the injection mass is varied. Thereafter the sheets are
pressed. The air flow through the sheets and fabric is simulated before and after
pressing. The thickness of the sheets at the various stages has been calculated.

In Figure 3.4, images of two experimental sheets with different amounts
of fibers are shown. In Figure 3.5, snapshots of two virtual sheets are shown.
One sheet has circular fiber cross-section and the other rectangular fiber cross-
section. Two snapshots of the air flow through fabric and virtual sheet are shown
in Figure 3.6. Lastly, in Figure 3.7, the air permeability and thickness of the
virtual and experimental sheets are plotted.

(a) (b)

Figure 3.4: SEM-images of two experimental sheets with different amount of
fibers. The real size of the images are approximately 2.6×1.9 mm2. Pictures
courtesy of Albany International.

The snapshots of the virtual sheets show the three-dimensional network
structure that can be created using the proposed simulation framework. The
air flow simulations can help to increase the understanding of how the flow is
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changing during the initial formation of paper sheets. The air permeability re-
sults show that the simulation and experimental values agree well for the sheets
with lowest density, indicating the capacity of the fluid solver to simulate flow
through forming fabrics. For sheets with higher densities, the permeability of
the experimental sheets are lower than for the virtual sheets. This is believed to
be explained by the one-way coupling simplification, leading to reduced amount
of fibers staying on the fabric and in the sheet, since the flow field is not reduced
the way it would be if the flow was continuously resolved when the fibers ac-
cumulate during lay down. Moreover, the discrepancy in permeability may also
be caused by too weak adhesion in the contact model or too low conformabil-
ity between fibers. The latter referring to how easily fibers deform over each
other, reducing the porosity of the sheet. However, both two-way coupling and
increased conformability should improve the conditions for adhesion.

(a) Circular fiber cross-section. (b) Rectangular fiber cross-section.

Figure 3.5: Snapshots from above and from side of two simulated paper sheets.
One sheet with circular fiber cross-section and one sheet with rectangular fiber
cross-section are included.
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(a) Unpressed rectangular. (b) Pressed rectangular.

Figure 3.6: Velocity magnitude field slices from air flow simulations through
fabric and virtual sheet with rectangular fiber cross-section, before and after
pressing. The slices are parallel to the x-z-plane. The width of each snapshot is
1 mm.
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Figure 3.7: The volume flow per area and thickness of the virtual and experi-
mental paper sheets.
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4. Flow over Forming Fabrics

The basic structure of the final paper product is formed during the lay down pro-
cess in the forming section. The lay down is governed by the flow conditions,
which effect how the fibers flow down onto the forming fabric. The structure of
the woven fabric directly affects the flow and the formation of the fiber network
configuration. Therefore, investigation of the fluid flow in the forming section
and how it is affected by the fabric structure can help to improve the process
and the paper structure. In this work, the fundamentals of upstream flow over
forming fabrics are studied.

To attain a fundamental understanding of the flow over fabrics, the flow
over various cylinder configurations is simulated, representing a simplification
of the fabric structure. The flows over one cylinder, two cylinders, and one and
two rows of cylinders are investigated numerically. Uniform cylinder diameters
and uniform spacing between cylinders are assumed to reduce the number of
possible configurations. The Reynolds number and the cylinder spacing are
altered to investigate their effect on the upstream flow features.

To characterize the impact on the upstream flow from the different cylinder
configurations and forming fabrics, new measures of the flow impact from the
structure are proposed. These measures can be used for characterization of
fabrics, in addition to the classic CFM-measure which gives a value of the air
flow per area through a fabric at a certain pressure drop. The new measures
quantify how far upstream the mainstream velocity is affected by the fabric and
how large the deviations from the mainstream velocity are.

Lastly, the flow over three industrial forming fabrics are investigated numer-
ically. The proposed impact measures are applied and conclusions are drawn
based on findings in the cylinder study. Moreover, the flow patterns over the
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fabrics are analysed and related to drainage marking.
In Section 4.1, the study of the flow over cylinders is presented. In Section

4.2, the proposed flow impact measures are described. In Section 4.3, the in-
vestigation of flow over three industrial forming fabrics is summarized. Lastly,
some main results from the flow simulations are given.

4.1 Flow over cylinders
In this work, the upstream flow over cylinders is studied to increase the un-
derstanding of the flow over forming fabrics. Rows of cylinders constitute a
two-dimensional simplification of the fabric structure. Such a two-dimensional
setup enables basic investigation of the flow dependency of parameters such as
the Reynolds number and the cylinder surface spacing. Flow over cylinders has
been studied for a long time. Most studies focus on the downstream flow fea-
tures and wake behaviour, in particular for the high Reynolds number regime.
The majority of the studies consider the flow over one and two cylinders. In
this work, flows over rows of cylinders are simulated, and the emphasis is on
the upstream flow features in the Reynolds numbers regime 10-80, which is a
typical condition in the forming section of a paper machine [18].

First, the flows over one and two cylinders are simulated to clarify the up-
stream flow features of the base case of one cylinder and how it is changed when
one additional cylinder is added. Thereafter, the flow over one row of cylinders
is investigated, and finally the flow over two rows. The cylinder diameter, d, is
assumed to be the same for all cylinders and the Reynolds number is defined as

Re =
ρV0d

µ
, (4.1)

where ρ is the fluid density, µ is the fluid dynamic viscosity, and V0 is the
mainstream velocity. The two-dimensional simulations are performed in the
x-y-plane and the cylinders are positioned parallel to the z-axis. The simula-
tion domain for the flow over two cylinders is depicted in Figure 4.1. At the
upper boundary, the v-velocity is prescribed to V0 in the negative y-direction
and the pressure is set by a Neumann condition. Symmetry conditions are used
at the boundaries parallel to the y-axis, with Neumann conditions for both ve-
locity and pressure. At the lower boundary, the pressure is set to zero and the
velocity is prescribed by a Neumann condition. For the simulations with rows
of cylinders, a cyclic domain is used in the x-direction with cyclic boundary
conditions.

For the case of two cylinders, two configurations are studied, tandem and
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Figure 4.1: The two-dimensional simulation domain for the flow over two cylin-
ders positioned side-by-side.

Figure 4.2: The two cases of two cylinders and two rows of cylinders and their
respectively configurations. From left to right: two cylinders side-by-side, two
cylinders tandem, two rows displaced, and two rows tandem.

side-by-side. For the case of two rows of cylinders, similarly two configurations
are studied, one where the second row is placed in tandem and one where the
second row is displaced half the surface spacing. These different configurations
are shown in Figure 4.2. The position y = 0 corresponds to the top surface of
the uppermost cylinders. The spacing between cylinder surfaces are denoted S.
For two rows of cylinders, two spacings are relevant, the spacing between the
cylinders in one row and the spacing between the two rows. To clarify which
spacing is concerned, the notation Sx and Sy is used. If subindex x is used,
the spacing parallel to the x-axis is considered, and analogously for subindex y.
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The normalized spacings are denoted g and l, defined as

g =
Sx
d
,

l =
Sy
d
.

(4.2)

The resulting flow simulations are analysed in terms of the velocity field with x-
velocity denoted u and y-velocity denoted v. Note that the v-velocity is defined
to be positive in the negative y-direction, as indicated in Figure 4.1. Three types
of velocity plots are investigated: velocity profiles, extreme velocity functions,
and level curves. The normalized velocity profiles are the functions

v(x,C)

V0
and

u(x,C)

V0
, (4.3)

where C is a fixed y-position upstream. The extreme velocity functions are the
maximum and minimum values of the velocity profiles, defined as

Mv

(y
d

)
= max

x∈W
v(x, y)

V0
,

mv

(y
d

)
= min
x∈W

v(x, y)

V0
,

Mu

(y
d

)
= max

x∈W
|u(x, y)|
V0

,

(4.4)

where W = [−w,w] for some large value of w, for example the width of the
simulation domain. The level curves are sets of points which fullfill one of the
two conditions

v(x, y)

V0
= C or

|u(x, y)|
V0

= C, (4.5)

depending on if the v- or u-velocity is considered.

4.2 Impact measures
To be able to compare the upstream flow impact between the various cylin-
der configurations and different types of forming fabrics, general measures are
practical. One such measure is the CFM-value of a fabric, defined as the vol-
ume flow of air per area (in feet per minute) for a given pressure drop, e.g. 125
Pa. However, the CFM-measure and other measures used in the paper making
industry, are not enough to characterize different types of fabrics in terms of
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flow properties [36]. In this work, new measures are proposed that can be used
to improve the characterization of forming fabrics.

Three types of impact measures are proposed. First, a measure that specifies
how far upstream from the structure the mainstream velocity is affected more
than a given threshold. Second, a measure that quantifies how large the variation
between the maximum and minimum values of the velocity components is at
different positions upstream. Third, a measure that gives the total area upstream
where the structure influences the mainstream velocity more than a threshold
value. The two first measures are used both for the simulations of the flow
over cylinders and forming fabrics, while the area-measure only is applied to
the two-dimensional cylinder simulations. An extension of the area-measure to
fabrics is left for future work.

To strictly define the three measures, the following two indicator functions
are used:

Iva

(x
d
,
y

d

)
=





1, if
∣∣∣∣
v(x, y)

V0
− 1

∣∣∣∣ ≥ a,

0, else,
(4.6)

Iua

(x
d
,
y

d

)
=





1, if
∣∣∣∣
u(x, y)

V0

∣∣∣∣ ≥ a,

0, else.
(4.7)

The area-measure, AΓ
a , Γ ∈ {u, v}, is defined according to

AΓ
a =

1

n

∫∫

W×R+

IΓ
a (s, t) dsdt, (4.8)

where n is the number of cylinders in the periodic domain of width nd. Notice
that the area-measure is normalized such that AΓ

a = 1 corresponds to an area of
d2.

The length-measure, LΓ
a , Γ ∈ {u, v}, is defined as

LΓ
a = sup

{y
d

: IΓ
a

(x
d
,
y

d

)
= 1 for some x ∈ R+

}
, (4.9)

giving the highest normalized y-position where the flow deviates at least a por-
tion a away from the mainstream velocity V0.
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Finally, the variation-measure DΓ, Γ ∈ {u, v}, is defined as

Dv
(y
d

)
= max

x∈R
v(x, y)

V0
−min

x∈R
v(x, y)

V0
, (4.10)

Du
(y
d

)
= max

x∈R
|u(x, y)|
V0

, (4.11)

and measures the difference between the highest and lowest value of the ve-
locity profiles at an upstream position y/d. Note that the variation-measure for
the u-velocity gives the maximum magnitude of the velocity. The variation-
measure can be related to the length-measure by, for a certain threshold value a,
calculating the variation-measure at the resulting upstream position Lva, given
by the length measure. That is:

Dv
a = Dv(Lva). (4.12)

4.3 Forming fabric flow
The flow over three different industrial forming fabrics are investigated through
simulation. Triangulations of the three fabrics are shown in Figure 4.3. Fabric
A is a double layer fabric used mainly for graphical papers (newsprint, light
weight coated paper and supercalendered paper) and for the printing ply on
high quality board (liquid packaging board and folding box board). Fabric B is a
warp bound triple layer fabric, mainly used on different packaging applications,
as on filler plies on multi-ply board machines and on liner and fluting machines.
Fabric C is a fine sheet support binder fabric and has similar applications as
Fabric A.

The fabrics are positioned in a box-like simulation domain such that the
main flow is directed in the negative z-direction. The planar x-y-dimension of
the simulation domain is equal to the size of the fabric triangulations, around
3×3 mm2. Two types of simulations are performed. One type where the flow
is accelerated by a prescribed pressure drop between the inlet and outlet, and
one type where the inlet velocity is prescribed. The latter setup is similar to the
cylinder simulations. For the first setup, the pressure drops are varied and the
CFM-values of the air flow are calculated.

For the simulations with fixed inlet velocity, the proposed impact measures
are calculated. First the flow is simulated for Re = 20, calculated based on the
thread diameter of the fabrics. Since the different fabrics have different thread
diameters, the mean diameter of the different threads in the top layer is used
to calculate the Reynolds numbers. The normalized values of the measures are
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(a) Fabric A paper side. (b) Fabric B paper side. (c) Fabric C paper side.

(d) Fabric A wear side. (e) Fabric B wear side. (f) Fabric C wear side.

Figure 4.3: Triangulations of the three different industrial forming fabrics stud-
ied in this work. The snapshots are from above (paper side) and from below
(wear side). The dimension of the snapshots are approximately 3×2.8 mm2

(x× y).

compared to the cylinders study. However, to compare the characteristics of the
fabrics, also the absolute values of the measures are of interest. For this purpose,
additional simulations are used with the same inlet velocity for all three fabric
types.

In addition to the CFM-measure and the novel impact measures, the drainage
marking of the three fabrics are analysed by examining the flow fields upstream.

4.4 Main results
In this section, a selection of velocity profiles are shown from the simulations
of the flow over cylinders. For more velocity profiles, impact measure values,
and the other types of plots, see Paper IV. The main conclusions of the cylinder
study is presented briefly. Moreover, results from the fabric investigation are
described.

In Figure 4.4, the v- and u-velocity profiles for the flow over one cylinder
is plotted for Re = 20. The profiles are extracted at three different upstream
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positions, y/d = 1, y/d = 0.5, and y/d = 0.25. In a similar way, profiles
for the flow over one row of cylinders are shown in Figure 4.5. The normalized
surface spacings are g = 0.25, 1, 5, 10. The dashed lines correspond to profiles
for one cylinder. In Figure 4.6, some profiles for the flow over two rows of
cylinders are shown.
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Figure 4.4: The normalized velocity profiles for the flow over one cylinder at
Re = 20. To the left the v-profile and to the right the u-profile. The profiles are
extracted at three positions upstream, y/d = 1, 0.5, 0.25.

The Reynolds number dependency on the upstream flow features are in-
vestigated by simulating the flow over one cylinder and rows of cylinders, for
different Reynolds number in the range Re ∈ [1, 80]. By comparing the result-
ing velocity profiles, the conclusion is drawn that varying the Reynolds num-
ber does not affect the feature of the upstream flow in the investigated range.
The profiles have similar shapes and are merely translated upwards when the
Reynolds number is increased. Therefore, only the case Re = 20 is investi-
gated in detail for different configurations.

There are two main observations regarding the difference between the up-
stream flow over one or two cylinders and rows of cylinders. The first obser-
vation is that when one or two cylinders are considered, the maximum velocity
in the domain is never larger than the mainstream velocity except for some few
percent. For rows of cylinders, this is not the case and the velocity is consider-
ably higher than the mainstream velocity, with increased values in the regions
above the holes in-between the cylinders. The second observation is related to
the surface spacing. It is seen that the range of impact is drastically reduced
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(a) Spacing g = 0.25.
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(d) Spacing g = 10.

Figure 4.5: The normalized velocity profiles v/V0 for the flow over one row of
cylinders with Re = 20 for spacings g ∈ {0.25, 1, 5, 10}. The profiles have
been plotted at three different positions upstream, y/d = 1, 0.5, 0.25. The
dashed curves are the profiles for the one-cylinder case.

for rows of cylinders with surface spacing less than one cylinder diameter. At a
position y/d = 1 upstream, the velocity profiles deviate less than 5 % from the
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(a) Spacings g = 5 and l = 0.1.
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(b) Spacings g = 5 and l = 1.

Figure 4.6: The normalized velocity profiles for v/V0 for the flow over two
rows of cylinders where the second row is displaced. Two setups are shown,
g = 5 and l ∈ {0.1, 1}. The dotted lines show the profile for the flow over one
row of cylinders.

mainstream velocity.
By comparing the tandem setup with the side-by-side setup for two cylin-
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ders, and analogously the tandem with the displaced setup for two rows of cylin-
ders, the same conclusions are drawn. The upstream impact of a tandem cylin-
der is negligible. This is not the case for the displaced configuration of two rows
of cylinders, where the second row influences the upstream flow. The magni-
tude of this impact increases when the row spacing l decreases. However, for
small surface spacings, starting somewhere in g ∈ [1, 3], the effect from the
second row is close to negligible, even though the second row is displaced.

The air flow over the three fabrics in Figure 4.3 is simulated and the CFM-
values are calculated for different pressure drops. The results are compared with
experimental measurements showing excellent agreement. The CFM-values are
plotted in Figure 4.7.

0 25 50 75 100 125 150 175 200
0

100

200

300

400

500

Figure 4.7: Experimental and simulated values of the volume flow of air per
area through the three forming fabrics.

By calculating an approximate g-value for the forming fabrics, the results
of the cylinder study is compared with the three different fabrics with respect
to the g-value dependency. This comparison is performed using the proposed
impact measures. It is concluded (see Paper IV for plots) that the same tenden-
cies as for the cylinders hold true for fabrics, that is, for smaller g-values, the
upstream range of impact is reduced. Considering the absolute values of the im-
pact measures enables analysis of the relation between the resulting values and
the applications of the three different fabrics. Fabric A and C are both used for
finer paper while Fabric B is for coarse filler plies in packages. For the length
measure, the values are higher for Fabric B compared to the other two fabrics.
This trend is not seen by comparing the CFM-values of the three fabrics.

Lastly, drainage marking of the three fabrics are investigated. In Figure
4.9, the upstream velocity field is shown in a x-y-plane at a position z = 0.15
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mm over the fabric surface. The simulations are performed with a fixed inlet
velocity of 2 m/s in the negative z-direction. In Figure 4.8, the velocity profiles
of the z-velocities are plotted for the three fabrics. The profiles are extracted at
a position z = 0.15 mm over the fabric in a line parallel to the x-axis. From
both the field and profile plots it is seen that the flow periodicity of Fabric B
has larger wave-length compared to the other two fabrics. By inspection of the
second layer of Fabric B, it is concluded that the diagonal drainage marking
pattern is related to where the large threads in the second layer go up and touch
the first layer. This shows that the effect of the second layer is important.

0 1 2 3 4 5 6

1.8

1.9

2

2.1

2.2

Figure 4.8: Upstream z-velocity profiles extracted in a line parallel to the x-axis
at position z = 0.15 mm over the fabric surface. Inlet speed is 2 m/s in negative
z-direction. In Fig 4.9, it is indicated where in the x-y-plane the profiles are
extracted.
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(a) Fabric A

(b) Fabric B

(c) Fabric C

Figure 4.9: Upstream z-velocity field at position z = 0.15 mm over the fabric
surface. Inlet speed is 2 m/s in negative z-direction. The dimension is 5.2×2.6
mm2. The black dashed lines indicate where the velocity profiles in Fig 4.8 are
extracted.
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5. Discrete Fiber Network
Model

One aim of developing a simulation framework for paper forming is to be able to
simulate the lay down process in a paper machine and attain virtual paper sheets
with a realistic structure. With virtual fiber sheets at hand, the next step is to
study their mechanical properties, such as the strength and stiffness. The fiber
suspension model proposed in this work is constructed to capture the fluid dy-
namical aspects and interactions occurring during the lay down. For simulation
of the mechanical properties of fiber networks, a model with such a detailed
description of the fluid dynamics and fiber-fiber interactions is not necessary.
Instead a fiber network model is more suitable.

In this chapter, a discrete fiber network model is presented. The model is
elementary and serves as a starting point for capturing the mechanical prop-
erties of the virtual fiber networks attained from the lay down simulations, as
well as an instrument for the development of the numerical multiscale method
presented in the next chapter. The network model is inspired by mass-spring
models [49], where a network is defined as built up of edges and nodes and
where each edge has the mechanical properties of a spring. The network model
presented in this work has two features in addition to the basic spring property
resisting extension of edges. First, a spring-like resistance to angular change
between pair of edges is included. Secondly, a novel effect in the form of a re-
sistance to changes in the total length of pairs of edges, resulting in a response
similar to the Poisson effect.

In Section 5.1, the overall idea of a network model is explained. Thereafter,

57
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notations and definitions for the proposed network model is given in Section 5.2.
In Sections 5.3-5.5, the three force contributions of the model is presented. In
Section 5.6, it is explained how the governing equations are assembled. Lastly,
the relation to the linear elasticity equation is shown.

5.1 Overall idea
The overall idea of a network model is to represent a material as a structure con-
sisting of elements with properties such that the structure as a whole represents
the properties of the material. If such a model fulfils its purposes, it can be used
to simulate additional properties of the material. The network model developed
in this work is very simple in regard to structure, only consisting of edges and
nodes. For a fiber network (see Figure 1.4), which is the material of interest in
this context, each fiber can be built up of a chain of edges. The fibers can in
turn be bonded together by, in the simplest case, letting nodes of different fibers
be kept together, or using a more advanced setup, connecting two fibers with a
structure of edges, giving the bond certain desired properties. In a more general
perspective, the network model could equally well represent a discretization of
a solid object, such as for example a concrete structure. It will be shown that
the network model proposed in this work, for certain choices of parameters, is
equivalent to the finite difference discretization of the linear elasticity equation.

Consider a network consisting of edges and nodes. In this work, the govern-
ing equations are derived from force equilibrium equations assembled at each
node. By considering edges and pair of edges, and defining what forces that acts
on the nodes when they are displaced, the equations are attained. In this model,
three types of force contributions are included. First, considering a single edge,
a spring force is defined acting to restore changes in length that occurs when
the nodes of the edge are displaced. Second, considering a pair of two edges
connected at a common node, an angular spring force is defined which acts to
restore changes in the angle between the two edges by applying a torque at the
common node, a torque which is transformed to a force couple. Third, again
considering a pair of edges, a force contribution is defined which acts to re-
store the total length of the two edges of the pair, giving an effect similar to the
Poisson effect.

The network model presented in this chapter is two-dimensional, static and
assumes small deformations.
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5.2 Notations and definitions
Consider a two-dimensional network (N , E ,P), where N is the set of node
indices, E is the set of edges, and P is the set of edge pairs. A node i ∈ N is
defined by its initial position pi ∈ R2, and its displacement δi ∈ R2. In Figure
5.1, the notations are illustrated. Let the total number of nodes be denoted N .

(a)

(b)

Figure 5.1: Sketches showing the notation used for the network nodes, edges
and edge pairs. In the upper sketch, three nodes are shown, connected as two
edges, which in turn are connected as an edge pair. In the lower sketch, the
approximate length change ∆Lij of an edge (i, j) is illustrated.

An edge (i, j) ∈ E is defined as the connection between the two nodes i and
j. It is assumed that (i, j) and (j, i) define the same edge. The direction vector
of edge (i, j) with respect to node a ∈ {i, j} is defined as (see Figure 5.1)

daij =
pb − pa
|pb − pa|

, b ∈ {i, j}, b 6= a. (5.1)
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Let Lij denote the initial length and wij the initial width of edge (i, j), where
the width is uniform across the whole edge. The out-of-plane thickness of the
edges are assumed to be constant equal to z. The length change ∆Lij of edge
(i, j) is defined as the projection of the difference between the displacement of
the nodes onto the direction vector, i.e.

∆Lij = (δj − δi) · diij . (5.2)

In Figure 5.1b, the length change ∆Lij is illustrated. The mechanical properties
of edge (i, j) is defined by the stiffness parameter kij .

An edge pair (i, j, l) ∈ P is defined as two edges, (i, j) and (j, l), connected
at node j (see Figure 5.1a). Note that (i, j, l) and (l, j, i) define the same edge
pair. The mechanical properties of an edge pair are defined by the parameter
κijl, describing the resistance to angular change between the two edges. The
joint volume at the mutual node j is denoted Vijl. The parameters ηijl and γijl
define the Poisson effect described in Section 5.5.

5.3 Edge extension
The first force contribution acts at edges, giving a resistance to changes in the
length of the edge. Consider an edge (i, j) ∈ E . When the nodes of the edge are
displaced such that the length change ∆Lij is non-zero, two anti-parallel forces
are set to act at the nodes of the edge to restore the length change to zero. The
forces are calculated according to a classic spring force relation:

F I
a(i, j) = kij

wijz

Lij
∆Lijd

a
ij , a ∈ {i, j}. (5.3)

The direction of the forces are parallel to the initial direction of the edge. In
Figure 5.2, the edge extension forces are illustrated for the cases of positive and
negative length change.

5.4 Angular deviation
The second force contribution acts at edge pairs by introducing a resistance to
changes in the angle between the two edges. Consider an edge pair (i, j, l) ∈ P .
When the angle between the two edges changes, two opposite torques are ap-
plied at the mutual node, acting on one edge each. These torques are calculated
similarly as for a spring condition. The two torques are transformed into force
couples and the resulting forces are applied to the nodes of the edge pair. In
Figure 5.3, the resulting forces are illustrated for the two cases of increased and
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Figure 5.2: At the top, an edge (i, j) is shown in its initial configuration. Below
the forces that act on the nodes when they are displaced are shown both for the
case of increased and decreased length.

decreased angle between the edges.
To calculate the angle changes of the edges, edge normals, njji and njjl (see

Figure 5.3), are defined according to

njji = djji × ẑ,
njjl = −djjl × ẑ.

(5.4)

By assuming small angular changes and using the approximation α ≈ tanα,
the angle changes of the two edges, δθji and δθjl (see Figure 5.3), are calculated
as

δθja ≈ tan δθja =
(δa − δj) · njja

Lja
, a ∈ {i, l}. (5.5)

The total angle change of the edge pair, ∆θijl, is calculated as the sum of the
two separate angle changes δθja, a ∈ {i, l},

∆θijl = δθji + δθjl. (5.6)
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Figure 5.3: Illustration of an edge pair and the forces that acts on the nodes
when the angle between the edges is increased or decreased. Uppermost, the
edge pair in its initial configuration is shown. The edge normals njji and njjl are
depicted. Below to the left, the case of increased angle is shown, and to the right
the case of decreased angle. The dashed lines indicate the initial configuration
of the edges.

The two torques acting on edge (i, j) and (l, j) at node j are given by

τi = κijlVijl∆θijlẑ,

τl = −τi.

The bending parameter κijl and the joint volume Vijl lead to higher resistance
to bending when the values are increased. Transforming the two torques into
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two force couples results in

F II
a (i, j, l) = −κijlVijl∆θijl

Laj
njja, a ∈ {i, l},

F II
j (i, j, l) = −F II

i (i, j, l)− F II
l (i, j, l).

5.5 Poisson effect
The third force contribution acts on edge pairs. It adds a resistance to changes in
the total length of the two edges of the pair. Consider an edge pair (i, j, l) ∈ P .
When edge (j, l) changes length, it is assumed that its width changes according
to the Poisson effect described by the parameter γijl. This change in width of
edge (j, l) creates a tension in the other edge in the pair so that forces start to act
at the two nodes of the other edge. In Figure 5.4, this phenomenon is illustrated.
The magnitude of these two forces is given by a spring expression depending on
the difference between the length change, ∆Lij , of edge (i, j), and the width
change attained from the Poisson effect. The analogous reasoning applies for a
width change of the other edge. The resulting forces acting at the outer nodes
a ∈ {i, l} will be

F III
a (i, j, l) = −ηijl

wajz

Laj

(
∆Laj + γijl

wbj
2

∆Lbj
Lbj
|njaj · djbj |

)
djaj ,

a, b ∈ {i, l}, b 6= a,

and at the central node:

F III
j (i, j, l) = −F III

i (i, j, l)− F III
l (i, j, l).

5.6 Assembly of the global governing equation
The global matrix system governing the displacements of the network nodes is
attained by assembly of the equilibrium equations for all nodes. Each edge and
each edge pair contribute with their own element matrix and all these separate
matrices sum up to the global elasticity matrix.

Let u ∈ R2N denote the solution vector containing all node displacements
according to the division

[
u(2i− 1)

u(2i)

]
= δi, 1 ≤ i ≤ N.
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Figure 5.4: Illustration of the force contribution which gives an effect similar to
the Poisson effect. Uppermost, an edge pair (i, j, l) in its initial configuration is
shown. Below, two cases are depicted. One where the upper edge decreases in
length and one where the upper edge increases in length. The resulting forces
acting on the nodes are shown for the two cases.

Similarly, let F ∈ R2N denote the load vector with forces applied to the nodes.
The governing equation of the network reads

Ku = F, (5.7)

where K ∈ R2N×2N is the elasticity matrix. Next, it is described how the
matrix is assembled.

As stated above, for each edge and edge pair, the three force contributions
can be calculated separately and assembled into separate matrices which are
added together to attain the global elasticity matrix. Let K I

ij ,K
II
ijl,K

III
ijl ∈
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R2N×2N denote the matrices assembled from the first, second and third force
contribution respectively, at different elements (edges (i, j) or edge pairs (i, j, l)).
These matrices are sparse and the only non-zero elements are defined by the re-
lations

K I
ij({2a− 1, 2a}, {1, . . . , 2N})u = F I

a(i, j), a ∈ {i, j},
K II
ijl({2a− 1, 2a}, {1, . . . , 2N})u = F II

a (i, j, l), a ∈ {i, j, l},
K III
ijl({2a− 1, 2a}, {1, . . . , 2N})u = F III

a (i, j, l), a ∈ {i, j, l}.

The elasticity matrix K is assembled according to

K =−
∑

(i,j)∈E
K I
ij −

∑

(i,j,l)∈P

(
K II
ijl +K III

ijl

)
.

The resulting elasticity matrix is symmetric and positive semi-definite.

5.7 Relation to linear elasticity theory
The network model presented in this chapter is under certain conditions equiv-
alent to the finite difference discretization of the linear elasticity equation.

The two-dimensional elasticity equations reads

µ∇2u+ (λ+ µ)
∂

∂x

(
∂u

∂x
+
∂v

∂y

)
+ fx = 0,

µ∇2v + (λ+ µ)
∂

∂y

(
∂u

∂x
+
∂v

∂y

)
+ fy = 0,

(5.8)

where µ and λ are the Lame’s parameters, and fx and fy are the applied force
densities in the x- and y-direction, respectively. In the equations, u and v denote
the x- and y-displacements.

Consider a network with rectangular pattern as depicted in Figure 5.5. Each
node is the central node in four edge pairs and the outer node in eight edge pairs.
Parallel edges are not considered in an edge pair even though they have a node
in common. Let the edge length be Lij = h and the edge width wij = w = ch,
where c is a constant. Assume that all parameters are uniform over the network
such that kij = k, κijl = κ, γijl = γ and ηijl = k. Moreover let the joint
volume of the edge pairs be Vijl = c2h2.
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Figure 5.5: Part of a network with uniform rectangular pattern. Nine nodes and
twelve edges are depicted. The edge length Lij = h is illustrated.

Theorem 1. Consider a network with rectangular pattern and uniform coeffi-
cients as described above. If the parameters are given as

κ =
µ

4c2
,

γ =
λ

2c2η
,

k =
λ+ 2µ

c
− 4η,

(5.9)

then the governing equation of the network is equivalent to the finite difference
discretization of the elasticity equation (5.8) with Lame’s parameters µ and λ.

Proof. Consider node j in Figure 5.5. We construct its force equilibrium equa-
tion by using the network model and compare the results to the finite difference
discretization of the elasticity equation (5.8). The force equilibrium equation
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for node j is
∑

(a,b)∈Ej
F I
j(a, b) +

∑

(a,b,c)∈Pj

F II
j (a, b, c) +

∑

(a,b,c)∈Pj

F III
j (a, b, c) + F Ext = 0,

(5.10)

where

Ej = {(j, j − 1), (j, j + 1), (j, i), (j, l)} (5.11)

is the set of edges connected to node j, and

Pj =
{

(i, j, j + 1), (i, j, j − 1), (l, j, j + 1), (l, j, j − 1),

(j, i, i− 1), (j, i, i+ 1), (j, j − 1, i− 1), (j, j + 1, i+ 1),

(j, j − 1, l − 1), (j, j + 1, l + 1), (j, l, l − 1), (j, l, l + 1)
}

(5.12)

is the set of all edge pairs containing j. It is assumed that the external force can
be written as

F Ext =

[
h2zfx
h2zfy

]
. (5.13)

Since the edges of the network is parallel to the x- or y-axis the direction and
normal vectors are simple and the equilibrium equation can be considerably
simplified. The sum of the first force contribution is simplified to

∑

(a,b)∈Ej
F I
j(a, b) = kcz

[
uj−1 − 2uj + uj+1

vi − 2vj + vl

]
. (5.14)

The sum of the second force contribution is simplified to

∑

(a,b,c)∈Pj

F II
j (a, b, c) =

κc2z

[
4 (ui − 2uj + ul) + vl−1 − vi−1 + vi+1 − vl+1

4 (vj−1 − 2vj − vj+1) + ul−1 − ui−1 + ui+1 − ul+1

]
.

(5.15)
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The sum of the third force contribution is simplified to

∑

(a,b,c)∈Pj

F III
j (a, b, c) =

ηcz

[
4 (uj−1 − 2uj + uj+1) + γc

2 (vl−1 − vi−1 + vi+1 − vl+1)

4 (vl − 2vj − vi) + γc
2 (ul−1 − ui−1 + ui+1 − ul+1)

]
.

(5.16)

Inserting the derived expressions into the equilibrium equation (5.10), and di-
viding by h2z gives the system

c(k + 4η)
uj−1 − 2uj + uj+1

h2
+ 4κc2

ui − 2uj + ul
h2

+2c2 (2κ+ ηγ)
vl−1 − vi−1 + vi+1 − vl+1

4h2
+ fx = 0,

c(k + 4η)
vi − 2vj + vl

h2
+ 4κc2

vj−1 − 2vj − vj+1

h2

+2c2 (2κ+ ηγ)
ul−1 − ui−1 + ui+1 − ul+1

4h2
+ fy = 0.

(5.17)

It can be seen that the second order finite differences of the second order stan-
dard and mixed derivates are present in the equation system above. Let h→ 0,
and compare the system with the linear elasticity equations (5.8). By matching
the coefficients in front of the different derivatives the following must hold

λ+ µ = 2c2 (2κ+ ηγ) ,

µ = 4κc2,

λ+ 2µ = c (k + 4η) .

(5.18)

These relations are equivalent to what was given in the statement of the theorem.

Additionally, it can be noted that for a straight line parallel to the x-axis,
divided into a number edges with equal length, two well-known finite difference
stencils emerge from the different force contributions of the network model.
For the edge extension forces, described in Section 5.3, the result is the second
order accurate stencil for the second order derivate ∂2u

∂x2 , that is 1,−2, 1. For
the angular deviation forces, described in Section 5.4, the result is the second
order accurate stencil for the fourth order derivative ∂4v

∂x4 (recall the static Euler-
Bernoulli beam equation [17]), that is 1,−4, 6,−4, 1.



6. A Multiscale Method for
Discrete Network Models

Paper is a complex material whose macroscale properties depend on the mi-
croscale structure, which consists of fibers and particles bonded together. The
material composition makes network modelling a convenient technique for study-
ing the mechanical properties. However, the multiscale nature of paper makes
it challenging to simulate macroscale properties while including the microscale
features. To overcome such computational challenges, multiscale methods are
a promising approach. In this chapter, a multiscale method for discrete network
models, such as the fiber network model described in Chapter 5, is presented.

The multiscale method is based on the Localized orthogonal decomposition
method (LOD) [24,46], which is a generalized finite element multiscale method
for elliptic partial differential equations with highly varying coefficients. In this
work, the LOD method is modified and extended to discrete network models.
The idea is to construct a low-dimensional solution space with good approxima-
tion properties. This is achieved by defining a symmetric and coercive bilinear
operator using the connectivity matrix of the fiber network, and using this op-
erator to form an orthogonal complement of the fine scale space. A basis for
the resulting multiscale space is attained by modifying the basis functions of a
coarse solution space, which is spanned by a classical finite element basis, for
example bilinear shape functions. The basis functions are modified by solving
sub-problems. By utilizing the exponential decay of the modifications, the sub-
problems can be localized. In this way, the problem size is reduced. Moreover,
the setup of the method facilitates parallelization and for simulations of frac-
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ture propagation, only the local sub-problems close to broken edges have to be
resolved.

In Section 6.1, an overview of the method is presented. In Section 6.2, it
is explained how the network is represented geometrically by a coarse grid.
Thereafter, the definitions of the coarse space, the detail space and the mul-
tiscale space are given in Sections 6.3-6.4. In Section 6.5, the localization is
explained. Lastly, in Section 6.6, some error analysis and numerical results are
given. For more details, see Paper V.

6.1 Overview of method
Consider a material modelled as a network, whose properties are described by a
connectivity matrix K ∈ Rn×n, where n is the number of degrees of freedom.
The typical example in this work is a fiber network of a paper-based material,
see Figure 1.4. Suppose that the displacements of the nodes are sought and de-
note the solution vector u ∈ Rn. Assume that applied load forces are contained
in the vector F ∈ Rn. To attain a solvable problem, some degrees of freedom
have to be constrained, resulting in a governing equation

Ǩu = F̌ , (6.1)

where Ǩ and F̌ are the modifications of the connectivity matrix and the load
vector by explicitly including the constrained degrees of freedom.

The multiscale method presented in this work is developed to solve prob-
lems of the form described above. The governing equation (6.1), is reformulated
on variational form:

Find u ∈ V : vTKu = vTF, ∀v ∈ V. (6.2)

The solution space V ⊂ Rn is attained after constraining some degrees of free-
dom. The idea is to construct an approximate solution space Vms, which is low-
dimensional in comparison to V , and such that the solution of the multiscale
problem

Find ums ∈ Vms : vTKums = vTF, ∀v ∈ Vms, (6.3)

results in a small error ‖u− ums‖ in some preferred norm.
To construct the multiscale space, first the network is covered by a grid. A

coarse space is defined as the span of shape functions defined over the grid as
in the finite element method. In this work, the space is chosen as the span of
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classic bilinear basis functions. A detail space is defined such that the coarse
space and the detail space constitute a splitting of the solution space V . This
detail space is used to define the multiscale space by using the K-matrix as a
bilinear form vTKw, which works if K is symmetric and positive definite in
the space V . The multiscale space is defined as the K-orthogonal complement
of the detail space.

To solve the multiscale problem (6.3), a basis is constructed which is used
to convert the variational formulation (6.3) into a simple matrix equation simi-
larly as in the finite element method. The multiscale basis is attained by solv-
ing sub-problems resulting in corrections, used to modify the bilinear basis.
The global multiscale system (6.3) will be small in size while the local sub-
problems will have the same size as the original system (6.1). However, from
numerical investigation, it is seen that the corrections decrease exponentially,
which is also proved theoretically for the original LOD method [24]. Due to
the exponential decay, the sub-problems can be localized, resulting in problems
of much smaller size. In this way the maximum size of any problem that has
to be solved is reduced considerably compared to the size of the original prob-
lem (6.1). Moreover, if fracture propagation is simulated, the proposed method
has the feature that only basis functions close to the resulting fracture have to
be recomputed. The method also facilitates parallelization, by solving the sub-
problems in parallel, and if different load vectors F are considered, only the
final low-dimensional multiscale problem (6.3) has to be recomputed for each
new load vector.

6.2 Coarse grid representation
Let the network be represented by a coarse grid covering the network geom-
etry. The coarse grid can for example be a triangulation or a quadrilateration
of the computational domain covering the network. In Figure 6.1a, an illus-
tration of a network and its coarse grid representation are shown. The coarse
grid should constitute a good approximation of the computational domain of the
network, and in this work, networks of rectangular shape are considered which
correspond well to the problem of investigation of paper sheets. The degrees
of freedom of the coarse grid nodes correspond to the dimension of the mul-
tiscale solution space, and the solution of the multiscale problem will be the
displacements of the coarse nodes.

Let m be the number of degrees of freedom of the coarse nodes. Some
coarse degrees of freedom are constrained, resulting in mH active degrees of
freedom, which correspond to the dimension of the coarse solution space de-
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(a) Network and FEM quadrilateration. (b) A bilinear basis function Λi : R2 → R of the
FEM grid.

Figure 6.1: Example of a square network with randomly perturbed interior
nodes, represented with a coarse FEM quadrilateration and bilinear basis func-
tions.

fined in the next section. Let M ⊂ {1, . . . ,m} be the set of indices of the
active coarse degrees of freedom.

In this work, a quadrilateration is used as the coarse grid. Let Λi : R2 →
R, i = 1, . . . ,m be bilinear basis functions defined over the coarse grid sim-
ilarly as in the finite element method. Hence, by a linear combination of the
basis functions weighted with the displacements of each coarse degree of free-
dom, the displacement of any point in the support of the coarse grid can be
calculated, and in this way all network nodes are given a displacement from the
coarse representation. In Figure 6.1b, an example of a bilinear basis function
for a coarse grid representation is illustrated.

6.3 Coarse space and detail space
The coarse space, VH , is defined as a subspace of V by using the bilinear basis
functions. Let λi ∈ Rn, i = 1, . . . ,m be the interpolation of the bilinear basis
functions Λi to the network nodes according to

λi(j) =

{
Λi(pj), if i ≡ j (mod d),

0, else,
(6.4)
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where d is the dimension of the space the network resides in and pj ∈ Rd

is the position of the node corresponding to degree of freedom j. The coarse
space VH ⊂ V is defined as the span of the interpolated basis vectors which
correspond to active coarse degrees of freedom, that is

VH = span({λi}i∈M). (6.5)

By introducing the matrix BH = [{λi}i∈M] ∈ Rn×mH , having the interpo-
lated basis vectors corresponding to the active coarse degree of freedoms as its
columns, an equivalent definition of the coarse space is

VH = {BHBTHv : v ∈ V }. (6.6)

The matrix BH is called the prolongation matrix.
The coarse space is defined as the range of the prolongation matrix, while

the detail space, W , is defined as the kernel of a restriction matrix CH ∈
RmH×n. In this work, the restriction matrix is chosen as CH = BTH , see [23]
for different choices of restriction operator for the LOD method. The definition
of the detail space reads

W = {v ∈ V : CHv = 0}. (6.7)

The coarse space and the detail space constitute a splitting of the solution space
V such that any v ∈ V can be decomposed as v = vH + w, where vH ∈ VH
and w ∈W .

6.4 Multiscale space and multiscale problem
The low-dimensional multiscale space is constructed using the detail space
and the connectivity matrix. The multiscale space Vms is defined as the K-
orthogonal complement of the detail space W , i.e.

Vms = {v ∈ V : wTKv = 0, ∀w ∈W}. (6.8)

Likewise as the coarse space together with the detail space constitute a splitting
of V , the multiscale space and the detail space also split V such that any v ∈ V
can be decomposed as v = vms + w, where vms ∈ Vms and w ∈W .

The multiscale solution ums ∈ Vms, to the displacement problem (6.2), is the
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solution to the problem

Find ums ∈ Vms : vTKums = vTF, ∀v ∈ Vms. (6.9)

To solve the multiscale problem, a basis for the multiscale space Vms is con-
structed by modifying the basis functions for the coarse space. For each basis
function λi, i ∈M, a correction is found as the solution to the problem

Find φi ∈W : wTK(λi − φi) = 0, ∀w ∈W. (6.10)

The resulting modified basis {λi−φi}i∈M constitutes a basis for the multiscale
space Vms. In Figure 6.2, the correction φi and the resulting modified basis λi−
φi are illustrated by an example for a square network with randomly perturbed
nodes. For the coarse node at the center of the network, the correction φi for the
x-component is plotted in Figure 6.2a. By subtracting the correction from the
original bilinear basis function, the resulting modified basis function λi − φi is
attained, which is plotted in Figure 6.2b.

(a) Correction φi. (b) Modified basis function λi − φi.

Figure 6.2: The correction φi and the modified basis λi − φi for the x-
component at the central node of a square network with randomly perturbed
interior nodes.

6.5 Localization
Due to the low dimension of the multiscale space Vms, the multiscale problem
(6.9) has small size. The correction problems (6.10), which are solved for each
basis function corresponding to an active degree of freedom of the coarse grid,
have the same size as the original displacement problem (6.2). However, as
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is shown numerically in Paper V, the corrections φi decay exponentially away
from their basis nodes [46]. Therefore, the correction problems can be localized
by only solving each problem on a restricted domain surrounding its basis node.
In this way, the size of the correction problems is reduced. The restricted do-
mains are called patches, and the size can be chosen as a certain layer of coarse
grid elements surrounding the considered node. Another choice is to take the
patch as a circle with center in the node and with radius ρH , where H is the
size of the grid elements, and ρ is the patch size parameter.

6.6 Error analysis
In this section, a summary of the theoretical and numerical analysis of the error
of the proposed upscaling method is presented. For a thorough presentation
with proofs, see Paper V.

Consider the following three problems:

Find u ∈ V : vTKu = vTF, ∀v ∈ V, (6.11)

Find ums ∈ Vms : vTKums = vTF, ∀v ∈ Vms, (6.12)

Find ũms ∈ Ṽms : vTKũms = vTF, ∀v ∈ Ṽms. (6.13)

The first problem, (6.11), is the original displacement problem with exact solu-
tion u. The second problem, (6.12), is the corresponding multiscale problem,
and the third problem, (6.13), is the multiscale problem with localized solution
space Ṽms.

First, the difference between the exact solution u and the multiscale solution
ums is analysed.

Proposition 1. Let uf ∈W be such that wTKuf = wTF, ∀w ∈W . Then the
sum u = ums + uf , where ums is the solution to the multiscale problem (6.12),
solves the original problem (6.11).

The proposition shows that the multiscale error, i.e. the difference u− ums,
is in the detail space. If the load vector F is in the coarse space VH , the error is
zero which the following proposition stipulates.

Proposition 2. Let u and ums be the solutions to (6.11) and (6.12), respectively.
If F ∈ VH , then it holds that u = ums.

To analyse the magnitude of the error of the multiscale solution, some as-
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sumptions are needed. First two norms and an interpolant are introduced:

|||v||| := (vTKv)1/2, (6.14)

‖v‖h := (
∑

i

h̄2
i v

2
i )1/2, (6.15)

where h̄i is the average length of all edges connected to the node corresponding
to degree of freedom i. The bilinear weighted interpolant πH : V → VH is
defined according to

πHv =
∑

i∈M

(
λTi v

)
λi. (6.16)

The following relation is assumed to hold for v ∈ V :

‖v − πHv‖h ≤ CH|||v||| (6.17)

where H is the mesh size of the coarse grid and C is a constant. By introducing
the modified displacement problem

Find û ∈ V : vTKû = vTπHF, ∀v ∈ V, (6.18)

the assumption (6.17) can be used to derive estimates of the form

|||u− û||| ≤ C‖F̄ − πH F̄‖h ≤ CH
∣∣∣∣∣∣F̄
∣∣∣∣∣∣, (6.19)

where F̄ denotes the vector with components F̄i = Fih̄
−2
i . The scaled load

vector F̄ is O(1) for a surface distributed load. Based on this, the following
proposition regarding the error of the multiscale solution can be formulated.

Proposition 3. If ‖F − πHF‖h ≤ CH|||F |||, then

|||u− ums||| ≤ CH
∣∣∣∣∣∣F̄
∣∣∣∣∣∣. (6.20)

Next, the error of the localized multiscale solution is investigated. An addi-
tional assumption is needed, which states that

max
w∈Vms

min
v∈Ṽms

|||w − v|||
|||w||| ≤ Ce−cρ, (6.21)

where C and c are constants independent ofH . Such relations have been shown
to hold for the localized orthogonal decomposition method in its original setup
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[46], but remains to be proven for the proposed method in this work. However,
with the given assumption the main error bound theorem can be formulated.

Theorem 2. Assuming equation (6.21), the following error bound is true for
any load vector F ∈ V :

|||u− ũms||| ≤ C‖F̄ − πH F̄‖h + Ce−cρ‖F̄‖h.

Finally, some numerical results are presented. A regular square network
with 128×128 nodes are considered. The network is described by the model
presented in Chapter 5, and two types of problems are investigated. For the first
problem, the boundary of the network is held fixed and a constant diagonal force
is applied over the whole network. For the second problem, the left boundary
is held fixed while the right boundary is prescribed a non-zero displacement.
For the two problem types, three square networks are analysed: one base case,
one case with random coefficients in the network model, and one case where
the network nodes are perturbed similarly as in Figure 6.1a. See Paper V for a
detailed presentation of the simulation setup and results.

In Figure 6.3, the relative energy- and l2-error are plotted for the first prob-
lem type and a network with non-perturbed nodes and a network with random
coefficients. The error is compared to the case where the multiscale problem
(6.12) is solved with the coarse space VH , corresponding to classic FEM. It
is seen that the two errors are similar for the non-perturbed network while the
multiscale method performs much better for a network with randomly varying
coefficients. In Figure 6.4, the errors are plotted for the second problem type.
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Figure 6.3: Errors for the problem with fixed boundary and constant applied
force. The coarse mesh size H and its square H2 are included in the plots to
clarify convergence rates. The so-called FEM-error is included, corresponding
to the case where the coarse space VH is used as solution space.
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Figure 6.4: Errors for the problem with left boundary fixed and right boundary
with prescribed non-zero displacement. The coarse mesh size H and its square
H2 are included in the plots to clarify convergence rates.
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7. Conclusions and Future
Work

Paper making is a complex process through which trees are transformed into a
wide range of useful products. Studies of this process are necessary to achieve
product and production development, desirable for a worldwide industry. In
this work, methods for computer simulation of two parts of the paper making
process are developed. On one hand for the paper formation process taking
place in the wet end of the paper machine, where the basic structure of paper is
formed, and on the other hand for the mechanical properties of the final paper
sheets. Accurate and efficient simulation frameworks for these two areas will
facilitate comprehensive investigations of how the paper formation influences
the properties of the end product.

For the paper formation, a novel fiber-fiber interaction model is developed
and incorporated into a framework for simulation of fiber lay downs, including
the fluid effect governed by the structure of industrial forming fabrics. Fiber
lay downs are simulated and virtual paper sheets are attained. Moreover, the
flow over forming fabrics is studied. To enable simulations of the mechanical
properties of the resulting sheets, a fiber network model is developed and a
numerical multiscale method for fiber networks is proposed, making it possible
to simulate large scale sheets while still including each fiber and the bonds in-
between.

In this final chapter, the main conclusions of the work are described, and a
discussion of possible future work is outlined.
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7.1 Conclusions
In this work, numerical methods and simulation tools for paper making are
developed. Two main topics are considered, the formation of the paper and the
mechanical properties of the resulting sheets.

A new method for calculation of the interaction between fibers is developed.
The method includes small scale interaction forces and is based on the DLVO
theory. Using a multiscale approach in time makes it possible to resolve interac-
tion forces acting on scales much smaller than the size and motion of the fibers.
The interaction model includes a repulsion force giving stability and robustness,
necessary for simulation setups with discrete time stepping, that often results in
partial overlaps of objects.

A fiber suspension model is presented, in which the novel interaction method
is one of four sub-models. The suspension model is incorporated into a frame-
work for simulation of fiber motion in a fluid. The presented framework is ro-
bust and powerful, enabling simulations of thousands of fibers whose motion is
governed by the fluid flow and the complex interaction between the fibers. The
detailed simulation tool can be used to study each single fiber and its motion in
the fluid.

The framework is evaluated through lay down simulations, resembling pa-
per forming, with fibers flowing down onto an industrial forming fabric, demon-
strating the applicability to create three-dimensional fiber networks which can
be used for further investigation of mechanical or penetration properties. The
resulting virtual sheets are analysed by simulating the air flow through the
sheets before and after pressing. The results show that the fiber geometry af-
fects the permeability of the sheets with reduced air flow through sheets with
rectangular fibers cross section compared to circular. Moreover, pressed fiber
networks have lower permeability compared to unpressed sheets. The perme-
ability of the simulated sheets agree well with experiments for lower densi-
ties, demonstrating the accuracy of the framework. For higher densities, the
simulated sheets have higher permeability compared to experiments. This is
explained by the one-way coupling simplification removing the effect of self-
healing necessary to accumulate small fibers in the fiber network.

The presented simulation framework can also be used to investigate the flow
characteristics during the forming process, how different fabric geometries af-
fect the lay down of fibers, and the resulting network configuration.

Studies of the upstream flow over rows of cylinders and three different in-
dustrial fabrics illuminate important flow features during the initial part of the
formation process. It is shown that for rows of cylinders with uniform cylin-
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der diameter and surface spacings similar to real fabric structures, the upstream
range of impact of the flow is very short, about one cylinder diameter, and the
downstream rows have negligible impact on the upstream features for small
surface spacings in the first row. Moreover, it is shown that the transition from
steady to un-steady flow, occurring around Re = 40, does not change the up-
stream features. Novel measures are proposed that can be used to characterize
the upstream impact of the flow for different cylinder configurations and fabric
structures.

The fabric flow investigation shows that it is possible to resolve the flow
over industrial forming fabrics in detail. It is shown that the diameter of the
wire threads and the displacements between threads give flow impact similar
to what is seen in the cylinder study. Moreover, it is concluded that studies
of structures with threads with different diameters are necessary to understand
additional aspects of the fabric flow. The study shows that the wavelength of
the flow periodicity is an important design parameter for fabrics and that large
wavelength may increase the risk of drainage marking, based on the features of
the simulated flow fields. It is shown that the second layer of a fabric affects
the upstream flow if the diameters of its threads are different than the first layer
threads. Altogether, detailed flow simulations give important information which
can be used when designing fabrics and to understand the impact of the fabric
structure on the resulting paper sheet.

To enable simulation of the mechanical properties of largescale paper sheets,
described by detailed fiber network models including each fiber and the bonds
in-between, a novel upscaling method is developed. First, a fiber network model
is proposed based on input from the forming simulations, and used as a basis
for the development of the numerical upscaling method. The network model
is a mass-spring model and includes a novel force contribution resembling the
Poisson effect.

The proposed numerical upscaling method is developed to resolve the me-
chanics of heterogeneous network models, handling large unstructured systems
with highly varying data. The method uses a coarse scale grid to cover the
network. Bilinear shape functions defined over the coarse grid give a low-
dimensional solution space which is modified by solving sublocal network prob-
lems, resulting in corrections of the basis functions. The resulting modified low-
dimensional solution space has great approximation properties and the method
reduces the maximum size of the problems that have to be solved using lo-
calization. The method is proven to give optimal order convergence rates for
unstructured and random networks which is not the case for ordinary FEM.
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7.2 Future work
The numerical methods and algorithms developed in this work constitute a solid
foundation for investigation of paper making by the means of detailed simula-
tions. However, due to the complexity of the paper making process, and the
many different parts of the paper production line, there are features that can be
added, or parts that can be extended, to the work of this thesis.

The novel fiber-fiber interaction method is mainly evaluated through exten-
sive lay down simulations, demonstrating its good computational performance.
However, a more profound numerical and theoretical analysis of the method and
the different simplifications employed in this work has to be carried out in the
future. For example, different simple test cases with only a few contact points
or a few fibers can be investigated by variation of the different parameters, as
well as comparing different simplifications of the governing equations for the
motion of the contact points.

An important next step of the lay down simulations is to include two-way
coupling between fiber and fluid. This is a computational challenging task and it
may not be necessary to use full two-way coupling. This should be investigated
by comparing the current setup with various semi-coupling approaches. For
example a small amount of fibers can be laid down and by freezing the fibers,
the flow field can be updated and a new amount of fibers can be laid down,
repeating this procedure. Another approach is to resolve the fluid flow more
seldom than what is the case for the fibers, by calculating the force on the flow
from the fibers and smoothing it out during the longer fluid time steps. By
introducing improved two-way coupling, the adhesive feature of the interaction
model will probably have a greater impact, and the self-healing phenomena
will be included, increasing the retention of fibers. This can be investigated by
a simple test case where one fiber is held static and another fiber flows down
onto the static fiber comparing two different cases, one with a uniform flow and
one where the flow is resolved around the static fiber.

Other parts of the fiber suspension model that can be extended is a more
advanced beam model to improve how the fibers conform to the surfaces of each
other when laying down. Additional contact and adhesion phenomena in the
interaction model, such as friction or hydrogen bonds, may also be investigated.

The simple method for pressing the sheets that currently is employed, where
a rigid plate moving at constant speed compresses the fibers, is one feature of
the simulation framework that should be improved. In the future, the interaction
from the sheet onto the plate should be considered as well as more advanced
structures, for example a pressing fabric. Another extension of the lay down
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simulation is to consider a non-static fabric and to study different impact angles
of the fiber injection.

For the investigation of the upstream flow over cylinders and fabric, which
is important during the initial formation, some questions remain to be studied.
One important topic is the effect of threads with different diameter, particularly
to understand how the second layer threads affect the upstream flow. In the cur-
rent study it is shown that for structures with the same diameter for all threads,
the second layer has negligible upstream impact for the most relevant config-
urations. However, when investigating the flow through the industrial fabrics,
which have different diameters in the different layers, it is shown that the second
layer has an impact. This has to be further investigated in the future. Moreover,
a second layer positioned in close to contact with the first layer is also of interest
to study. Moreover, a measure related to the wavelength of the flow field would
be very useful for fabric design.

The fiber network model presented in this work is relatively simple in its
nature and is used to test the numerical multiscale method. The model has not
yet been used to simulate the mechanical properties of paper sheets. This has to
be done in the future to evaluate the simple model by comparing the results with
experiments. If the simulation results do not agree with experiments the model
has to be extended in a suitable manner. Later on, it should be extended to three
dimensions and include large deformations to be able to cover more advanced
mechanical simulations. Other features that may be interesting to include is
contact between objects and non-linear effects such as plasticity.

The numerical upscaling method proposed in this work has optimal con-
vergence rate for unstructured and random networks. This is shown through
numerical examples. Some general error analysis is performed but should be
extended in future work by considering a general elasticity matrix and inves-
tigate what properties it has to fulfil to guarantee the different error results.
Further, the specific matrix given from the network model should be analysed
and compared to the requirements given by the error analysis. Additionally, the
computational properties of the numerical upscaling method should be investi-
gated, both with respect to time and how large problems that can be solved while
retaining acceptable accuracy of the solution. Moreover, fracture propagation
problems could be considered using the proposed method.
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8. Summary of Papers

Paper I - Novel contact forces for immersed boundary paper
forming simulations
Authors: G. Kettil, A. Mark, F. Svelander, R. Lai, L. Martinsson, K. Wester,
M. Fredlund, M. Rentzhog, U. Nyman, J. Tryding, and F. Edelvik.

This conference proceeding is from the hundred years anniversary TAPPI con-
ference held in Atlanta, USA, in April 2015. It describes an early version of
the object-object interaction model, together with the simulation framework for
lay down simulations. Simulation results for lay downs with fibers with circular
fiber cross section are included.

Paper II - Detailed simulations of early paper forming

Authors: G. Kettil, A. Mark, F. Svelander, R. Lai, K. Wester, M. Fredlund, M.
Rentzhog, and F. Edelvik.

This conference proceeding is from the final COST Action FP1005 conference
held in Trondheim, Norway, in June 2015. It is a concise review of the simu-
lation framework at a stage where novel implementations of rectangular fiber
cross section and pressing had been accomplished.
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Paper III - A multiscale methodology for simulation of me-
chanical properties of paper
Authors: G. Kettil, A. Målqivst, A. Mark, F. Edelvik, M. Fredlund, and K.
Wester.

This conference proceeding is from the 6th European Conference on Computa-
tional Mechanics, Glasgow, UK, June 2018. It presents a multiscale framework
for simulation of mechanical properties of paper. The forming framework is
briefly described. The main focus is on the framework for simulation of the
mechanical properties of paper, presenting an overview of the fiber network
model and the numerical upscaling method.

Paper IV - Numerical investigation of upstream cylinder flow
and characterization of forming fabrics
Authors: G. Kettil, A. Mark, K. Wester, M. Fredlund, and F. Edelvik.

In this paper, the fundamentals of upstream flow over fabrics are studied numer-
ically. First, two-dimensional flow over different configurations of cylinders is
investigated. Second, the flow over three industrial forming fabrics is simulated.
The resulting flow fields are studied by analysing the upstream flow impact from
the structures. Novel measures of the flow impact are defined.

Paper V - Numerical upscaling of discrete network models

Authors: G. Kettil, A. Målqvist, A. Mark, M. Fredlund, K. Wester, and F.
Edelvik.

In this paper, the numerical upscaling method for discrete fiber networks is
described in detail. The theory of the method is presented and general error
analysis is performed. The exponential decay of the corrector functions and the
optimal order convergence rate of the method are shown by numerical exam-
ples, governed by the fiber network model.
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Paper VI - Simulation of paper forming using immersed
boundary techniques and a novel fiber interaction method
Authors: G. Kettil, A. Mark, A. Målqivst, F. Svelander, K. Wester, M. Fred-
lund, and F. Edelvik.

In this paper, the newest version of the interaction model is described. The full
framework for lay down simulations is presented, including pressing and cyclic
boundary condition for the object interactions. Numerous lay down simulations
are performed and the resulting virtual sheets are investigated by simulation of
the air flow through the sheets.
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