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Abstract
The present work is devoted to the finite element modelling of linear hyperbolic rolling contact
problems. The main equations encountered in rolling contact mechanics are reviewed in the
first part of the thesis, with particular emphasis on applications from automotive and vehicle
engineering. In contrast to the common hyperbolic systems found in the literature, such equations
include integral and boundary terms, as well as time-varying transport velocities, that require
special treatment. In this context, existence and uniqueness properties are discussed within
the theoretical framework offered by the semigroup theory. The second part of the thesis is
then dedicated to recovering approximated solutions to the considered problems, by combining
discontinuous Galerkin finite element methods (DGMs) with explicit Runge-Kutta (RK) schemes
of the first and second order for time discretisation. Under opportune assumptions on the
smoothness of the sought solutions, and owing to certain generalised Courant-Friedrichs-Lewy
(CFL) conditions, quasi-optimal error bounds are derived for the complete discrete schemes.
The proposed algorithms are then tested on simple scalar equations in one space dimension.
Numerical experiments seem to suggest the theoretical error estimates to be sharp.

Keywords
Rolling contact mechanics; hyperbolic rolling contact problems; numerical modelling; discon-
tinuous Galerkin finite element methods (DGMs); Runge-Kutta schemes
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available beyond what required, and Stig Larsson for agreeing to be the Examiner for this thesis
project. Many people from Chalmers and GU exhorted me to apply for the Master’s program in
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Chapter 1

Introduction

Linear hyperbolic partial differential equations (PDEs) are ubiquitous in physics and engineering
[1, 2]. Particularly, in the field of contact mechanics, hyperbolic PDEs appear in numerous
applications concerning rolling contact phenomena, where they typically describe the complex
interactions occurring between wheel and rail [3–6], tyre and road asphalt [7, 8], but also
the dynamics of roll bearing elements, belt-pulley mechanisms, and continuous automotive
transmissions [9–11]. Especially in vehicle engineering, the most common formulations adopt
brush-like representations of the contacting rolling bodies [12, 13], where dry friction is modelled
according to the famous Coulomb-Amontons theory [14–16]. Advanced descriptions based on
modified friction theories, such as the LuGre-brush model [17–25], are also able to accurately
account for wet and lubricated friction and have been successfully employed for control design.
In one space dimension, a typical example of hyperbolic PDEs encountered in rolling contact
mechanics is as follows:

∂ u(x, t)
∂ t

+a(x, t)
∂ u(x, t)

∂x
= B(t)u(x, t)+C(t)u(1, t)+ f (x, t), for(x, t) ∈ (0,1)× (0,T ),

(1.1a)

u(0, t) = 0, for t ∈ (0,T ), (1.1b)
u(x,0) = u0(x), forx ∈ (0,1), (1.1c)

where u(x, t) ∈ Rn is the unknown solution, measuring a tangential deformation, a(x, t) ∈ R
denotes the transport velocity, f (x, t) ∈ Rn is the external forcing term, and C(t) and B(t) are
bounded operators.

Whilst numerous analytical steady-state models allowing for simple closed-form solutions
may be encountered in the dedicated literature, understanding in detail unsteady effects usually
requires solving the underlying PDEs numerically, which has limited the deal of effort devoted
to such investigations. Restricting the attention to the field of railway dynamics, departing from
the theory developed by Kalker [26, 27], the currently available numerical methods – including
commercial software like FASTSIM® and CONTACT® – employ variational techniques to
iteratively solve the transient problem until convergence is achieved [28–31]. Albeit being
sufficiently accurate for the purpose they serve, such algorithms cannot be easily extended to
cover problems arising from other subfields of mechanical engineering and contact mechanics.
For example, the governing PDEs of the brush models classically adopted in tyre and road
vehicle dynamics often incorporate nonlocal and boundary terms that are not accommodated by
the existing methods [7, 8, 16, 32]. For this reason, unsteady phenomena are often disregarded
in automotive engineering applications. Alternatively, transient dynamics are approximated
in terms of first-order ordinary differential equations (ODEs): standard approaches include,
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2 CHAPTER 1. INTRODUCTION

for example, resorting to Padé approximants or other reduced-order descriptions [7, 8, 16,
32–34]. In the past years, such simplifications have been clearly motivated by the need of
relying on computationally inexpensive models to be conveniently used in vehicle dynamics
simulations and control applications. In fact, even simulating simple PDEs conflicted with the
requirement for simplicity and real-time computational speed. On the one hand, the empirical
validation of such simplified descriptions often requires expensive equipment and extensive
experimental campaigns, which legitimates instead the adoption of higher-fidelity models
allowing for comparison. In this way, approximated ODE-based representations may be validated
directly against the PDE systems whose dynamical behaviour they aim to imitate. On the
other hand, the limitations connected to the needs for simplicity and real-time performance
may partially be overcome with the improved computational power at the disposal of modern
vehicles. In this context, the present thesis is devoted to the numerical modelling of linear
rolling contact phenomena, by combining PDE-based formulations with discontinuous Galerkin
finite element methods (DGMs) for space approximation [35–38]. Since the ultimate ambition
is to develop numerical algorithms (or extensions thereof) enabling fast calculations with
performance close to real-time requirements, and easily implementable in virtual environments
like MATLAB/Simulink®, time discretisation is then achieved using explicit schemes. More
specifically, first and second-order Runge-Kutta (RK) algorithms, which represent a sufficiently
good compromise between accuracy and computational speed [39, 40], are mainly explored in
the present work. To the author’s best knowledge, the numerical methods developed in this thesis
are completely novel concerning the modelling of linear rolling contact phenomena described
by brush-like formulations.

From the perspective of the pure mathematical analysis, the approach pursued in this thesis
is heavily inspired by the research carried out in [39, 40], where the authors have rigorously
investigated the rate of convergence of different finite element methods (FEMs) in conjunction
with explicit RK schemes up to the third order. However, it is worth clarifying that the techniques
developed in [39, 40] are not directly applicable to the initial-boundary-value problems (IBVPs)
appearing in rolling contact mechanics and considered in the following chapters. Indeed,
as already mentioned, PDEs describing rolling contact phenomena may contain integral and
boundary terms whose presence has not been accounted for in previous studies. Additionally,
handling time-varying data requires modifications of the analyses conducted in [39, 40], since
the corresponding discrete equations for the error dynamics cannot be cast in the same form as
that considered in [39, 40]. Therefore, apart from exploring new engineering applications of the
DGMs combined with RK algorithms, the present work also delivers some fundamental results
concerning the mathematical analysis of such numerical schemes. In this context, it should be
also mentioned that the techniques presented in this thesis may be extended to the study of other
interesting problems arising from different branches of physics and engineering. For example,
typical equations that may be covered by the results advocated in the present work include those
treated in [41].

In particular, the remainder of this thesis is organised as follows. In Chap. 2, the general
structure for the considered hyperbolic PDEs is outlined concerning the one-dimensional and
multi-dimensional cases. The existence and uniqueness of such equations are established ac-
cording to the semigroup theory, which offers an adequate mathematical framework to analyse
hyperbolic evolution problems. Chapter 3 recalls the generalities of the DGMs, including the no-
tions of mesh and mesh elements, and introduces the space semi-discretisation approach, which
enables recovering approximated solutions to the considered initial-boundary-value problems
(IBVPs) within finite-dimensional functional spaces. More specifically, this is accomplished by
opportunely choosing an appropriate polynomial behaviour on each mesh element and replacing
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the continuous operator appearing in the abstract formulation with a discrete counterpart, whose
salient properties are investigated in detail. Then, Chap. 4 moves to the analysis of the complete
discrete schemes, which, as already mentioned, cover explicit RK algorithms of the first and
second order (RK1 and RK2, respectively). Owing to certain refined Courant-Friedrichs-Lewy
(CFL) conditions, convergence results for the complete discrete schemes are derived under
the assumption of sufficiently smooth exact solutions. Chapter 5 is dedicated to the numerical
implementation of the proposed schemes. In particular, numerical experiments concerning
the convergence of the error estimates derived theoretically are first conducted considering
sufficiently smooth solutions. Regarding instead the applications, the adduced examples are
borrowed from typical problems arising in rolling contact mechanics and are mainly focused
on the one-dimensional IBVPs that are encountered in the automotive field. Finally, the main
conclusions, together with some directions for future research, are summarised in Chap. 6.
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Chapter 2

Hyperbolic equations in rolling contact
mechanics: semigroup theory and
well-posedness

The present Chapter is devoted to establishing existence and uniqueness results concerning the
main hyperbolic equations, and the corresponding initial-boundary-value problems (IBVPs),
arising in rolling contact mechanics. This is accomplished within the framework provided by
the semigroup theory. In particular, some useful concepts and notions are recalled in Sect. 2.1 to
the extent that is necessary to understand the results advocated in the thesis. Section 2.2 treats
more specifically the main equations of interest, for which well-posedness is proved. Finally,
Sect. 2.3 concludes the Chapter by providing a broader overview on the problem, and stating
some essential results that fall outside the semigroup framework but might still be of interest.

2.1 Abstract hyperbolic evolution equations

This Section recalls some fundamental results that are needed to show existence and uniqueness
for the main hyperbolic IBVPs considered in the thesis, and introduces the abstract formulation
of hyperbolic evolution equations.

2.1.1 Preliminaries and notation

In this thesis, the set of real numbers is indicated with R; R>0 and R≥0 denote the set of positive
real numbers and positive real numbers including zero, respectively. The sets of natural numbers
excluding and including zero are indicated with N and N0.

Generic Banach spaces are conventionally denoted by X (respectively Y ), and equipped with
norm∥·∥X (respectively∥·∥Y ); the identity operator is denoted by IX (respectively IY ). Similarly,
generic Hilbert spaces are indicated with V , and equipped with inner product ⟨·, ·⟩V and norm
∥·∥V . The corresponding identity operator is IV . Specifically, given a domain Ω ⊂ Rd , the
Hilbert space L2(Ω ;Rn) is endowed with inner product and induced norm

⟨v,w⟩L2(Ω ;Rn) ≜
∫

Ω

v(x) ·w(x)dx =
∫

Ω

vT(x)w(x)dx, (2.1a)∥∥v(·)
∥∥2

L2(Ω ;Rn)
≜ ⟨v,v⟩L2(Ω ;Rn) =

∫
Ω

∥∥v(x)
∥∥2

2 dx, (2.1b)

5



6 CHAPTER 2. HYPERBOLIC EQUATIONS IN ROLLING CONTACT MECHANICS

where∥·∥2 denotes the standard Euclidean norm in Rn, respectively. A function v(·) is said to
belong to the space L2(Ω ;Rn), noted v ∈ L2(Ω ;Rn), if its L2-norm defined according to Eq.
(2.1b) is finite. Similarly, the Hilbert space H1(Ω ;Rn) is naturally equipped with seminorm and
norm ∣∣v(·)∣∣2H1(Ω ;Rn)

≜
n

∑
i=1

∥∥∇vi(·)
∥∥2

L2(Ω ;Rd)
, (2.2a)∥∥v(·)

∥∥2
H1(Ω ;Rn)

≜
∥∥v(·)

∥∥2
L2(Ω ;Rn)

+
∣∣v(·)∣∣2H1(Ω ;Rn)

. (2.2b)

A function v(·) is said to belong to the space H1(Ω ;Rn), noted v ∈ H1(Ω ;Rn), if its H1-norm
as in Eq. (2.2b) is finite.

The Banach space C0(Ω ;Rn) is also endowed with norm∥∥v(·)
∥∥

∞
≜ max

Ω

∥∥v(x)
∥∥

2 . (2.3)

Concerning a function v(·, ·) defined on the space-time cylinder Ω × (0,T ), it is often
convenient to interpret v(·) as a function of the time variable with values in a Banach space X ,
spanned by functions of the space variables, i.e.,

v : (0,T ) ∋ t 7→ v(t)≡ v(·, t) ∈ X . (2.4)

For any integer l ∈ N0, the spaces Cl([0,T ];X) are also considered, spanned by functions that
are l times continuously differentiable in the interval [0,T ]. In particular, the space C0([0,T ];X)
is a Banach space when equipped with the norm∥∥v(·, ·)

∥∥
C0([0,T ];X)

≜ max
t∈[0,T ]

∥∥v(·, t)
∥∥

X , (2.5)

and space Cl([0,T ];X) is a Banach space when equipped with the norm∥∥v(·, ·)
∥∥

Cl([0,T ];X)
≜ max

0≤m≤l

∥∥∥∥∂ mv(·, ·)
∂ tm

∥∥∥∥
C0([0,T ];X)

. (2.6)

In the following, given two Banach spaces X and Y , respectively, L (X ;Y ) denotes the space of
(possibly unbounded) linear operators from X to Y , whereas B(X ;Y ) the space of bounded linear
operators from X to Y , abbreviated B(X) whenever Y = X . For l ∈N0, Cl([0,T ];L (X ;Y )) and
Cl([0,T ];B(X ;Y )) denote the spaces of (possibly unbounded) and bounded linear operators
from X to Y , respectively, whose coefficients are l times continuously differentiable on [0,T ].

Finally, Mm×n(R), Skewn(R), and GLn(R) denote the groups of matrices, skew symmetric
matrices, and invertible matrices, respectively, assuming values in Rm×n and Rn×n; the identity
matrix is denoted by In ∈ GLn(R). SOn(R) denotes the group of unitary rotations in Rn.

2.1.2 Semigroup approach to abstract hyperbolic IBVPs
As already mentioned, the present Chapter is dedicated to the study of the well-posedness of
hyperbolic IBVPs describing linear rolling contact phenomena, using a semigroup approach.
In particular, given a Banach space X , these IBVPs may be recast in an abstract formulation as
follows:

du(t)
dt

= A(t)u(t)+ f (t), for t ∈ (0,T ), (2.7a)
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u(0) = u0, (2.7b)

where, for each t ∈ [0,T ], the (possibly) unbounded operator (A(t),D(A(t))) is the infinitesimal
generator of a C0-semigroup on X . In this context, the characterisation of a C0-semigroup is
briefly recalled below.

Definition 2.1.1 (C0-semigroup). Let X be a Banach space. A one-parameter family {T (t)}t∈[0,∞)

of bounded linear operators from X into X is a C0-semigroup on X if

(i) T (0) = IX ,

(ii) T (t + t̃) = T (t)T (t̃) (semigroup property),

(iii) limt↓0 T (t)x = x for every x ∈ X.

The first two properties above are sufficient themselves to define a semigroup, whereas the
last one is required for an operator to be a C0-semigroup (on this matter, see, e.g., [42–46]).

Returning to the abstract IBVP (2.7), the main notion of solutions considered in the following
is strict, according to [42, 43].

Definition 2.1.2 (Strict solution (Tanabe [42, 43])). A strict solution is defined to be a function
u ∈C1([0,T ];X)∩C0([0,T ];D(A(t))) solving the IBVP (2.7) for t ∈ [0,T ].

For completeness, the more common notion of classical solution, according, e.g., to [44], is
also given.

Definition 2.1.3 (Classical solution (Pazy [44])). A classical solution is defined to be a function
u ∈C0([0,T ];X)∩C1((0,T ];X), with u(t) ∈ D(A(t)), and solving the IBVP (2.7) for t ∈ (0,T ].

Comparing the Definitions 2.1.2 and 2.1.3, which are slightly more precise than that orig-
inally proposed in [45], it is clear that a strict solution is also classical. Both classical and
strict solutions to the IBVP (2.7) may be deduced by constructing an evolution operator UA(t, t̃)
associated with the infinitesimal generator (A(t),D(A(t))). This is a rather delicate task, which
involves a number of subtle technicalities [45, 46]. The first requirement consists in checking
that (A(t),D(A(t))) generates, in fact, a C0-semigroup for all t ∈ [0,T ]. This thesis mainly
considers evolution equations in Hilbert spaces V rather than more general Banach spaces X . In
this context, the following alternative version of Lumer-Phillips’ Theorem 2.1.1, due to Curtain
and Zwart [47, 48], asserts necessary and sufficient conditions for the operator (A(t),D(A(t)))
to be the infinitesimal generator of a C0-semigroup T (t) on a Hilbert space V .

Theorem 2.1.1 (Lumer-Phillips (Curtain and Zwart [47, 48])). Necessary and sufficient condi-
tions for a closed, densely defined operator (A,D(A)) on a Hilbert space V to be the infinitesimal
generator of a C0-semigroup satisfying

∥∥T (t)
∥∥≤ eωt are

Re⟨Av,v⟩V ≤ ω
∥∥v(·)

∥∥2
V , forv ∈ D(A), (2.8a)

Re⟨A∗v,v⟩V ≤ ω
∥∥v(·)

∥∥2
V , forv ∈ D(A∗), (2.8b)

where (A∗,D(A∗)) denotes the adjoint of (A,D(A)).

Proof. See Corollary 2.2.3 in [47] or Corollary 2.3.3 in [48].
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If an operator (A,D(A)) verifies a relationship of the same type as in Eq. (2.8a), it is said
to be quasi-dissipative with constant ω . Therefore, Theorem 2.1.1 requires both (A,D(A))
and its adjoint (A∗,D(A∗)) to be quasi-dissipative with the same constant. More generally, the
group of operators on a Banach space X that are infinitesimal generators of a C0-semigroup
satisfying

∥∥T (t)
∥∥≤ eωt is conventionally denoted by G (1,ω) [45, 46]. Hence, Theorem 2.1.1

states necessary and sufficient conditions to verify that a closed, densely defined operator on a
Hilbert V space fulfils A ∈ G (1,ω). Whilst the density of the operator is often trivial to check, a
useful criterion to deliberate whether an operator is closed is offered by the subsequent Theorem
2.1.2.

Theorem 2.1.2. Assume that X and Y are Banach spaces and let (A,D(A)) be a linear operator
with domain D(A)⊂ X and range Y . If, in addition, A is invertible with A−1 ∈ L (Y ;X), then
(A,D(A)) is a closed linear operator.

Proof. See Theorem 4.2-C in [49].

When the unbounded operator (A(t),D(A(t))) appearing in Eq. (2.7a) is time-independent,
i.e., A(t) = A for all t ∈ [0,T ], the IBVP (2.7) may be studied by simply analysing the properties
of the infinitesimal generator. For time-dependent evolution equations, where A(t) actually
depends on the time variable, the existence and uniqueness of strict solutions to the IBVP (2.7)
need to be more generally addressed concerning the entire family {A(t)}t∈[0,T ] of infinitesimal
generators. In this context, a crucial role is played by the notion of stable family, according to
the following Definition 2.1.4.

Definition 2.1.4 (Stable family of infinitesimal generators). A family {A(t)}t∈[0,T ] of infinitesimal
generators of C0-semigroups on a Banach space X is said to be stable with stability constants
M ≥ 1, ω if

ρ

(
A(t)

)
⊃ (ω,∞), for t ∈ [0,T ] (2.9)

for every finite sequence 0 ≤ t1 ≤ t2 ≤ ·· · ≤ tk ≤ T , k ∈ N, and∥∥∥∥∥∥
k

∏
j=1

R
(

λ ,A(t j)
)∥∥∥∥∥∥≤ M(λ −ω)−k, forλ > ω, (2.10)

where ρ(A(t)) denotes the resolvent set of A(t), and R(λ ,A(t j))≜ (λ IX −A(t j))
−1 the resolvent

of A(t) at the time t = t j.

It is worth emphasising that, in Eq. (2.10), the products containing {t j} are always time
ordered, that is, a factor with larger t j stands to the left of ones with smaller t j. It is also
clear from Definition 2.1.4 that, if A(t) ∈ G (1,ω) for all t ∈ [0,T ], then the corresponding
family {A(t)}t∈[0,T ] is stable with stability constants 1, ω . The following perturbation Theorem
2.1.3 provides an additional criterion to decide about the stability of a family of infinitesimal
generators.

Theorem 2.1.3 (Perturbation theorem). Let {A(t)}t∈[0,T ] be a stable family of infinitesimal
generators with stability constants M, ω , and B(t) ∈ B(X ;Y ), t ∈ [0,T ], a bounded linear
operator on X. If

∥∥B(t)
∥∥≤ Bmax for all t ∈ [0,T ], then {Ã(t)}t∈[0,T ] ≜ {A(t)+B(t)}t∈[0,T ] is a

stable family of infinitesimal generators with stability constants M, ω +MBmax.

Proof. See Theorem 7.4 in [43] or 5.2.3 in [44].



2.2. LINEAR HYPERBOLIC IBVPS IN ROLLING CONTACT 9

Finally, the next Theorem 2.1.4 establishes sufficient conditions to deduce the existence of
strict solutions to the IBVP described by Eqs. (2.7), owing to the assumption that the domain
D(A(t)) = D(A(0))≡ D of the operator (A(t),D(A(t))) is independent of the time.

Theorem 2.1.4 (Existence and uniqueness of strict solutions). Suppose that {A(t)}t∈[0,T ] is
a stable family of infinitesimal generators of C0-semigroups on a Banach space X such that
D(A(t)) = D(A(0)) ≡ D is independent of t and, for each u0 ∈ D, A(t)u0 is continuously
differentiable in X. If u0 ∈ D and f ∈C1([0,T ];X), then the unique strict solution to the IBVP
described by Eqs. (2.7) is given by

u(t) =UA(t,0)u0 +
∫ t

0
UA

(
t, t ′
)

f
(

t ′
)

dt ′, (2.11)

where UA(t, t̃) denotes the evolution operator associated with the infinitesimal generator
(A(t),D).

Proof. See Theorem 4.5.4 in [42] or 7.6 in [43].

Remark 2.1.1. The expression defined by Eq. (2.11) has meaning even if u0 ∈ X and f ∈
Lp((0,T );X), p ≥ 1. In such a case, the function in Eq. (2.11) is said to be a mild solution.
This is formalised in the next Definition 2.1.5.

Definition 2.1.5 (Mild solution). For every u0 ∈ X and f ∈ Lp((0,T );X), p ≥ 1, the continuous
function defined according to Eq. (2.11) is a mild solution of the IBVP (2.7).

2.2 Linear hyperbolic IBVPs in rolling contact
The semigroup framework briefly illustrated in Sect. 2.1 may be conveniently applied to prove
existence and uniqueness for hyperbolic equations arising from problems considered in rolling
contact mechanics, after restating them in an abstract setting. In this context, the present Section
considers two separate classes of IBVPs: equations in one space dimension, and equations
in several space dimensions. Concerning systems evolving in one dimension, the presence of
nonlocal and boundary terms is also taken into account, which is motivated by some recent
works by the author.

In the remainder of this Chapter, the focus is primarily on regular (i.e., strict and clas-
sical) solutions, which enjoy peculiar smoothness properties that are required for the error
analysis performed in Chap. 4; under more relaxed regularity assumptions, the existence of
mild solutions to the considered IBVPs follows immediately from Definition 2.1.5. In par-
ticular, considering a generic domain Ω ⊂ Rd with boundary Γ ≜ ∂Ω , regular solutions
are sought in the Hilbert space L2(Ω ;Rn), and it is assumed that the domain D(A(t)) =
D(A(0)) ≡ D of the operator (A(t),D(A(t))) is independent of the time variable. Accord-
ing to Definitions 2.1.3 and 2.1.2, classical and strict solutions therefore correspond to functions
u ∈C0([0,T ];L2(Ω ;Rn))∩C1((0,T ];L2(Ω ;Rn)) and u ∈C1([0,T ];L2(Ω ;Rn))∩C0([0,T ];D),
respectively, with D opportunely defined and A(t) satisfying A ∈C1([0,T ];L (D;L2(Ω ;Rn))).

2.2.1 IBVPs in one space dimension
In this thesis, the considered IBVPs involving a single space dimension generalise those derived
in, e.g., [32, 33]. More specifically, by setting explicitly Ω = (0,1), the same structure of that in
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Eqs. (1.1) is assumed, recalled here for convenience:

∂ u(x, t)
∂ t

+a(x, t)
∂ u(x, t)

∂x
= B(t)u(x, t)+C(t)u(1, t)+ f (x, t), for(x, t) ∈ (0,1)× (0,T ),

(2.12a)

u(0, t) = 0, for t ∈ (0,T ), (2.12b)
u(x,0) = u0(x), forx ∈ (0,1), (2.12c)

where, again, u(x, t) ∈ Rn is the unknown solution, a(x, t) ∈ R denotes the transport velocity,
f (x, t) ∈ Rn is the external forcing term, C ∈ C1([0,T ];Mn×n(R)) is a matrix of coefficients,
and B ∈C1([0,T ];B(L2((0,1);Rn))) is a bounded operator, typically having the form

(Bv)(x, t) = B̃(t)v(x)+
∫ 1

0
K(x, t)v(x)dx, (2.13)

with B̃ ∈C1([0,T ];Mn×n(R)) and K ∈C1([0,1]× [0,T ];Mn×n(R)).
It is worth mentioning that the presence of the boundary (or trace) term in Eq. (2.12a) makes

the analysis slightly more involved compared to the case where no boundary term appears. The
two situations are addressed separately in the following, mainly for pedagogical reasons.

IBVPs in one space dimension without boundary terms

Neglecting the boundary term in Eq. (2.12a), and considering for a moment the case B(t) = 0,
the IBVP (2.12) simplifies to

∂ u(x, t)
∂ t

+a(x, t)
∂ u(x, t)

∂x
= f (x, t), for(x, t) ∈ (0,1)× (0,T ), (2.14a)

u(0, t) = 0, for t ∈ (0,T ), (2.14b)
u(x,0) = u0(x), forx ∈ (0,1). (2.14c)

The system described by Eqs. (2.14) evidently consists of n uncoupled, linear transport equations.
Next, to deal with the presence of a variable transport velocity a(x, t), the following Assumption
2.2.1 is introduced.

Assumption 2.2.1. The transport velocity satisfies a ∈ C1([0,1]× [0,T ]; [amin,amax]), with
amin > 0.

The above Assumption 2.2.1 ensures that A ∈ C1([0,T ];L (D(A(t));L2((0,1);Rn))) and
additionally that inft∈[0,T ] a(1, t)≥ amin. Accordingly, the IBVP (2.14) may be reformulated as
an abstract hyperbolic evolution equation in the same for of Eqs. (2.7), with the time-varying,
unbounded operator (A(t),D(A(t))), A(t) : D(A(t)) 7→ L2((0,1);Rn), defined as

(Av)(x, t)≜−a(x, t)
∂ v(x)

∂x
, (2.15a)

D(A(t))≡ D ≜

{
v ∈ H1((0,1);Rn)

∣∣∣ v(0) = 0
}
. (2.15b)

Here, the unbounded operator (A(t),D(A(t))) may be regarded as a continuously differentiable
linear operator from D(A(t))=D(A(0))≡D to L2((0,1);Rn), i.e., A∈C1([0,T ];L (D;L2(Ω ;Rn))).
However, for what follows, the time variable is often interpreted as a parameter t ∈ [0,T ] [41],
which motivates to simply write A(t) ∈ L (D;L2(Ω ;Rn)). Moreover, it is crucial to observe
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that, even though the operator A(t) is time-dependent, its domain D is not, owing to Assumption
2.2.1. In the following, (A(t),D(A(t))), regarded as an operator for t ∈ [0,T ] fixed but arbitrary,
is often abbreviated as (A(t),D) to alleviate the notation.

To prove the well-posedness of the IBVP described by Eqs. (2.14), the iter is standard:
it must be shown that the operator (A(t),D) defined as in Eq. (2.15) is dense, closed, and
quasi-dissipative together with its adjoint (A∗(t),D(A∗(t))). The density of (A(t),D) is actually
straightforward to verify, whereas closedness and quasi-dissipativity are proved in Lemmata
2.2.1 and 2.2.2.

Lemma 2.2.1 (Closedness). The operator (A(t),D) as defined in Eqs. (2.15) is closed.

Proof. According to Theorem 2.1.2, to prove that (A(t),D) is closed, it suffices to show that
there exists A−1(t) for all t ∈ [0,T ]. By setting

(Av)(x, t) =−a(x, t)
∂ v(x)

∂x
= w(x), (2.16)

it may be immediately deduced that

v(x) = (A−1w)(x, t) =−
∫ x

0

w
(

x′
)

a
(

x′, t
) dx′. (2.17)

It is easy to verify that A−1(t) ∈L (L2((0,1);Rn);H1((0,1);Rn)) and that A−1(t)A(t) = ID and
A(t)A−1(t) = IL2((0,1);Rn). Hence, (A(t),D) is closed.

Proposition 2.2.1 below allows deducing an expression for the adjoint operator.

Proposition 2.2.1 (Adjoint operator). The adjoint operator (A∗(t),D(A∗(t))), A∗(t) : D(A∗(t)) 7→
L2((0,1);Rn) of the operator (A(t),D) defined in Eqs. (2.15) is given by

(A∗v)(x, t)≜
∂

∂x

(
a(x, t)v(x)

)
, (2.18a)

D(A∗(t))≜
{

v ∈ H1((0,1);Rn)
∣∣∣ v(1) = 0

}
. (2.18b)

Proof. Since (A(t),D) admits a bounded inverse according to the above Lemma 2.2.1, it is
sufficient to deduce an expression for (A−1(t))∗ = (A∗(t))−1 (see, e.g., Lemma A.3.72 in [48]).
From Eq. (2.17),

(A−1v)(x, t) =−
∫ x

0

v
(

x′
)

a
(

x′, t
) dx′. (2.19)

Therefore, an application of Fubini’s Theorem provides

〈
A−1(t)v,w

〉
L2((0,1);Rn)

=−
∫ 1

0

∫ x

0

vT
(

x′
)

a
(

x′, t
)w(x)dx′ dx

=−
∫ 1

0

vT
(

x′
)

a
(

x′, t
) ∫ 1

x′
w(x)dxdx′ =

〈
v,(A−1(t))∗w

〉
L2((0,1);Rn)

,

(2.20)
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which implies (
(A−1)

∗
v
)
(x, t) =

(
(A∗)−1v

)
(x, t) =− 1

a(x, t)

∫ 1

x
v
(

x′
)

dx′. (2.21)

Using Eqs. (2.18) and (2.21), it may be verified that A∗(t)(A∗(t))−1 = IL2((0,1);Rn) and also
(A∗(t))−1A∗(t) = ID(A∗(t)), thus concluding the proof.

Lemma 2.2.2 (Quasi-dissipativity). The operator (A(t),D), together with its adjoint (A∗(t),D(A∗(t9)),

is quasi-dissipative with constant ω ≜
1
2

supt∈[0,T ]

∥∥∥∥∂ a(·, t)
∂x

∥∥∥∥
∞

.

Proof. Considering the operator (A(t),D), taking the inner product on L2((0,1);Rn) and inte-
grating by parts yields〈

A(t)v,v
〉

L2((0,1);Rn)
=−

∫ 1

0
a(x, t)

∂ vT(x)
∂x

v(x)dx =−1
2

∫ 1

0
a(x, t)

∂

∂x

∥∥v(x)
∥∥2

2 dx

=−1
2

a(1, t)
∥∥v(1)

∥∥2
2 +

1
2

∫ 1

0

∂ a(x, t)
∂x

∥∥v(x)
∥∥2

2 dx

≤ 1
2

sup
t∈[0,T ]

∥∥∥∥∂ a(·, t)
∂x

∥∥∥∥
∞

∥∥v(·)
∥∥2

L2((0,1);Rn)
, forv ∈ D.

(2.22)

Additionally, starting with Eqs. (2.18), similar manipulations as previously give〈
A∗(t)v,v

〉
L2((0,1);Rn)

=
∫ 1

0

∂

∂x

(
a(x, t)vT(x)

)
v(x)dx

=−a(0, t)
∥∥v(0)

∥∥2
2 −

∫ 1

0
a(x, t)vT(x)

∂ v(x)
∂x

dx

=−1
2

a(0, t)
∥∥v(0)

∥∥2
2 +

1
2

∫ 1

0

∂ a(x, t)
∂x

∥∥v(x)
∥∥2

2 dx

≤ 1
2

sup
t∈[0,T ]

∥∥∥∥∂ a(·, t)
∂x

∥∥∥∥
∞

∥∥v(·)
∥∥2

L2((0,1);Rn)
, forv ∈ D(A∗(t)).

(2.23)

By combining Eqs. (2.22) and (2.23), the result immediately follows.

Owing to Assumption 2.2.1 and the two results advocated above, it is then easy to establish
the well-posedness of the IBVP (2.14), by taking advantage of the abstract formulation (2.7)
and invoking Theorem 2.1.4.

Theorem 2.2.1 (Existence and uniqueness). If Assumption 2.2.1 holds, the IBVP (2.14) admits
a unique strict solution u ∈ C1([0,T ];L2((0,1);Rn))∩C0([0,T ];D) as in Eq. (2.11) for all
f ∈C1([0,T ];L2((0,1);Rn)) and u0 ∈ D.

Proof. Since C1
0([0,1];Rn)⊂ D(A(t))≡ D, the operator (A(t),D) as defined in Eqs. (2.15) is

dense, i.e., D = L2((0,1);Rn). Moreover, it is closed and quasi-dissipative together with its
adjoint (A∗(t),D(A∗(t))) according to Lemmata 2.2.1 and 2.2.2. It follows from Lumer-Phillips’
Theorem 2.1.1 that, for t ∈ [0,T ], A(t) is the infinitesimal generator of a C0-semigroup. In
particular, A(t) ∈ G (1,ω), with

ω ≜
1
2

sup
t∈[0,T ]

∥∥∥∥∂ a(·, t)
∂x

∥∥∥∥
∞

. (2.24)
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Therefore, the family {A(t)}t∈[0,T ] is stable. Since D(A(t)) = D(A(0))≡ D is independent of
t and, for every u0 ∈ D, A(t)u0 is continuously differentiable in L2((0,1);Rn) by Assumption
2.2.1, Theorem 2.1.4 ensures the existence of a unique strict solution to Eq. (2.7) reading as in
(2.11) for all f ∈C1([0,T ];L2((0,1);Rn)) and u0 ∈ D.

Theorem 2.2.1 above asserts the well-posedness for the simplified IBVP (2.14), in which
the n linear transport equations are all uncoupled. Returning now to the more general case of
B(t) ̸= 0, the following IBVP may instead be derived from Eqs. (2.12):

∂ u(x, t)
∂ t

+a(x, t)
∂ u(x, t)

∂x
= B(t)u(x, t)+ f (x, t), for(x, t) ∈ (0,1)× (0,T ), (2.25a)

u(0, t) = 0, for t ∈ (0,T ), (2.25b)
u(x,0) = u0(x), forx ∈ (0,1). (2.25c)

Recalling that the operator B ∈C1([0,T ];B(L2((0,1);Rn))) is in the form of Eq. (2.13), with
B̃ ∈C1([0,T ];Mn×n(R)) and K ∈C1([0,1]× [0,T ];Mn×n(R)), the well-posedness of the IBVP
above follows directly from the perturbation theory of linear unbounded operators, according to
Theorem 2.1.3. In this case, the well-posedness result is formalised in the following Corollary
2.2.1.

Corollary 2.2.1 (Existence and uniqueness (B(t) ̸= 0)). If Assumption 2.2.1 holds, the IBVP
(2.25) admits a unique strict solution u ∈ C1([0,T ];L2((0,1);Rn))∩C0([0,T ];D) for all f ∈
C1([0,T ];L2((0,1);Rn)) and u0 ∈ D.

Proof. Consider again the operator (A(t),D) as in Eqs. (2.15) and define the operator (Ã(t),D(Ã(t))),
with (Ãv)(x, t) = (Av)(x, t)+(Bv)(x, t) and D(Ã(t)) = D(A(t)) = D(A(0))≡ D independent of
t1. Since A(t) ∈ G (1,ω) and

∥∥B(t)
∥∥ ≤ Bmax for all t ∈ [0,T ], it follows that Ã(t) ∈ G (1,ω +

Bmax), and consequently the family {Ã(t)}t∈[0,T ] is stable according to Theorem 2.1.3. More-
over, for every u0 ∈ D, Ã(t)u0 is continuously differentiable in L2((0,1);Rn), and thus Theorem
2.1.4 ensures the existence of a unique strict solution for all f ∈C1([0,T ];L2((0,1);Rn)) and
u0 ∈ D.

The result advocated above concludes the study of IBVPs without trace terms. The next part
of the analysis extends to the case were boundary contributions also appear.

IBVPs in one space dimension with boundary terms

In the context of rolling contact mechanics, transport equations with boundary terms have
recently appeard in [32, 33], concerning the study of problems involving partially flexible bodies.
Therefore, the analysis conducted in this thesis considers IBVPs whose structure generalise that
of the systems studied in [32, 33]. In particular, including the boundary term in Eq. (2.12a), and
considering for a moment the case B(t) = 0, the IBVP (2.12) simplifies to

∂ u(x, t)
∂ t

+a(x, t)
∂ u(x, t)

∂x
=C(t)u(1, t)+ f (x, t), for(x, t) ∈ (0,1)× (0,T ), (2.26a)

u(0, t) = 0, for t ∈ (0,T ), (2.26b)
u(x,0) = u0(x), forx ∈ (0,1). (2.26c)

1Here, D(A(t)) = D(A(0)) ≡ D is considered a Banach space equipped with the graph norm
∥∥v(·)

∥∥2
D =∥∥v(·)

∥∥2
L2((0,1);Rn)

+
∥∥∥Ã(0)v(·)

∥∥∥2

L2((0,1);Rn)
.
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By retaining Assumption 2.2.1, the IBVP may be recast in abstract form as previously, but this
time with the operator (A(t),D(A(t))), A(t) : D(A(t)) 7→ L2((0,1);Rn), defined as

(Av)(x, t)≜−a(x, t)
∂ v(x)

∂x
+C(t)v(1), (2.27a)

D(A(t))≡ D ≜

{
v ∈ H1((0,1);Rn)

∣∣∣ v(0) = 0
}
. (2.27b)

The operator (A(t),D) defined as in Eq. (2.27) includes the trace term, which makes the analysis
slightly more complicated compared to that conducted in Sect. 2.2.1. The procedure to prove the
well-posedness of the IBVP (2.26) is however analogous, and relies on showing closedness and
quasi-dissipativity properties for the operator (A(t),D). To this end, the additional Assumption
2.2.2 is introduced.

Assumption 2.2.2. The matrix Σ ∈C1([0,T ];Mn×n(R)) defined as

Σ(t)≜ In −
∫ 1

0

C(t)
a(x, t)

dx (2.28)

is invertible for all t ∈ [0,T ], i.e., Σ ∈C1([0,T ];GLn(R)).

Assumption 2.2.2 above ensures the invertibility of the operator (A(t),D), which facilitates
the proof of Lemma 2.2.3 and Proposition 2.2.2 below. In this context, it is worth clarifying
that the invertibility condition imposed on the matrix Σ(t) appearing in Eq. (2.28) is not
indispensable to derive existence and uniqueness results for the considered IBVPs; however, it
usually holds for a vast majority of the rolling contact problems encountered in the literature,
which legitimates its introduction in the present thesis.

Lemma 2.2.3 (Closedness). Under Assumption 2.2.2, the operator (A(t),D) as defined in Eqs.
(2.27) is closed.

Proof. To prove that (A(t),D) is closed, it suffices again to show that there exists A−1(t) for all
t ∈ [0,T ]. By setting

(Av)(x, t) =−a(x, t)
∂ v(x)

∂x
+C(t)v(1) = w(x), (2.29)

it may be deduced that

v(x) =
∫ x

0

C(t)

a
(

x′, t
) dx′v(1)−

∫ x

0

w
(

x′
)

a
(

x′, t
) dx′. (2.30)

Computing v(1) in turn yields

v(x) = (A−1w)(x, t) =−Σ̃(x, t)
∫ 1

0

w(x)
a(x, t)

dx−
∫ x

0

w
(

x′
)

a
(

x′, t
) dx′, (2.31)

where

Σ̃(x, t)≜
∫ x

0

C(t)

a
(

x′, t
) dx′Σ−1(t), (2.32)

with Σ(t) defined as in Eq. (2.28). It is easy to verify that A−1(t)∈L (L2((0,1);Rn);H1((0,1);Rn))
and that A−1(t)A(t) = ID and A(t)A−1(t) = IL2((0,1);Rn). Hence, (A(t),D) is closed.
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Proposition 2.2.2 below allows deducing an expression for the adjoint operator.

Proposition 2.2.2 (Adjoint operator). The adjoint operator (A∗(t),D(A∗(t))), A∗(t) : D(A∗(t)) 7→
L2((0,1);Rn) of the operator (A(t),D) defined in Eqs. (2.27) is given by

(A∗v)(x, t) =
∂

∂x

(
a(x, t)v(x)

)
, (2.33a)

D(A∗(t)) =

v ∈ H1((0,1);Rn)

∣∣∣∣∣ v(1) =
CT(t)
a(1, t)

∫ 1

0
v(x)dx

. (2.33b)

Proof. Since (A(t),D) admits a bounded inverse according to the above Lemma 2.2.3, it is
sufficient to deduce an expression for (A−1(t))∗ = (A∗(t))−1 (see, e.g., Lemma A.3.72 in [48]).
From Eq. (2.31),

(A−1v)(x, t) =−Σ̃(x, t)
∫ 1

0

v(x)
a(x, t)

dx−
∫ x

0

v
(

x′
)

a
(

x′, t
) dx′. (2.34)

Therefore, an application of Fubini’s Theorem yields

〈
A−1(t)v,w

〉
L2((0,1);Rn)

=−
∫ 1

0

vT(x)
a(x, t)

dx
∫ 1

0
Σ̃

T(x, t)w(x)dx−
∫ 1

0

∫ x

0

vT
(

x′
)

a
(

x′, t
)w(x)dx′ dx

=−
∫ 1

0

vT(x)
a(x, t)

dx
∫ 1

0
Σ̃

T(x, t)w(x)dx−
∫ 1

0

vT
(

x′
)

a
(

x′, t
) ∫ 1

x′
w(x)dxdx′

=
〈

v,(A−1(t))∗w
〉

L2((0,1);Rn)
,

(2.35)

which implies(
(A−1)

∗
v
)
(x, t) =

(
(A∗)−1v

)
(x, t) =− 1

a(x, t)

∫ 1

0
Σ̃

T(x, t)v(x)dx− 1
a(x, t)

∫ 1

x
v
(

x′
)

dx′.

(2.36)

Using Eqs. (2.33a) and (2.36), it may be verified that A∗(t)(A∗(t))−1 = IL2((0,1);Rn). Moreover,
substituting for (2.33a) into (2.36) and recalling the definition of Σ̃(x, t) as in Eq. (2.32) yields,
after some manipulations,

(
(A∗)−1A∗v

)
(x, t) =− 1

a(x, t)

(
Σ
−1(t)

)T
∫ 1

0

CT(t)
a(x, t)

dx− In

a(1, t)v(1)

− 1
a(x, t)

(
Σ
−1(t)

)T
a(1, t)v(1)−CT(t)

∫ 1

0
v(x)dx

− a(1, t)
a(x, t)

v(1)+ v(x).

(2.37)
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With D(A∗(t)) and Σ(t) reading according to Eqs. (2.33b) and (2.28), respectively, this finally
provides (A∗(t))−1A∗(t) = ID(A∗(t)), thus concluding the proof.

Lemma 2.2.4 (Quasi-dissipativity). The operator (A(t),D) defined according to Eqs. (2.27),
together with its adjoint (A∗(t),D(A∗(t))), is quasi-dissipative with constant ω given by

ω ≜
1
2

 sup
t∈[0,T ]

∥∥∥∥∂ a(·, t)
∂x

∥∥∥∥
∞

+
supt∈[0,T ]

∥∥C(t)
∥∥2

inft∈[0,T ] a(1, t)

. (2.38)

Proof. Considering the operator (A(t),D), taking the inner product on L2((0,1);Rn) and inte-
grating by parts yields

〈
A(t)v,v

〉
L2((0,1);Rn)

=−
∫ 1

0
a(x, t)

∂ vT(x)
∂x

v(x)dx+ vT(1)CT(t)
∫ 1

0
v(x)dx

=−1
2

∫ 1

0
a(x, t)

∂

∂x

∥∥v(x)
∥∥2

2 dx+ vT(1)CT(t)
∫ 1

0
v(x)dx

=−1
2

a(1, t)
∥∥v(1)

∥∥2
2 +

1
2

∫ 1

0

∂ a(x, t)
∂x

∥∥v(x)
∥∥2

2 dx

+ vT(1)CT(t)
∫ 1

0
v(x)dx, forv ∈ D.

(2.39)

Applying Cauchy-Schwarz’ and then the generalised form of Young’s inequality for products to
the last term on the right-hand side of Eq. (2.39) gives

〈
A(t)v,v

〉
L2((0,1);Rn)

≤−1
2

 inf
t∈[0,T ]

a(1, t)− 1
ε

sup
t∈[0,T ]

∥∥C(t)
∥∥2

∥∥v(1)
∥∥2

2

+
1
2

 sup
t∈[0,T ]

∥∥∥∥∂ a(·, t)
∂x

∥∥∥∥
∞

+ ε

∥∥v(·)
∥∥2

L2((0,1);Rn)
, forv ∈ D.

(2.40)

Therefore, selecting

ε ≜
supt∈[0,T ]

∥∥C(t)
∥∥2

inft∈[0,T ] a(1, t)
(2.41)

leads to ⟨A(t)v,v⟩L2((0,1);Rn) ≤ ω
∥∥v(·)

∥∥2
L2((0,1);Rn)

with ω defined as in Eq. (2.38).
Additionally, starting with Eqs. (2.33), similar manipulations as previously give〈
A∗(t)v,v

〉
L2((0,1);Rn)

=
∫ 1

0

∂

∂x

(
a(x, t)vT(x)

)
v(x)dx

= a(1, t)
∥∥v(1)

∥∥2
2 −a(0, t)

∥∥v(0)
∥∥2

2 −
∫ 1

0
a(x, t)vT(x)

∂ v(x)
∂x

dx

=
1
2

a(1, t)
∥∥v(1)

∥∥2
2 −

1
2

a(0, t)
∥∥v(0)

∥∥2
2

+
1
2

∫ 1

0

∂ a(x, t)
∂x

∥∥v(x)
∥∥2

2 dx, forv ∈ D(A∗(t)).

(2.42)
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Using the BC in Eq. (2.33b) and then applying the Cauchy-Schwarz’ inequality yields

〈
A∗(t)v,v

〉
L2((0,1);Rn)

≤ 1
2

 sup
t∈[0,T ]

∥∥∥∥∂ a(·, t)
∂x

∥∥∥∥
∞

+
supt∈[0,T ]

∥∥C(t)
∥∥2

inft∈[0,T ] a(1, t)

∥∥v(·)
∥∥

L2((0,1);Rn)
,

forv ∈ D(A∗(t)).
(2.43)

By combining Eqs. (2.40) and (2.43), the result follows.

The next Theorem 2.2.2 represents the analogous of 2.2.2 for the IBVP (2.26).

Theorem 2.2.2 (Existence and uniqueness). If Assumptions 2.2.1 and 2.2.2 hold, the IBVP (2.26)
admits a unique strict solution u ∈C1([0,T ];L2((0,1);Rn))∩C0([0,T ];D) as in Eq. (2.11) for
all f ∈C1([0,T ];L2((0,1);Rn)) and u0 ∈ D.

Proof. Since C1
0([0,1];Rn)⊂ D(A(t))≡ D, the operator (A(t),D) as defined in Eqs. (2.27) is

dense, i.e., D = L2((0,1);Rn). Moreover, it is closed and quasi-dissipative together with its
adjoint (A∗(t),D(A∗(t))) according to Lemmata 2.2.3 and 2.2.4. It follows from Lumer-Phillips’
Theorem 2.1.1 that, for t ∈ [0,T ], A(t) is the infinitesimal generator of a C0-semigroup. In
particular, A(t) ∈ G (1,ω), with ω as in Eq. (2.38). Therefore, the family {A(t)}t∈[0,T ] is
stable. Since D(A(t)) = D(A(0)) ≡ D is independent of t and, for every u0 ∈ D, A(t)u0 is
continuously differentiable in L2((0,1);Rn) by Assumption 2.2.1, Theorem 2.1.4 ensures the
existence of a unique strict solution reading as in Eq. (2.11) for all f ∈C1([0,T ];L2((0,1);Rn))
and u0 ∈ D.

Concerning the complete formulation with B(t) ̸= 0, Corollary 2.2.2 finally asserts the
well-posedness of the IBVP (2.12).

Corollary 2.2.2 (Existence and uniqueness (B(t) ̸= 0)). If Assumptions 2.2.1 and 2.2.2 hold, the
IBVP (2.12) admits a unique strict solution u ∈C1([0,T ];L2((0,1);Rn))∩C0([0,T ];D) for all
f ∈C1([0,T ];L2((0,1);Rn)) and u0 ∈ D.

Proof. The proof is formally indentical to that of Corollary 2.2.1.

Theorem 2.2.2 and Corollary 2.2.2 conclude the analysis of IBVPs in one space dimension.

2.2.2 Systems in several space dimensions
In the context of contact mechanics studies, transport equations in serveral space dimensions
describe the dynamics of rolling and slipping bodies, including tyres, railway wheels, and elastic
spheres [14, 15, 24].

More specifically, concerning systems in several space dimensions, the following structure
for the IBVP is considered in this thesis:

∂ u(x, t)
∂ t

+
(

a(x, t) ·∇
)

u(x, t) = B(t)u(x, t)+ f (x, t), for(x, t) ∈ Ω × (0,T ), (2.44a)

u(x, t) = 0, for(x, t) ∈ Γ−× (0,T ), (2.44b)
u(x,0) = u0(x), forx ∈ Ω , (2.44c)
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where u(x, t) ∈ Rn, a(x, t) ∈ Rd , d ≥ 2, represents the transport velocity, f (x, t) ∈ Rn is the
external forcing term, B ∈ C1([0,T ];Mn×n(R)), the open set Ω ⊂ Rd , represents the spatial
domain and

Γ+ =
{

x ∈ Γ
∣∣ a(x, t) ·ν(x)> 0

}
, (2.45a)

Γ0 =
{

x ∈ Γ
∣∣ a(x, t) ·ν(x) = 0

}
, (2.45b)

Γ− =
{

x ∈ Γ
∣∣ a(x, t) ·ν(x)< 0

}
, (2.45c)

being ν(x) the outward unit normal to Γ , defined almost everywhere on Γ . In the following, the
set of points for which ν(x) is not defined is denoted by χ ⊂ Γ .

The PDE (2.44a) describes a vector-valued transport equation whose scalar components
are coupled via the matrix B ∈ C1([0,T ];Mn×n(R)). It is obvious that the matrix B(t) is the
infinitesimal generator of a C0-semigroup2, with solution operator denoted by UB(t, t̃). Therefore,
substituting u(x, t)≜UB(t,0)w(x, t) into Eq. (2.44a) yields

UB(t,0)

(
∂ w(x, t)

∂ t
+
(

a(x, t) ·∇
)

w(x, t)

)
=−

(
∂UB(t,0)

∂ t
−B(t)UB(t,0)

)
w(x, t)+ f (x, t),

for(x, t) ∈ Ω × (0,T ).
(2.46)

Since UB(0,0) = In, the following matrix ODE is identically satisfied:

∂UB(t,0)
∂ t

= B(t)UB(t,0), for t ∈ [0,T ]. (2.47)

Additionally, by observing that the solution operator is invertible, i.e., C1([0,T ];GLn(R)) ∋
U−1

B (t,0)≡UB(0, t) exists for every t ∈ [0,T ], the original system described by Eqs. (2.44) may
be recast in the following equivalent form:

∂ w(x, t)
∂ t

+
(

a(x, t) ·∇
)

w(x, t) = g(x, t), for(x, t) ∈ Ω × (0,T ), (2.48a)

w(x, t) = 0, for(x, t) ∈ Γ−× (0,T ), (2.48b)
w(x,0) = w0(x) = u0(x), forx ∈ Ω , (2.48c)

being g(x, t)≜UB(0, t) f (x, t). The technique outlined above may be conveniently applied to the
rolling contact poblems considered, e.g., in [14, 15], which are or may be recast3 in the same
form as that described by Eqs. (2.44).

Concerning the study of the IBVPs (2.44) and (2.48), a common problem is that, when the
velocity field a(x, t) is time-dependent, the sets defined according to Eqs. (2.45) may also vary
over time, that is, Γ+ = Γ+(t), Γ0 = Γ0(t) and Γ− = Γ−(t). Moreover, the product a(x, t) ·ν(x)
vanishes for all the points of the boundary belonging to Γ− (characteristic condition). In Sect.
2.2.1, this possibility was conveniently excluded by introducing Assumption 2.2.1, which in
turn ensured the domain of the considered unbounded operator (A(t),D(A(t))) to be also time-
independent, i.e., D(A(t)) = D(A(0)) ≡ D. For general domains Ω ⊂ Rd , there is no simple

2This obviously remains true if B ∈C0([0,T ];Mn×n(R)).
3For example, IBVPs evolving on time-varying domains, such as those considered in [14, 15], may be restated

according to Eqs. (2.44).
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characterisation guaranteeing that the sets in Eqs. (2.45) are time-independent, whilst also
ensuring that the noncharacteristic condition is never violated on the boundary. Albeit the
well-posedness for transport equations of the type (2.44) and (2.48) may still be proved under
very general assumptions, such results rely on different arguments than those presented so far
(see the discussion in Sect. 2.3.1).

Therefore, mainly for the purpose of coherence, a simplified version of the IBVP (2.48),
where the vector field a(x, t) = a(x) is assumed to be time-independent, is considered in the
following. Returning to the standard notation for a matter of convenience, the corresponding
IBVP is stated as

∂ u(x, t)
∂ t

+
(

a(x) ·∇
)

u(x, t) = f (x, t), for(x, t) ∈ Ω × (0,T ), (2.49a)

u(x, t) = 0, for(x, t) ∈ Γ−× (0,T ), (2.49b)
u(x,0) = u0(x), forx ∈ Ω . (2.49c)

The motivation for considering the simplified IBVP (2.49) resides in that the semigroup theory
may be more easily applied, since the sets defined in Eqs. (2.45) do not depend on time. In
particular, the analysis proposed in this thesis relies on a classical result obtained by Bardos
[50], according to which the IBVP (2.49) may be recast as follows in the abstract setting:

du(t)
dt

= Au(t)+ f (t), for t ∈ (0,T ), (2.50a)

u(0) = u0, (2.50b)

where the unbounded operator (A,D(A)), A : D(A) 7→ L2(Ω ;Rn), is defined as

(Av)(x)≜−
(

a(x) ·∇
)

v(x), (2.51a)

D(A)≡ D ≜

{
v ∈ L2(Ω ;Rn)

∣∣∣ (a ·∇)v ∈ L2(Ω ;Rn), and v|
Γ−

= 0
}
. (2.51b)

The characterisation of the unbounded operator (A,D) defined according to Eqs. (2.51)
relies on the two following Assumptions 2.2.3 and 2.2.4. Assumption 2.2.3, in particular, is
the counterpart of Assumption 2.2.1 introduced in Sect. 2.2.1, proposed here in its original
formulation due to Bardos [50].

Assumption 2.2.3. The field A = a(x) ·∇ can be extended to a field Ā = ā(x) ·∇ defined on an
open set Ω ∗ ⊂ Rd such that Ω ⊂ Ω ∗, with ā ∈ C1(Ω ∗;Rd) bounded on Ω ∗ together with its
derivatives.

Assumption 2.2.4. The boundary Γ of the domain Ω is piecewise C1.

Theorem 2.2.3 asserts the well-posedness for the equivalent IBVP (2.49), and consequently
also for the original formulation (2.44). Its proof is only sketched and the reader is redirected to
[50] for further details.

Theorem 2.2.3 (Existence and uniqueness (Bardos [50])). If Assumptions 2.2.3 and 2.2.4 hold,
the IBVP (2.49) admits a unique strict solution u ∈C1([0,T ];L2(Ω ;Rn))∩C0([0,T ];D) for all
f ∈C1([0,T ];L2(Ω ;Rn)) and u0 ∈ D.
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Sketch of the proof. Since, under Assumptions 2.2.3 and 2.2.4, the trajectories of A intersect-
ing Γ0 ∪ χ have zero measure, it can be shown that A is the infinitesimal generator of a C0-

semigroup (see [50]). In particular, A ∈ G (1,ω), with ω ≜
1
2

∥∥∇ ·a(·)
∥∥

∞
. Therefore, for every

f ∈C1([0,T ];L2(Ω ;Rn)) and u0 ∈ D, the IBVP (2.49) has a unique strict solution in the form
(2.11) ensured by Theorem 2.1.4.

Mild solutions according to Definition 2.1.5 are easily obtained directly from Eq. (2.11).
Before concluding the analysis, it is perhaps worth mentioning that the result given in [50]

(for scalar equations) is more general than that presented above, and extends to other Lp(Ω ;Rn),
1 ≤ p < ∞, spaces than L2(Ω ;Rn). Moreover, the reader may easily realise that the extension of
Theorem 2.2.3 to more general IBVPs, accounting for, e.g., the presence integral terms, may be
worked out again within the mathematical framework provided by the perturbation theory of
linear unbounded operators.

2.3 Additional results and remarks
The present Section contains some additional results and remarks on hyperbolic evolution
equations that have not been covered in the main part of the Chapter.

2.3.1 A more general result for transport equations in several space di-
mensions

Concerning systems in several space dimensions, the well-posedness result obtained in Sect.
2.2.2 was restricted to the case of a time-independent vector field a(x, t) = a(x). This limitation
was mainly motivated by the fact that Theorem 2.1.4 requires the domain of the operator to
also be independent of time. Such an assumption is actually standard in the mathematical
literature dealing with hyperbolic PDEs. For example, within the semigroup framework, Massey
has addressed the existence and uniqueness of regular solutions for systems of hyperbolic
type by assuming that the product a(x, t) ·ν(x) never vanishes [41]: Considering instead other
approaches, similar assumptions are introduced in the seminal works by Kreiss (see [51, 52] and
references therein), and retained in the elegant monograph recently authored by Benzoni-Gavage
and Serre [54].

However, in a very general setting, when, e.g., B ∈ C0([0,T ];Mn×n(Rn)), existence and
uniqueness for the IBVP (2.44) may be established by invoking the following Theorem 2.3.1,
which targets the equivalent system (2.48).

Theorem 2.3.1 (Existence and uniqueness (Crippa, Donadello and Spinolo [53])). Let Ω ⊆ Rd

be an open set with uniformly Lipschitz boundary. Assume that the vector field a ∈ L∞(Ω ×
(0,T );Rd) satisfies ∇ · a ∈ L∞(Ω × (0,T )) and, for every open and bounded set Ω∗ ⊆ Ω ,
a ∈ L1

loc([0,T );BV(Ω∗;Rd)). If g ∈ L∞(Ω ×(0,T );Rn), then the IBVP described by Eqs. (2.48)
admits a unique weak or generalised solution w ∈ L∞(Ω × (0,T );Rn) for all ICs w0 ∈ L∞(Ω).

Proof. See [53].

Indeed, from Theorem 2.3.1 above, it is clear that the existence and uniqueness for the
original IBVP (2.44) follow directly from the continuously invertible transformation u(x, t) =
UB(t,0)w(x, t) introduced in Sect. 2.2.2. The main arguments used in the proof Theorem 2.3.1,
which is omitted in this thesis for the sake of both brevity and consistency, build upon the
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famous renormalisation theory developed by Di Perna and Lions, and fall outside the semigroup
framework outlined so far.

It is also worth observing that IBVPs on time-varying domains, such as those considered in
[14, 15, 33], may be converted into IBVPs of the same type as that described by Eqs. (2.44) by
performing a change of coordinates mapping the original domain into a fixed one, according to
the methodologies outlined, e.g., in [33].

2.3.2 Existence of smoother solutions
Theorem 2.1.4 asserts the existence and uniqueness of strict solutions, which enjoy a certain type
of regularity. To proceed with the error analysis in the context of DGMs, however, smoother
solutions may need to be considered. In this context, the existence and uniqueness of more
regular solutions may be proved by applying Theorem 2.1.4 iteratively. As an example, the one-
dimensional IBVP described by Eqs. (2.12) may be considered. Defining v(x, t)≜ ∂u(x, t)/∂x,
the following IBVP may be deduced governing the time evolution of the new variable v(x, t):

∂ v(x, t)
∂ t

+a(x, t)
∂ v(x, t)

∂x
= D(t)v(x, t)+g(x, t), for(x, t) ∈ (0,1)× (0,T ), (2.52a)

v(0, t) = h(t), for t ∈ (0,T ), (2.52b)

v(x,0) = v0(x)≜
∂ u0(x)

∂x
, forx ∈ (0,1), (2.52c)

where

(Dv)(x, t)≜ (Bv)(x, t)− ∂ a(x, t)
∂x

v(x, t), (2.53a)

g(x, t)≜
∂ f (x, t)

∂x
, (2.53b)

and the BC h(t) in Eq. (2.52b) may be obtained by differentiating Eq. (2.12b) with respect to
the time variable and then inverting for ∂u(0, t)/∂ t from Eq. (2.12a), yielding

h(t) =
1

a(0, t)

(
B(t)u(0, t)+C(t)u(1, t)+ f (0, t)

)
, (2.54)

with a(0, t) being invertible owing to Assumption 2.2.1.
The problem described by Eqs. (2.52) may again be reformulated in an abstract setting

according to Eqs. (2.7), clearly with the corresponding unbounded operator (A(t),D(A(t9)) to
be properly defined. It is clear, however, that, under opportune assumptions on the data, the
domain of such an operator would still be time-independent, i.e., D(A(t)) = D(A(0))≡ D, and
that moreover D ⊂ H1((0,1);Rn), thus delivering at least H1((0,1);Rn)-regularity for the space
derivative v(x, t), which in turn would imply H2((0,1);Rn)-regularity for the original variable.

Analogously, by defining w ≜ ∂u(x, t)/∂ t, the following IBVP may be deduced:

∂ w(x, t)
∂ t

+a(x, t)
∂ w(x, t)

∂x
= B(t)w(x, t)+C(t)w(1, t)+g(x, t), for(x, t) ∈ (0,1)× (0,T ),

(2.55a)

w(0, t) = 0, for t ∈ (0,T ), (2.55b)
w(x,0) = w0(x), forx ∈ (0,1), (2.55c)
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with

g(x, t)≜− ∂ a(x, t)
∂ t

∂ u(x, t)
∂x

+
dC(t)

dt
u(x, t)+

dB(t)
dt

u(1, t)+
∂ f (x, t)

∂ t
, (2.56)

and where this time the IC w0(x) in Eq. (2.55c) may be derived directly from Eq. (2.12). In
particular, it is important to observe that, concerning Eqs. (2.55), the unbounded operator
(A(t),D(A(t))) appearing in the abstract IBVP (2.7) may be defined exactly as for the original
evolution system governed by Eqs. (2.12). This remains clearly true for time derivatives of any
order.

The problem becomes rapidly more complicated in several space dimensions, where typically
the difficulty arises from the need of inverting the boundary matrix to derive a similar BC to
that in Eq. (2.54). In fact, such a matrix might be unbounded, which often limits the analysis to
problems where the product a(x, t) ·ν(x) cannot vanish. On this matter, the reader is redirected
to, e.g., [41, 51, 52, 54].



Chapter 3

Space semi-discretisation: discontinuous
Galerkin finite element methods (DGMs)

This Chapter is devoted to discussing the finite element modelling of hyperbolic IBVPs. More
specifically, Sect. 3.1 provides an outline of the DGMs employed for space semi-discretisation,
introducing the main concepts that are needed to build a mesh of the space domain, and the
salient properties of the functional spaces used on each mesh element. Useful inequalities
required to derive suitable error estimates are also recalled. Then, the first part of Sect. 3.2
is dedicated to the characterisation of the discrete operator that is chosen to approximate the
time evolution of the considered hyperbolic IBVPs. The stability of the space semi-discrete
problem, along with the convergence of the proposed DGMs, are instead analysed in the second
part of Sect. 3.2. Most of the material presented in in the following is adapted, with opportune
simplifications, from [39].

3.1 Discontinuous Galerkin finite element methods (DGMs)
The present Section illustrates the main concepts and assumptions that are required to con-
struct finite-dimensional approximations of hyperbolic evolution equations within the (DGM)
framework. The proposed method relies on the spatial discretisation of the considered domain
Ω , using a mesh and choosing an appropriate local polynomial behaviour within each mesh
element.

More specifically, in the remainder of the Chapter, the following hyperbolic IBVP is consid-
ered, which generalises those examined in Chap. 1:

∂ u(x, t)
∂ t

+
(

a(x, t) ·∇
)

u(x, t) = B(t)u(x, t)+C(t)
∫

Γ

u(x, t)ds+ f (x, t), for(x, t) ∈ Ω × (0,T ),

(3.1a)

u(x, t) = 0, for(x, t) ∈ Γ−× (0,T ),
(3.1b)

u(x,0) = u0(x), forx ∈ Ω , (3.1c)

with the data a(x, t) ∈Rd , f (x, t) ∈Rn, B(t) ∈ B(L2(Ω ;Rn)), and C(t) ∈ Mn×n(R) assumed to
be sufficiently regular for what follows. In particular, by setting the term B(t) = 0 for simplicity1

1As in Chap. 1, when the operator B(t) is explicitly considered, the problem becomes equivalent by replacing
(A(t),D(A(t))) with (Ã(t),D(Ã(t))), being (Ãv)(x, t)≜ (Av)(x, t)+(Bv)(x, t) and D(Ã(t)) = D(A(t)).

23
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and consistency of notation with Chap. 1, and assuming Γ−(t) = Γ− to be constant over time,
the above hyperbolic IBVP may be recast in abstract form by setting

(Av)(x, t)≜−
(

a(x, t) ·∇
)

v(x)+C(t)
∫

Γ

v(x)ds, (3.2a)

D(A(t))≜
{

v ∈ L2(Ω ;Rn)
∣∣∣ A(t)v ∈ L2(Ω ;Rn), andv|

Γ−
= 0
}
, (3.2b)

where it shall be supposed that D(A(t)) = D(A(0)). Such a condition is formalised according to
the following Assumption 3.1.1, and is complemented with additional requirements imposed on
the domain Ω and on matrix C(t) ∈ Mn×n(R).

Assumption 3.1.1. The following conditions are supposed to hold:

1. The domain D(A(t)) = D(A(0))≡ D is independent of the time,

2. The domain Ω is bounded with compact boundary Γ ,

3. The matrix C(t) ∈ Mn×n(R) = 0 whenever the condition a(x, t) ·ν(x) = 0 is satisfied for
some x ∈ Γ .

Concerning the characterisation of the the domain D(A(t))≡ D, it is worth emphasising that
all the IBVPs analysed in Sect. 2.2 may be recast in the form (2.7) with (A(t),D(A(t))) according
to Eqs. (3.2). In particular, with reference to the one-dimensional problems investigated in Sect.
5.2.1, it is clear that Assumptions 2.2.1 and 3.1.1 render the definition of the domain D(A(t))≡D
in Eq. (2.27) equivalent to that in Eqs. (3.2). Finally, the exact solution to the IBVP (2.7), with
(A(t),D(A(t))) defined as in Eqs. (3.2), is supposed to satisfy at least u ∈C0([0,T ];H1(Ω ;Rn)).
In the following, the notation is always abbreviated (A(t),D).

Owing to the above premises, the objective consists then in approximating the solution to the
continuous IBVP described by Eqs. (2.7), with (A(t),D) defined as in Eq. (3.2), using functions
uh(t) ∈Vh, and replacing the operator (A(t),D) with its discrete counterpart (Ah(t),Vh⋆), where
Vh is a finite-dimensional space to be opportunely selected, and Vh⋆ ≜ H1(Ω ;Rn)+Vh needs
to be defined accordingly. In particular, the functional spaces Vh considered in this thesis are
typically polynomial, which motivates the introduction of broken polynomial spaces as in Sect.
3.1.2. Furthermore, owing to the assumption u ∈C0([0,T ];H1(Ω ;Rn)), it may be realised that
the quantity (u(t)−uh(t)) ∈Vh⋆. Consequently, the approximation error may be quantified by
evaluating the norm difference

∥∥u(·, t)−uh(·, t)
∥∥

L2(Ω ;Rn)
.

3.1.1 Meshes
The first step to construct finite-dimensional approximations of the hyperbolic IBVPs discussed
in Chap. 1 consists in discretising the spatial domain Ω using a mesh. To this end, the notions of
simplex and simplex faces are preliminarly introduced, which are propaedeutic to the definition
of simplicial meshes, which constitute the main type of mesh considered in this thesis.

Definition 3.1.1 (Simplex [39]). Given a family {y0, . . . ,yd} of d +1 points in Rd such that the
vectors {y1−y0, . . . ,yd −y0} are linearly independent, the interior of the convex hull {y0, . . . ,yd}
is called a non-degenerate simplex of Rd , and the points {y0, . . . ,yd} are called its vertices.

Definition 3.1.2 (Simplex faces [39]). Let S be a non-degenerate simplex with vertices {y0, . . . ,yd}.
For each i ∈ {0, . . . ,d}, the convex hull of {y0, . . . ,yd}\{yi} is called a face of the simplex S.
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With the aid of Definitions 3.1.1 and 3.1.2, it is possible to introduce the notion of simplicial
mesh, according to the following 3.1.3.

Definition 3.1.3 (Simplicial mesh [39]). A simplicial mesh T of the domain Ω is a finite
collection of disjoint non-degenerate simplices T = {T} forming a partition of Ω , i.e,

Ω =
⋃

T∈T

T . (3.3)

Each T ∈ T is a mesh element.

The concept of meshsize plays a crucial role in the analyses conducted in the Sect. 3.2.3 and
Chap. 4.

Definition 3.1.4 (Element diameter, meshsize). Let T be a mesh of the domain Ω . For all
T ∈ T , hT denotes the element diameter of T , and the meshsize is defined as the real number

h ≜ max
T∈T

hT . (3.4)

In the following, the notation Th is used to indicate a mesh T with meshsize h. Finally, the
notion of element outward unit normal is introduced, according to Definition 3.1.5.

Definition 3.1.5 (Element outward unit normal). Let Th be a mesh of the domain Ω and let
T ∈ Th. The symbol ν∂T (x) denotes the outward unit normal to ∂T , defined almost everywhere.

Mesh faces, averages, and jumps

The concepts of mesh faces, averages, and jumps play a crucial role in the design and analysis
of DGMs.

Definition 3.1.6 (Mesh faces). Let Th be a mesh of the domain Ω . A (closed) subset F of Ω is
a mesh face if F has positive (d −1)-dimensional Hausdroff measure and if either one of the
two following conditions are satisfied:

(i) There are distinct mesh elements T1, T2 ∈ Th such that F = ∂T1 ∩∂T2; in such a case, F is
called an interface.

(ii) There is T ∈ Th such that F = ∂T ∩Γ ; in such a case, F is called a boundary face.

Interfaces are collected in the set F i
h and boundary faces in the set F b

h . Accordingly, faces
are collected in the set Fh ≜ F i

h ∪F b
h . Moreover, for any mesh element T ∈ Th, the set

FT ≜
{

F ∈ Fh
∣∣ F ⊂ ∂T

}
(3.5)

is defined collecting the mesh faces composing the boundary ∂T of T .
Finally, for any mesh face F ∈ Fh, the set

TF ≜
{

T ∈ Th
∣∣ F ⊂ ∂T

}
, (3.6)

is introduced. It is worth observing that TF consists of two mesh elements if F ∈ F i
h, and of

one mesh element if F ∈ F b
h . Next, interface averages and jumps are defined.
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Definition 3.1.7 (Interfaces, averages and jumps). Let v(x) ∈ R be defined on Ω , and assume
that v(x) is smooth enough to admit, on all F ∈ F i

h, a possibly two-valued trace. This means
that, for all T ∈ Th, the restriction v(x)|T of v(x) to the open set T can be defined up to the
boundary ∂T . Then, for all F ∈ F i

h, and almost every x ∈ F, the average of v(x) is defined as{{
v(x)

}}
≜

1
2

(
v(x)|T1

+ v(x)|T2

)
, (3.7)

and the jump as
q

v(x)
y
≜ v(x)|T1

− v(x)|T2
. (3.8)

For vector-valued functions v(x) ∈ Rn, averages and jumps are defined component-wise.

The last concept to be introduced is that of face unit normal, according to the following
Definition 3.1.8.

Definition 3.1.8 (Face unit normal). For all F ∈ Fh, and almost every x ∈ F, the unit normal
νF(x) to F at x is defined as

(i) ν∂T1(x), the unit normal to F at x pointing from T1 to T2 if F ∈ F i
h, with F = ∂T1 ∩∂T2;

the orientation of νF(x) is arbitrary depending on the choice of T1 and T2, but kept fixed in
the following.

(ii) ν(x), the outward unit normal to Γ at x if F ∈ F b
h .

3.1.2 Broken spaces
After constructing a mesh of the space domain Ω , it is necessary to choose a certain functional
space within each element. In this thesis, such a choice for the space Vh falls on polynomial
functions, which motivates the introduction of broken polynomial spaces, and also broken
Hilbert spaces.

Broken polynomial spaces

Consider k ∈ N0 and the definition of Ak
d as

Ak
d ≜

{
α ∈ Nd

∣∣∣ |α|1 ≤ k
}
, (3.9)

where |·|1 denotes the standard ℓ1-norm on Rd . Accordingly, the space of polynomials of d
variables, of total degree at most k, is given by

Pk
d ≜

p : Rd ∋ x 7→ p(x) ∈ R

∣∣∣∣∣∣∣ ∃(γα)α∈Ak
d
∈ RcardAk

d , p(x) = ∑
α∈Ak

d

γαxα

, (3.10)

with the convention that xα = ∏
d
i=1 xαi

i for x ∈ Rd . The dimension of the vector space is
dimPk

d = cardAk
d = (k+ d)!/(k!d!). With Pk

d defined according to the above Eq. (3.10), it is
possible to introduce the broken polynomial space

Pk
d(Th)≜

{
v ∈ L2(Ω)

∣∣∣ forT ∈ Th, v|T ∈ Pk
d(T )

}
, (3.11)
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where Pk
d(T ) is spanned by the restriction to T of polynomials in Pk

d . Clearly, it holds that
dimPk

d(Th) = cardTh dimPk
d . More generally, in the following, broken polynomial spaces

Pk
d(T ;Rn) and Pk

d(Th;Rn) are considered, whose characterisation is formally analogous to that
provided by Eqs. (3.10) and (3.11).

Broken Hilbert spaces

Consider a mesh Th of a domain Ω , and the Hilbert space Hm(T ;Rn). The broken Hilbert space
is then defined as

Hm(Th;Rn)≜

{
v ∈ L2(Ω ;Rn)

∣∣∣ forT ∈ Th,v|T ∈ Hm(T ;Rn)

}
, (3.12)

where m ∈N0 is an integer. Starting from Eq. (3.12), it comes natural to define a broken gradient
operator acting on the broken Hilbert space H1(Th). Such an operator also acts on broken
polynomial spaces.

Definition 3.1.9 (Broken gradient). The broken gradient ∇h : H1(Th) 7→ L2(Ω ;Rd) is defined
such that, for all T ∈ Th,

∇hv(x)|T ≜ ∇

(
v(x)|T

)
, forv ∈ H1(Th). (3.13)

It is worth observing that the usual Hilbert spaces are subspaces of the corresponding broken
counterparts and, in fact, the broken gradient coincides with the distributional one in H1(Ω).
This result is formalised in the following Lemma 3.1.1.

Lemma 3.1.1 (Broken gradient on H1(Ω)). Let m ∈ N0 and 1 ≤ p ≤ ∞. There holds Hm(Ω)⊂
Hm(Th). Moreover, for all v ∈ H1(Ω), ∇hv = ∇v in L2(Ω ;Rd).

Proof. See Lemma 1.22 in [39].

An important characterisation of the Hilbert space H1(Ω ;Rn) concerns jumps across inter-
faces: whereas functions in H1(Th;Rn) are allowed to have discontinuities across interfaces,
these jumps are always zero for functions in the usual Hilbert space H1(Ω ;Rn).

Theorem 3.1.1 (Characterisation of H1(Ω ;Rn)). Let 1 ≤ p ≤ ∞. A function v ∈ H1(Th;Rn)
belongs to H1(Ω ;Rn) if and only if, for each F ∈ F i

h, the following identity is satisfied:
q

v(x)
y
= 0. (3.14)

Proof. See Lemma 1.23 in [39].

3.1.3 Admissible mesh sequences
The objective of the present Section is to present some technical results to analyse the con-
vergence of DGMs as the meshsize goes to zero. In particular, a simplicial mesh sequence
TH ≜ {Th}h∈H , where H is a countable subset of R>0, having 0 as the only accumulation
point, is considered in the following. The main tools recalled here are inverse and trace inequali-
ties that allow asserting discrete stability and boundedness uniformly in h, as well as optimal
polynomial approximation properties.

In this context, the first useful concept to be introduced is that of matching simplicial mesh.
This notion is formalised according to Definition 3.1.10 below.
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Definition 3.1.10 (Matching simplicial mesh). A mesh Th is said to be a matching simplicial
mesh if it is a simplicial mesh and, for any T ∈ Th with vertices {y0, . . . ,yd}, the set ∂T ∩∂T ′,
for all T ′ ∈ Th such that T ′ ̸= T , is the convex hull of a (possibly empty) subset of {y0, . . . ,yd}.

Starting with Definition 3.1.10, the notion of shape and contact regularity for simplicial
mesh sequences is given according to the following 3.1.11.

Definition 3.1.11 (Shape and contact regularity). A mesh sequence TH of matching simplicial
meshes Th is said to be contact and shape regular if there exists ρ ∈ R>0 independent of h such
that, for all T ′ ∈ Th, ρhT ′ ≤ rT ′ , where hT ′ is the diameter of T ′ and rT ′ is the radius of the
largest ball inscribed in T ′.

Inverse and trace inequalities

Inverse and trace inequalities are indispensable mathematical tools to analyse the convergence
of DGMs. In the following, such inequalities are presented concerning the broken polynomial
spaces Pk

d(T ;Rn) defined in Sect. 3.1.2. The first relationship presented below is the inverse
trace inequality, which provides a local upper bound on the gradient of discrete functions,
according to Lemma 3.1.2.

Lemma 3.1.2 (Inverse trace inequality). Let TH be a shape and contact-regular mesh sequence
with parameters ρ . Then, for all h ∈ H and T ∈ TH , the following estimate holds:∥∥∇vh(·)

∥∥
L2(T ;Rn×d)

≤ Cinv

hT

∥∥vh(·)
∥∥

L2(T ;Rn)
, forvh ∈ Pk

d(TH ;Rn), (3.15)

where the constant Cinv depends only on ρ , d, and k.

Proof. See Lemma 1.44 in [39].

As already mentioned, the inverse trace inequality in Eq. (3.15) holds locally on each mesh
element. Consequently, it depends upon the shape of the mesh elements, but not on the way
these come into contact.

The next relationship is the discrete trace inequality, which yields an upper bound on the
face values of discrete functions. The result is formalised in Lemma 3.1.3.

Lemma 3.1.3 (Discrete trace inequality). Let TH be a shape and contact-regular mesh sequence
with parameters ρ . Then, for all h ∈ H and T ∈ TH , the following estimate holds:∥∥vh(·)

∥∥
L2(F ;Rn)

≤ Ctr√
hT

∥∥vh(·)
∥∥

L2(T ;Rn)
, forvh ∈ Pk

d(TH ;Rn), (3.16)

where the constant Ctr depends only on ρ , d, and k.

Proof. See Lemma 1.46 in [39].

Polynomial approximation

Definition 3.1.12 (Optimal polynomial approximation). A mesh sequence TH is said to enjoy
optimal polynomial approximation properties if, for all h ∈ H , all T ∈ Th, and all polynomial
degree k, there is a linear interpolation operator I k

T : L2(T ;Rn) 7→ Pk
d(T ;Rn) such that, for all

s ∈ {0, . . . ,k+1} and all v ∈ Hs(T ;Rn), there holds∣∣∣v(·)−I k
T v(·)

∣∣∣
Hm(T ;Rn)

≤Cphs−m
T

∣∣v(·)∣∣Hs(T ;Rn)
, form ∈ {0, . . . ,s}, (3.17)

where Cp is independent of both T and h.
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As for the inverse trace inequality (3.15), the optimal polynomial approximation property
holds locally on mesh elements and is also affected by the shape of such elements, but not on
the way they come into contact. Owing to Definition 3.1.12, it is finally possible to enounce the
concept of admissible mesh sequence, as stated in 3.1.13.

Definition 3.1.13 (Admissible mesh sequence). A mesh sequence TH is admissible if it is shape
and contact regular and enjoys optimal polynomial approximation properties.

In this thesis, the L2-orthogonal projection πh : L2(Ω ;Rn) 7→ Pk
d(Th;Rn) onto the broken

polynomial space Pk
d(Th;Rn) is often considered because of its simplicity, which delivers other

two important technical results, according to the subsequent Lemmata 3.1.4 and 3.1.5.

Lemma 3.1.4 (Optimality of L2-orthogonal projection). Let TH be an admissible mesh se-
quence. Let πh : L2(Ω ;Rn) 7→ Pk

d(Th;Rn) be the L2-orthogonal projection onto Pk
d(Th;Rn).

Then, for all s ∈ {0, . . . ,k+1} and all m ∈ {0, . . . ,s}, it holds that∣∣v(·)−πhv(·)
∣∣
Hm(T ;Rn)

≤C′
phs−m

T

∣∣v(·)∣∣Hs(T ;Rn)
, forv ∈ Hs(T ;Rn), (3.18)

where C′
p is independent of both T and h.

Proof. See Lemma 1.58 in [39].

Lemma 3.1.5 (Polynomial approximation on mesh faces). Under the same hypotheses of Lemma
3.1.4, assume additionally that s ≥ 1. Then, for all h ∈ H , all T ∈ Th, and all F ∈ FT , the
following inequalities hold:∥∥v(·)−πhv(·)

∥∥
L2(F ;Rn)

≤C′′
p hs−1/2

T

∣∣v(·)∣∣Hs(T ;Rn)
, fors ≥ 1, (3.19a)

n

∑
i=1

∥∥∥∥∇

(
vi(·)−πhvi(·)

)∣∣
T
·ν∂T (·)

∥∥∥∥
L2(F)

≤C′′′
p hs−3/2

T

∣∣v(·)∣∣Hs(T ;Rn)
, fors ≥ 2, (3.19b)

where C′′
p and C′′′

p are independent of both T and h.

Proof. The result is a direct consequence of the continuous trace inequality.

3.2 Space semi-discretisation of linear hyperbolic IBVPs
Building upon the concepts developed above, the present Section deals with the space semi-
discretisation of the IBVP described by Eqs. (2.7) and (3.2), by defining the discrete operator
(Ah(t),Vh⋆) and providing its characterisation. The mathematical properties of the operator
(Ah(t),Vh⋆) are then exploited to show stability and convergence of the space semi-discrete
DGMs.

To this end, some preliminary assumptions are introduced in the following, together with the
definition of appropriate norms and seminorms.

3.2.1 Preliminaries and assumptions
Here, the main assumptions concerning the regularity of the mesh and meshsize are enounced.
Moreover, different norms and seminorms are introduced that are needed for the analyses
conducted in Sect. 3.2.3 and later on in Chap. 4.
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Assumptions and notation

As already mentioned, in this thesis, space semi-discretisation is achieved using an upwind
DGM, which is particularly suited to treat hyperbolic IBVPs. In this context, the discrete
space is assumed to coincide with the broken polynomial spaces discussed in Sect. 3.1.2,
that is, Vh = Pk

d(Th;Rn), defined with polynomial degree k ∈ N0 and with Th belonging to an
admissible mesh sequence. In particular, quasi-uniform mesh sequences are considered for
simplicity, which essentially means that, for all h ∈ H ,

max
T∈Th

hT ≤C min
T∈Th

hT . (3.20)

Moreover, the following reference quantities are introduced:

1
tc
≜ max

 sup
t∈[0,T ]

∥∥∇ ·a(·, t)
∥∥

∞
,εh

, and ηc ≜ sup
t∈[0,T ]

∥∥a(·, t)
∥∥

∞
, (3.21a)

with εh ∈ R≥0 satisfying

εh ≜

2ψh
supt∈[0,T ]

∥∥C(t)
∥∥2

inf(x,t)∈Γ×[0,T ]
∣∣a(x, t) ·ν(x)∣∣ , if inf(x,t)∈Γ×[0,T ]

∣∣a(x, t) ·ν(x)∣∣ ∈ R>0,

0, otherwise,

(3.22)

for some ψh > 1. From the definitions above, it may be realised that ηc scales as a velocity,
whereas tc scales as the reciprocal of a time only if εh = 0. The inconsistency is due to the
fact that the term εh arises from the cross product between a boundary term and an integral
over the physical domain. Moreover, whenever 1/tc = 0, tc = ∞, which corresponds to the
case of constant advection velocity, no reaction, and absence of boundary terms (C(t) = 0 by
assumption). Another time scale, defined more specifically as

t⋆ ≜ min{T, tc}, (3.23)

is also introduced for what follows. It is essential to clarify that, in the subsequent analyses,
expressions involving 1/tc are conventionally evaluated at zero whenever tc = ∞. Moreover,
according to Eq. (3.23), the following Assumption 3.2.1 is supposed to hold.

Assumption 3.2.1 (Assumption on the meshsize). The meshsize h is chosen such as to verify

h ≤ ηct⋆. (3.24)

Assumption 3.2.1 prevents the local Damköhler number from being too large, and allows the
meshsize to resolve the spatial variations of the transport velocity [39]. Moreover, such choice
of h implies that a particle advected at speed ηc crosses at least one mesh element over the finite
time interval (0,T ).

Concerning instead the notation, considering a real number y ∈ R, its positive and negative
parts y⊕, y⊖ ∈ R≥0 are also defined for convenience as

y⊕ ≜
1
2

(
|y|+ y

)
, (3.25a)

y⊖ ≜
1
2

(
|y|− y

)
. (3.25b)

Moreover, to alleviate the notation, inequalities of the type a ≤ Cb, where C is a constant
independent of h and the problem data, are often abbreviated as a ≲ b in what follows.
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Norms and seminorms

Inspired by [39], the following seminorms on Vh⋆ ≜ H1(Ω ;Rn)+Vh are introduced, which are
needed for the analysis conducted in Sects. 3.2.2 and 3.2.3:∣∣v(·)∣∣2

η
≜

1
2

∫
Γ

∣∣a(x, t) ·ν(x)∣∣∥∥v(x)
∥∥2

2 ds+
1
2 ∑

F∈F i
h

∫
F

∣∣a(x, t) ·νF(x)
∣∣∥∥∥qv(x)

y∥∥∥2

2
ds, (3.26a)

∣∣v(·)∣∣2C ≜
1
2

∥∥C(t)
∥∥2∥∥v(·)

∥∥2
L2(Γ ;Rn)

, (3.26b)

∣∣v(·)∣∣2
εh
≜


∣∣v(·)∣∣2

η
− 1

εh

∣∣v(·)∣∣2C , ifεh ∈ R>0,∣∣v(·)∣∣2
η

otherwise,
(3.26c)

∣∣v(·)∣∣2εh
2
≜


∣∣v(·)∣∣2

εh
− 1

εh

∣∣v(·)∣∣2C , ifεh ∈ R>0,∣∣v(·)∣∣2
η

otherwise.
(3.26d)

It is worth clarifying, in particular, that the term C(t) in Eq. (3.26b) represents the matrix of
coefficient appearing in the IBVP (3.1), and hence the quantities defined according to Eqs.
(3.26c) and (3.26d) are actually seminorms, owing to an appropriate choice of the parameter εh
satisfying Eq. (3.22) with ψh > 1. Accordingly, the following norms, similar to those considered
in [39], are also defined on Vh⋆:∥∥v(·)

∥∥2
h ≜

1
tc

∥∥v(·)
∥∥2

L2(Ω ;Rn)
+
∣∣v(·)∣∣2

η
, (3.27a)∥∥v(·)

∥∥2
h⋆ ≜

∥∥v(·)
∥∥2

h + ∑
T∈Th

ηc
∥∥v(·)

∥∥2
L2(∂T ;Rn)

. (3.27b)

3.2.2 The discrete operator (Ah(t),Vh⋆)

The next step consists in replacing the operator (A(t),D) appearing in Eqs. (2.7) and (3.2)
with its discrete counterpart. In this thesis, based predominantly on [39], a discrete operator
with upwind regularisation is proposed. More specifically, the discrete operator (Ah(t),Vh⋆),
Ah(t) : Vh⋆ 7→Vh, is defined such that〈

Ah(t)v,wh

〉
L2(Ω ;Rn)

≜−
∫

Ω

[(
a(x, t) ·∇h

)
v(x)

]T

wh(x)dx+
∫

Γ

vT(x)CT(t)ds
∫

Ω

wh(x)dx

−
∫

Γ

(
a(x, t) ·ν(x)

)⊖
vT(x)wh(x)ds

+ ∑
F∈F i

h

∫
F

a(x, t) ·νF(x)
q

v(x)
yT
{{

wh(x)
}}

ds

− 1
2 ∑

F∈F i
h

∫
F

∣∣a(x, t) ·νF(x)
∣∣qv(x)

yTq
wh(x)

y
ds, for(v,wh) ∈Vh⋆×Vh.

(3.28)

In this way, (Ah(t),Vh⋆) may be used to formulate the equivalent space semi-discrete problem of
the IBVP (2.7) as

duh(t)
dt

= Ah(t)uh(t)+ fh(t), for t ∈ (0,T ), (3.29a)
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uh(0) = πhu0, (3.29b)
fh(t) = πh f (t), for t ∈ (0,T ), (3.29c)

where πh : L2(Ω ;Rn) 7→ Vh denotes once again the L2-projection onto Vh = Pk
d(Th;Rn). By

choosing a suitable basis for the space Vh, the semi-discrete IBVP (3.29) may be transformed
into a system of linear ODEs for the time-varying components uh(t) on the selected basis [39].

Remark 3.2.1. In defining (Ah(t),Vh⋆) according to Eq. (3.28), it has been assumed that
B(t) = 0 for simplicity. The extension to the case where B(t) is not identically zero is trivial. It
is also worth clarifying that the following analyses are not affected by such a simplification, and
the definition of the seminorms and norms as in Eqs. (3.26) and (3.27) can easily accommodate
the more general case, by simply modifying the quantities appearing in Eq. (3.21). On this
matter, see also [39].

Characterisation of the discrete operator (Ah(t),Vh⋆)

Some technical results are preliminary needed to establish the stability and convergence of the
proposed DGMs.

In particular, the first result advocated here, formalised in Lemma 3.2.1, delivers a stronger
version of the consistency property considered in [39], which accounts for time-shifting. Consis-
tency and discrete quasi-dissipativity properties for the operator (Ah(t),Vh⋆) are also asserted
in the classical version enounced in [39] by the subsequent Corollary 3.2.1 and Lemma 3.2.2,
respectively. The latter, in particular, may be interpreted as the discrete counterpart of the
dissipativity property discussed in Chap. 2 concerning the continuous hyperbolic IBVPs under
investigation.

Lemma 3.2.1 (Time-shifted consistency). Under Assumption 3.1.1, the discrete operator
(Ah(t),Vh⋆) is time-shifted consistent. That is, for any exact solution u ∈C1([0,T ];L2(Ω ;Rn))∩
C0([0,T ];H1(Ω ;Rn)) to the IBVP described by Eqs. (2.7) and (3.2), and for all wh ∈ Vh, it
satisfies:〈

Ah(t)u
(

t ′
)
,wh

〉
L2(Ω ;Rn)

=

〈
A(t)u

(
t ′
)
,wh

〉
L2(Ω ;Rn)

, for
(

t, t ′
)
∈ [0,T ]2, (3.30a)〈

Ah(t)u
(

t ′
)
,wh

〉
L2(Ω ;Rn)

=

〈
πhA(t)u

(
t ′
)
,wh

〉
L2(Ω ;Rn)

, for
(

t, t ′
)
∈ [0,T ]2. (3.30b)

Proof. Since it solves the IBVP described by Eqs. (2.7) and (3.2), u ∈C0([0,T ];H1(Ω ;Rn))∩
C0([0,T ];D) by assumption. Moreover, since D(A(t)) = D(A(0)) ≡ D is constant over time,
the third term on the right-hand side of Eq. (3.28) vanishes for all (t, t ′) ∈ [0,T ]2, whereas the
identity Ju(x, t ′)K = 0 is valid for all F ∈ F i

h according to Theorem 3.1.1. Hence, Eq. (3.28)
simplifies to 〈

Ah(t)u
(

t ′
)
,wh

〉
L2(Ω ;Rn)

=−
∫

Ω

[(
a(x, t) ·∇

)
u
(

x, t ′
)]T

wh(x)dx

+
∫

Γ

uT
(

x, t ′
)

CT(t)ds
∫

Ω

wh(x)dx

=

〈
A(t)u

(
t ′
)
,wh

〉
L2(Ω ;Rn)

,

(3.31)
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therefore proving Eq. (3.30a). Moreover, recalling the definition of πh : L2(Ω ;Rn) 7→ Vh
provides 〈

πhA(t)u
(

t ′
)
,wh

〉
L2(Ω ;Rn)

=

〈
A(t)u

(
t ′
)
,wh

〉
L2(Ω ;Rn)

, (3.32)

which, combined with the above Eq. (3.31), gives (3.30b).

The classical notion of consistency, as stated in [39], follows immediately from Lemma
3.2.1, and is reported below for completeness.

Corollary 3.2.1 (Consistency (Di Pietro and Ern [39])). The discrete operator (Ah(t),Vh⋆) is
consistent. That is, for any exact solution u ∈C1([0,T ];L2(Ω ;Rn))∩C0([0,T ];H1(Ω ;Rn)), it
satisfies

πh
du(t)

dt
= Ah(t)u(t)+ fh(t), for t ∈ [0,T ]. (3.33)

Proof. The proof is almost identical to that of Lemma 3.4 in [39]. Taking the inner product of
Eq. (2.7) on L2(Ω ;Rn) with wh ∈Vh yields〈

du(t)
dt

,wh

〉
L2(Ω ;Rn)

=
〈

A(t)u(t),wh

〉
L2(Ω ;Rn)

+
〈

f (t),wh

〉
L2(Ω ;Rn)

, for t ∈ [0,T ]. (3.34)

From Lemma 3.2.1, it follows immediately that ⟨Ah(t)u(t),wh⟩L2(Ω ;Rn) = ⟨A(t)u(t),wh⟩L2(Ω ;Rn).
Moreover, owing to the definition of πh : L2(Ω ;Rn) 7→Vh, ⟨ f (t),wh⟩L2(Ω ;Rn)= ⟨πh f (t),wh⟩L2(Ω ;Rn),
and similarly for du(t)/dt. Hence,〈

πh
du(t)

dt
,wh

〉
L2(Ω ;Rn)

=
〈

Ah(t)u(t),wh

〉
L2(Ω ;Rn)

+
〈

fh(t),wh

〉
L2(Ω ;Rn)

, (3.35)

which proves the desired result.

Lemma 3.2.2 (Discrete quasi-dissipativity). For all vh ∈Vh, the operator (Ah(t),Vh⋆) is quasi-
dissipative with constant

ωh ≜
1
2

(
sup

t∈[0,T ]

∥∥∇ ·a(·, t)
∥∥

∞
+ εh

)
, (3.36)

where εh may be chosen abitrarily to satisfy Eq. (3.22). In particular,〈
Ah(t)vh,vh

〉
L2(Ω ;Rn)

≤−
∣∣vh(·)

∣∣2
εh
+ωh

∥∥vh(·)
∥∥2

L2(Ω ;Rn)
, forvh ∈Vh, (3.37)

with the seminorm |·|
εh

defined on Vh⋆ according to Eq. (3.26c).

Proof. The proof is almost identical to that of Lemma 3.4 in [39]. Integrating by parts the
advective term in Eq. (3.28) on each mesh element yields∫

Ω

[(
a(x, t) ·∇h

)
vh(x)

]T

vh(x)dx =
∫

T∈Th

[(
a(x, t) ·∇

)
vh(x)

]T

vh(x)dx

=−1
2

∫
Ω

(
∇ ·a(x, t)

)∥∥vh(x)
∥∥2

2 dx

+
1
2 ∑

T∈Th

∫
∂T

a(x, t) ·ν∂T (x)
∥∥vh(x)

∥∥2
2 ds, forvh ∈Vh.

(3.38)
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By exploiting the continuity of the normal component of the transport velocity a(x, t) across the
interfaces, the second term on the right-hand side may be reformulated as

1
2 ∑

T∈Th

∫
∂T

a(x, t) ·νT (x)vT
h (x)vh(x)ds =

1
2 ∑

F∈F i
h

∫
F

a(x, t) ·νF(x)
r∥∥vh(x)

∥∥2
2

z
ds

+
1
2 ∑

F∈F b
h

∫
F

a(x, t) ·νF(x)
∥∥vh(x)

∥∥2
2 ds

= ∑
F∈F i

h

∫
F

a(x, t) ·νF(x)
q

vh(x)
yT
{{

vh(x)
}}

ds

+
1
2 ∑

F∈F b
h

∫
F

a(x, t) ·νF(x)
∥∥vh(x)

∥∥2
2 ds.

(3.39)

Therefore〈
Ah(t)vh,vh

〉
L2(Ω ;Rn)

=
1
2

∫
Ω

(
∇ ·a(x, t)

)∥∥vh(x)
∥∥2

2 dx+
∫

Γ

vT
h (x)C

T(t)ds
∫

Ω

vh(x)dx

−
∫

Γ

(
a(x, t) ·ν(x)

)⊖∥∥vh(x)
∥∥2

2 ds− 1
2 ∑

F∈F b
h

∫
F

a(x, t) ·νF(x)
∥∥vh(x)

∥∥2
2 ds

− 1
2 ∑

F∈F i
h

∫
F

∣∣a(x, t) ·νF(x)
∣∣∥∥∥qvh(x)

y∥∥∥2

2
ds, forvh ∈Vh,

(3.40)

and combining the third and fourth terms on the right-hand side leads to〈
Ah(t)vh,vh

〉
L2(Ω ;Rn)

=
1
2

∫
Ω

(
∇ ·a(x, t)

)∥∥vh(x)
∥∥2

2 dx+
∫

Γ

vT
h (x)C

T(t)ds
∫

Ω

vh(x)dx

− 1
2

∫
Γ

∣∣a(x, t) ·ν(x)∣∣∥∥vh(x)
∥∥2

2 ds

− 1
2 ∑

F∈F i
h

∫
F

∣∣a(x, t) ·νF(x)
∣∣∥∥∥qvh(x)

y∥∥∥2

2
ds, forvh ∈Vh.

(3.41)

The estimate (3.37) follows from an application of the Cauchy-Schwarz’ and generalised Young’s
inequalities to the second term on the right-hand side of Eq. (3.41).

The last technical result concerns a bound on orthogonal subscales on the discrete operator
(Ah(t),Vh⋆), according to Proposition 3.2.1 below.

Proposition 3.2.1 (Boundedness on orthogonal subscales). The discrete operator (Ah(t),Vh⋆)
satisfies∣∣∣∣〈Ah(t)(v−πhv),wh

〉
L2(Ω ;Rn)

∣∣∣∣≲∥∥v(·)−πhv(·)
∥∥

h⋆

∥∥wh(·)
∥∥

h , for(v,wh) ∈ H1(Ω ;Rn)×Vh,

(3.42)

where the norms∥·∥h and∥·∥h⋆ are defined according to Eqs. (3.27a) and (3.27b), respectively.
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Proof. By observing that∫
Γ

(
v(x)−πhv(x)

)T
CT(t)ds

∫
Ω

wh(x)dx ≤
√

sup
t∈[0,T ]

∥∥C(t)
∥∥2∥∥v(·)−πhv(·)

∥∥
L2(Γ ;Rn)

∥∥wh(·)
∥∥

L2(Ω ;Rn)

=
√

inf
(x,t)∈Γ×[0,T ]

∣∣a(x, t) ·ν(x)∣∣∥∥v(·)−πhv(·)
∥∥

L2(Γ ;Rn)

×

√√√√ supt∈[0,T ]
∥∥C(t)

∥∥2

inf(x,t)∈Γ×[0,T ]
∣∣a(x, t) ·ν(x)∣∣∥∥wh(·)

∥∥
L2(Ω ;Rn)

≲
∣∣v(·)−πhv(·)

∣∣
η

√
εh
∥∥wh(·)

∥∥
L2(Ω ;Rn)

≲
∥∥v(·)−πhv(·)

∥∥
h⋆

∥∥wh(·)
∥∥

h ,

(3.43)

the result is a direct consequence of Lemma 2.30 in [39].

3.2.3 Stability and convergence of the space semi-discrete DGMs
The present Section delivers some preliminary results concerning the stability of the space
semi-discrete problem obtained by introducing the discrete operator (Ah(t),Vh⋆) according to
Eq. (3.28), as well as the convergence of the space semi-discrete DGMs. The fully discrete
DGMs are instead investigated in Chap. 4 adopting RK1 and RK2 approximations in time.

Stability of the space semi-discrete problem

The following Theorem 3.2.1 asserts the main stability result regarding the space semi-discrete
problem constructed according to Eqs. (3.29) and (3.28).

Theorem 3.2.1 (Stability of the space semi-discrete problem). Consider the space semi-discrete
problem (3.29) and the discrete operator (Ah(t),Vh⋆) defined according to Eq. (3.28). It holds

∥∥uh(·, t)
∥∥

L2(Ω ;Rn)
≤ et/t⋆

∥∥uh(·,0)
∥∥

L2(Ω ;Rn)
+
∫ t

0

∥∥∥ f
(
·, t ′
)∥∥∥

L2(Ω ;Rn)
dt ′

, for t ∈ [0,T ].

(3.44)

Proof. Taking the inner product of Eq. (3.29a) on L2(Ω ;Rn) and invoking the discrete quasi-
dissipativity property (3.37) proved in Lemma yields (3.2.2)

1
2

d
dt

∥∥uh(·, t)
∥∥2

L2(Ω ;Rn)
+
∣∣uh(·, t)

∣∣2
εh
≤ ωh

∥∥uh(·, t)
∥∥2

L2(Ω ;Rn)
+
∥∥ f (·, t)

∥∥
L2(Ω ;Rn)

∥∥uh(·, t)
∥∥

L2(Ω ;Rn)
,

for t ∈ (0,T ).
(3.45)

By observing that

1
2

d
dt

∥∥uh(·, t)
∥∥2

L2(Ω ;Rn)
=
∥∥uh(·, t)

∥∥
L2(Ω ;Rn)

d
dt

∥∥uh(·, t)
∥∥

L2(Ω ;Rn)
, (3.46)

simplifying by
∥∥uh(·, t)

∥∥
L2(Ω ;Rn)

, observing that ωh ≤ 1/tc ≤ 1/t⋆, and applying Grönwall-
Bellman’s inequality yields the result.
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It is worth emphasising that the discrete quasi-dissipative property of the operator (Ah(t),Vh⋆)
plays a crucial role in the derivation of the stability estimate in Eq. (3.44). Similar, and, in fact,
even sharper bounds may be deduced accounting for the contribution of the trace terms, as done
in the next Chap. 4 concerning fully discrete DGMs.

The next result concerns the convergence of the error as the meshsize tends to zero.

Convergence of space semi-discrete DGMs

To simplify the notation, recalling the definition of the projection πh : L2(Ω ;Rn) 7→ Vh, the
following auxiliary quantities are defined:

ξh(x, t)≜ uh(x, t)−πhu(x, t), (3.47a)

ξπ(x, t)≜ u(x, t)−πhu(x, t), (3.47b)

so that the approximation error may be decomposed as

u(x, t)−uh(x, t) = ξπ(x, t)−ξh(x, t). (3.48)

Theorem 3.2.2 asserts the main convergence result concerning the space semi-discrete
DGMs.

Theorem 3.2.2 (Convergence of space semi-discrete DGMs). Consider the IBVP (2.7) and
the space semi-discrete problem (3.29) and assume u ∈C0([0,T ];Hk+1(Ω ;Rn)) for the exact
solution. Then, the following estimate holds:

∥∥u(·, t)−uh(·, t)
∥∥

L2(Ω ;Rn)
+

∫ t

0

∣∣∣u(·, t ′)−uh

(
·, t ′
)∣∣∣2εh

2

dt ′

1/2

≲ eCstat/t⋆χhk+1/2, for t ∈ [0,T ],

(3.49)

where

χ ≜
√

ηcT
∥∥u(·)

∥∥
C0([0,T ];Hk+1(Ω ;Rn))

, (3.50)

and the constant Csta is independent of h and the data f (x, t), C(t), and a(x, t).

Proof. Using the definitions (3.47) combined with Eqs. (2.7) and (3.29), and recalling the
consistency property (3.33) proved in Corollary 3.2.1, the following relationship for the error
equation may be deduced according to the abstract formulation:

dξh(t)
dt

= Ah(t)ξh(t)−Ah(t)ξπ(t), for t ∈ (0,T ). (3.51)

Hence, taking the inner product of Eq. (3.51) with ξh(x, t) on L2(Ω ;Rn) and invoking the
quasi-dissipativity property (3.37) of the discrete operators (Ah(t),Vh⋆) proved in Lemma (3.2.2)
yields

1
2

d
dt

∥∥ξh(·, t)
∥∥2

L2(Ω ;Rn)
+
∣∣ξh(·, t)

∣∣2
εh
≤ ωh

∥∥ξh(·, t)
∥∥2

L2(Ω ;Rn)
−
〈

Ah(t)ξπ(t),ξh(t)
〉
, for t ∈ (0,T ).

(3.52)
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By noticing that ξπ(t) ∈Vh⋆, recalling the boundedness on orthogonal subscales (3.42) provides

1
2

d
dt

∥∥ξh(·, t)
∥∥2

L2(Ω ;Rn)
+
∣∣ξh(·, t)

∣∣2
εh
≤ ωh

∥∥ξh(·, t)
∥∥2

L2(Ω ;Rn)
+
∥∥ξπ(·, t)

∥∥
h⋆

∥∥ξh(·, t)
∥∥

h

≤
∥∥ξπ(·, t)

∥∥
h⋆

(
1√
tc

∥∥ξh(·, t)
∥∥

L2(Ω ;Rn)
+
∣∣ξh(·, t)

∣∣
η

)
+ωh

∥∥ξh(·, t)
∥∥2

L2(Ω ;Rn)
, for t ∈ (0,T ).

(3.53)

Applying the generalised version of Young’s inequality for products to the last term, observing
that ωh ≤ 1/tc ≤ 1/t⋆, and recalling the definition of the seminorm |·| εh

2
as in Eq. (3.26d) gives

then

1
2

d
dt

∥∥ξh(·, t)
∥∥2

L2(Ω ;Rn)
+

1
2

∣∣ξh(·, t)
∣∣2εh

2
≲

Csta

t⋆

∥∥ξh(·, t)
∥∥2

L2(Ω ;Rn)
+
∥∥ξπ(·, t)

∥∥2
h⋆ , for t ∈ (0,T ).

(3.54)

Thus, using Grönwall–Bellman’s inequality and noticing that ξh(x,0) = 0, it may be inferred
that∥∥ξh(·, t)

∥∥2
L2(Ω ;Rn)

+
∫ t

0

∣∣∣ξh

(
·, t ′
)∣∣∣2εh

2

dt ′ ≲ eCstat/t⋆t⋆ max
t∈[0,T ]

∥∥ξπ(·, t)
∥∥2

h⋆ , for t ∈ [0,T ]. (3.55)

Therefore, resorting to the triangle inequality and observing that |·|2εh
2
≤∥·∥2

h⋆ and that t⋆ ≤ T
yields

∥∥u(·, t)−uh(·, t)
∥∥

L2(Ω ;Rn)
+

∫ t

0

∣∣∣u(·, t ′)−uh

(
·, t ′
)∣∣∣2εh

2

dt ′

1/2

≲ eCstat/t⋆
√

T max
t∈[0,T ]

∥∥ξπ(·, t)
∥∥

h⋆

+
∥∥ξπ(·, t)

∥∥
L2(Ω ;Rn)

,

for t ∈ [0,T ].
(3.56)

Using the polynomial approximation properties asserted by Lemmata 3.1.4 and 3.1.5, and
defining χ according to Eq. (3.50), also provides∥∥ξπ(·, t)

∥∥2
h⋆ ≲ ηch2k+1∥∥u(·, t)

∥∥2
Hk+1(Ω ;Rn)

, (3.57a)∥∥ξπ(·, t)
∥∥

L2(Ω ;Rn)
≲ hk+1∥∥u(·, t)

∥∥
Hk+1(Ω ;Rn)

≲ χhk+1/2, (3.57b)

owing to Assumption 3.2.1 on the meshsize. Combining Eqs. (3.56) and (3.57), the desired
result follows.
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Chapter 4

Time discretisation and explicit RK
schemes

By selecting an opportune basis spanning the functional space Vh, the semi-discrete problem
derived in Chap. 3 may be converted into a linear system of ODEs, for which existence and
uniqueness follow from standard arguments. In practice, these systems often need to be solved
with the aid of a computer, which motivates the need for analysing numerical schemes in time.
In particular, explicit Runge-Kutta (RK) algorithms are widely employed for the solution of
linear problems. In this context, the aim of the present Chapter is that of analysing the stability
and convergence properties of RK1 and RK2 schemes in combination with the DGMs discussed
in Chap. 3. More specifically, the forward Euler method is adduced as an example of a low-order
RK1 scheme, whereas the higher-order RK2 algorithms explored in this thesis cover the explicit
midpoint method, Heun’s second-order method, and Ralston’s method.

The remainder of the Chapter is organised as follows. Section 4.1 discusses the main RK
schemes considered in the thesis, providing also an alternative representation of the discrete
governing equations that is more conveniently adopted for the error analysis conducted then in
Sect. 4.3. In this context, the main convergence results are asserted in Sect. 4.2 concerning both
the forward Euler and the RK2 algorithms. Finally, Sect. 4.3 guides the reader through the proof
of the main results.

4.1 Time discretisation
Typically, the semi-discrete problem formulated according to Eqs. (3.29) needs to be discretised
also in time in order to be solved numerically, leading to fully discrete DGMs. In the following, a
fixed time step δ t is considered such that T = Nδ t, with N ∈N. For n ∈ {0, . . . ,N}, the discrete
time is defined as tn = nδ t, and more generally the superscript is used to indicate functions
evaluated at the discrete time t = tn. For example, the solution to the IBVP evaluated at t = tn is
denoted by u(tn) = un, and similarly for the forcing term f n = f (tn). In the same spirit, given a
real number ρ ∈ [0,1], the solution evaluated at tn +ρδ t is indicated with un+ρ = u(tn +ρδ t),
and so on for other time-dependent quantities.

The mild assumption

δ t ≤ t⋆, (4.1)

with t⋆ as in Eq. (3.23), is also introduced in the following to facilitate the error analysis
conducted in Sect. 4.3. A very common way of approximating the problem described by Eqs.

39
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(3.29) consists in resorting to an explicit RK algorithm. A possible choice for formulating a
general RK scheme of order s for the semi-discrete problem (3.29) is

ki = Ah

(
tn + ciδ t

)un
h +δ t

s

∑
j=1

ai jk j

+ fh

(
tn + ciδ t

)
, for i ∈ {1, . . . ,s}, (4.2a)

un+1
h = un

h +
s

∑
i=1

biki. (4.2b)

In Eqs. (4.2), (ai j)1≤i, j≤s are real numbers, (bi)1≤i≤s are real numbers satisfying ∑
s
i=1 bi = 1,

and (ci)1≤i≤s are real numbers in [0,1] such that ci = ∑
s
j=1 ai j for all i ∈ {1, . . . ,s}. These

quantities are conventionally collected in the so-called Butcher’s tableau

c1 a11 . . . a1s
...

... . . . ...
cs as1 . . . ass

b1 . . . bs

. (4.3)

In particular, RK schemes are explicit whenever a ji = 0 for all i ≥ j.
More specifically, two examples of explicit RK schemes are discussed in the following: the

forward Euler algorithm, detailed in the next Sect. 4.1.1, and the two-stage RK2 algorithms,
presented in Sect. 4.1.2.

4.1.1 Forward Euler scheme
The simplest, and perhaps most intuitive approximation to the semi-discrete problem (3.29)
takes the form

un+1 −un

δ t
= An

hun + f n
h , (4.4)

leading to the alternative representation

un+1 = un +δ tAn
hun +δ t f n

h , (4.5)

which corresponds to an explicit RK1 scheme with Butcher’s tableau

0 0
1
. (4.6)

The discrete Eq. (4.5) is already in a suitable form for the error analysis conducted in Sect. 4.3.

4.1.2 Explicit RK2 schemes
Concerning the semi-discrete problem (3.29), in the most general form, RK2 schems admit a
general representation as in Eqs. (4.2) according to

k1 = An
hun

h + f n
h , (4.7a)

k2 = An+λ

h (un
h +λδ tk1)+ f n+λ

h , (4.7b)
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un+1
h = un

h +

(
1− 1

2λ

)
k1 +

1
λ

k2, (4.7c)

with Butcher’s tableau reading
0 0 0
λ λ 0

1− 1
2λ

1
λ

, (4.8)

where λ ∈ [1/2,1]. In particular, the Butcher’s tableau in Eq. (4.8) corresponds to the explicit
midpoint method for λ = 1/2, to Heun’s second-order method for λ = 1, and to Ralston’s
method for λ = 2/3.

Following the approach outlined by Shu and Osher [55], the representation of Eqs. (4.7)
may be converted into the following one by introducing intermediate steps on the solution:

wn
h = un

h +δ tAn
hun

h +δ t f n
h , (4.9a)

un+1
h =

un
h

2λ
+

(
1− 1

2λ

)
wn

h +
δ t
2

An+λ

h

( 1
λ
−1

)
un

h +wn
h

+ δ t
2λ

f n+λ

h , (4.9b)

which is more convenient to proceed with the error analysis performed in Sect. 4.1.2. It is also
worth observing that, whenever the operators (A(t),D) and (Ah(t),Vh⋆) are time-independent,
yielding thus An

h = An+λ

h = Ah in Eqs. (4.7) and (4.9), all the above-mentioned methods admit a
representation in the form (4.9) with λ = 1 (see, e.g., [39]).

4.2 Main convergence results
The present Section states the main convergence results for the considered DGMs with RK
discretisation algorithms for the time variable. In particular, the following Courant-Friedrichs-
Lewy (CFL) conditions are introduced, namely, the usual CFL condition

δ t ≤ ρ
h
ηc

, (4.10)

the refined 4/3-CFL condition

δ t ≤ ρt−1/3
⋆

(
h
ηc

)4/3

, (4.11)

for some ρ ∈ R>0 (not necessarily the same), and the 2-CFL condition

δ t ≤ ρ
′ 1
t⋆

(
h
ηc

)2

, (4.12)

for some ρ ′ ∈ R>0.
It is worth observing that the standard CFL condition (4.10) is implied by the 4/3-one (4.11),

which is in turn implied by the 2-CFL condition (4.12).
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4.2.1 Forward Euler and finite volume schemes
Inspired by [39], and continuing the discussion initiated in Sect. 4.1.1, the following scheme is
considered concerning the forward Euler method:

un+1
h = un

h +δ tAn
hun

h +δ t f n
h , (4.13a)

u0
h = πhu0, (4.13b)

with Vh = P0
d(Th;Rn). The corresponding main convergence result is asserted by Theorem 4.2.1

below.

Theorem 4.2.1 (Convergence for the forward Euler scheme). Assume u∈C2([0,T ];L2(Ω ;Rn))∩
C0([0,T ];H1(Ω ;Rn)) for the exact solution and set Vh ≜ P0

d(Th;Rn). Moreover, assume that
the CFL condition in Eq. (4.10) is satisfied with a suitable threshold ρ independent of h, δ t, and
the data f (x, t), C(t) and a(x, t). Then, the following estimate holds:

∥∥∥uN(·)−uN
h (·)

∥∥∥
L2(Ω ;Rn)

+

N−1

∑
n=0

δ t
∣∣un(·)−un

h(·)
∣∣2εh

2


1/2

≲ eC⋆T/t⋆
(

χ1δ t +χ2
√

h
)
, (4.14)

where

χ1 ≜
√

t⋆T

∥∥∥∥∥∂ 2u(·, ·)
∂ t2

∥∥∥∥∥
C0([0,T ];L2(Ω ;Rn))

, (4.15a)

χ2 ≜
√

ηcT

∥∥∥∥∥∂ 2u(·, ·)
∂ t2

∥∥∥∥∥
C0([0,T ];H1(Ω ;Rn))

, (4.15b)

the seminorm |·| εh
2

is defined according to Eq. (3.26d), and the constant C⋆ is independent of h,
δ t, and the data f (x, t), C(t), and a(x, t).

Proof. See Sect. 4.3.1.

The proof of Theorem 4.2.1 is almost identical to that of Theorem 3.7 in [39], but is anyway
detailed in Sect. 4.3.1, since it relies on the introduction of the seminorms |·|

εh
and |·| εh

2
which

are not defined in [39]. It is also worth clarifying that the specific choice of the polynomial
space Vh ≜ P0

d(Th;Rn) in Theorem 4.2.1 is motivated by the fact that higher polynomial degrees
require enforcing the 2-CFL condition (4.12) in order to provide optimal convergence. Since the
forward Euler approximation is less than first-order accurate in space, such a requirement is too
stringent, and is instead explored in the context of RK2 schemes. A more elaborated discussion
concerning this aspect is reported in [39].

4.2.2 Explicit RK2 schemes
Inspired by [39], and continuing the discussion initiated in Sect. 4.1.2, the following explicit
RK2 schemes are considered:

wn
h = un

h +δ tAn
hun

h +δ t f n
h , (4.16a)
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un+1
h =

un
h

2λ
+

(
1− 1

2λ

)
wn

h +
δ t
2

An+λ

h

( 1
λ
−1

)
un

h +wn
h

+ δ t
2λ

f n+λ

h , (4.16b)

u0
h = πhu0, (4.16c)

with Vh =Pk
d(Th;Rn), k ≥ 1. The corresponding main convergence result is asserted by Theorem

4.2.2 below.

Theorem 4.2.2 (Convergence for the explicit RK2 schemes). Assume u∈C3([0,T ];L2(Ω ;Rn))∩
Cs([0,T ];Hk+1−s(Ω ;Rn)), s ∈ {0,1}, for the exact solution, f ∈ C2([0,T ];L2(Ω ;Rn)), A ∈
C2([0,T ];L (H1(Ω ;Rn);L2(Ω ;Rn))), and set Vh ≜ Pk

d(Th;Rn) for k ≥ 1. Moreover, assume
that the 2-CFL condition in Eq. (4.12) is satisfied with a suitable threshold ρ ′ independent of h,
δ t, and the data f (x, t), C(t) and a(x, t). Then, the following estimate holds:∥∥∥uN(·)−uN

h (·)
∥∥∥

L2(Ω ;Rn)

+

N−1

∑
n=0

2λ −1
λ

δ t
∣∣un(·)−un

h(·)
∣∣2εh

2
+λδ t

∣∣∣∣1−λ

λ

(
un(·)−un

h(·)
)
+wn(·)−wn

h(·)
∣∣∣∣2εh

2


1/2

≲ eC⋆T/t⋆
(

χ1δ t2 +χ2δ t3 +χ3hk+1/2
)
,

(4.17)

where

χ1 ≜
√

t⋆TC f u, (4.18a)

χ2 ≜
√

t⋆TCu, (4.18b)

χ3 ≜
√

ηcT
1

∑
s=0

η
−s
c

∥∥∥∥∂ su(·, ·)
∂ ts

∥∥∥∥
C0([0,T ];Hk+1−s(Ω ;Rn))

, (4.18c)

the seminorm |·| εh
2

is defined according to Eq. (3.26d), the constant C⋆ is independent of h, δ t,
and the data f (x, t), C(t), and a(x, t), and C f u and Cu are given by

C f u ≜

∥∥∥∥∥∂ 3u(·, ·)
∂ t3

∥∥∥∥∥
C0([0,T ];L2(Ω ;Rn))

+η2
∥∥u(·, ·)

∥∥
C0([0,T ];H1(Ω ;Rn))

+η1

∥∥∥∥∂ u(·, ·)
∂ t

∥∥∥∥
C0([0,T ];H1(Ω ;Rn))

+

∥∥∥∥∥∂ 2 f (·, t)
∂ t2

∥∥∥∥∥
C0([0,T ];L2(Ω ;Rn))

,

(4.19a)

Cu ≜ η2

∥∥∥∥∂ u(·, ·)
∂ t

∥∥∥∥
C0([0,T ];H1(Ω ;Rn))

, (4.19b)

with

η1 ≜ max

 sup
t∈[0,T ]

∥∥∥∥∂ a(·, t)
∂ t

∥∥∥∥
∞

, sup
t∈[0,T ]

∥∥∥∥dC(t)
dt

∥∥∥∥
, (4.20a)

η2 ≜ max

 sup
t∈[0,T ]

∥∥∥∥∥∂ 2a(·, t)
∂ t2

∥∥∥∥∥
∞

, sup
t∈[0,T ]

∥∥∥∥∥d2C(t)
dt2

∥∥∥∥∥
. (4.20b)
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Proof. See Sect. 4.3.2.

The proof of Theorem 4.2.2 follows similar steps as those needed to prove Theorem 3.10
in [39]. In this context, it is however worth observing that the RK2 schemes considered in the
present thesis are slightly more general than those analysed in [39]. The main difference resides
in the fact that the operators (A(t),D) and (Ah(t),Vh⋆) are time-varying. As a result, except for
Heun’s second-order method (corresponding to λ = 1), the discrete Eqs. (4.16) cannot be recast
in the same form as that studied in [39], and necessitate a dedicated analysis. An interesting
conclusion is that, owing to the presence of time-varying operator (A(t),D) and (Ah(t),Vh⋆),
optimal estimates may be achieved with the aid of the same techniques outlined in [39] owing
to a more stringent 2-CFL condition, whereas only the 4/3-CFL condition (4.11) is required in
[39].

To the best of the author’s knowledge, the results advocated in this thesis concerning the
analysis of the considered RK2 schemes are novel.

4.3 Error analysis
The present Section is dedicated to the error analysis of the fully discrete DGMs introduced in
Sect. 4.2, covering the explicit forward Euler and RK2 schemes.

The iter is analogous to that reported in [39], with some major modifications concerning the
RK2 schemes, which are required to accommodate the time-dependency of the continuous and
discrete operators (A(t),D) and (Ah(t),Vh⋆), respectively.

4.3.1 Forward Euler scheme

The error analysis for the forward Euler schemes is articulated in different steps. First, an
equation is derived governing the discrete time evolution of the error between the exact and
approximated solutions to the considered IBVP. After deducing a suitable energy estimate and
bound on the discrete operator (Ah(t),Vh⋆), the stability of the scheme is proved, which then
allows to show uniform convergence as the meshsize and time step tend to zero.

Error equation

The first step in the error analysis involves the derivation of the error equation. In particular, by
defining

ξ
n
h ≜ un

h −πhun, (4.21a)

ξ
n
π ≜ un −πhun, (4.21b)

the approximation error may be decomposed as

un −un
h = ξ

n
π −ξ

n
h . (4.22)

Since a bound on ξ n
π may be inferred from the polynomial approximation properties and the

smoothness of un, a suitable upper bound to the error in Eq. (4.22) is deduced by first finding an
upper bound for ξ n

h in terms of ξ n
π , and then resorting to the triangle inequality.

More specifically, the error equation is derived according to Lemma (4.3.1).
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Lemma 4.3.1 (Error equation (Di Pietro and Ern [39])). Assume u ∈C2([0,T ];L2(Ω ;Rn))∩
C0([0,T ];H1(Ω ;Rn)) for the exact solution. Then, the error equation satisfies

ξ
n+1
h = ξ

n
h +δ tAn

hξ
n
h −δ tαn

h , (4.23)

where

α
n
h = An

hξ
n
π +πhθ

n, (4.24a)

θ
n =

1
δ t

∫ tn+1

tn

(
tn+1 − t

)
d2u
dt2 dt. (4.24b)

Proof. A second-order Taylor expansion in time with integral remainder for the exact solution u
yields

un+1 = un +δ t
dun

dt
+δ tθ n. (4.25)

Projecting onto Vh and recalling the consistency property (3.33) proved in Corollary 3.2.1 at
discrete time tn provides

πhun+1 = πhun +δ tπh
dun

dt
+δ tπhθ

n = πhun +δ t(An
hun + f n

h )+δ tπhθ
n. (4.26)

Subtracting the latter Eq. (4.26) from (4.13) gives

ξ
n+1
h = ξ

n
h +δ tAn

h(ξ
n
h −ξ

n
π )−δ tπhθ

n, (4.27)

from which the assertion follows.

Energy estimate

The next step involves obtaining an energy estimate for the term ξ
n+1
h appearing in Eq. (4.23).

The result is formalised in Lemma 4.3.2 below.

Lemma 4.3.2 (Energy estimate). The error Eq. (4.23) satisfies the following energy estimate:

1
2

∥∥∥ξ
n+1
h (·)

∥∥∥2

L2(Ω ;Rn)
− 1

2

∥∥ξ
n
h (·)

∥∥2
L2(Ω ;Rn)

+δ t
∣∣ξ n

h (·)
∣∣2
εh
≤ 1

2

∥∥∥ξ
n+1
h (·)−ξ

n
h (·)

∥∥∥2

L2(Ω ;Rn)

−δ t⟨αn
h ,ξ

n
h ⟩L2(Ω ;Rn)

+δ tωh
∥∥ξ

n
h (·)

∥∥2
L2(Ω ;Rn)

,

(4.28)

where the constant ωh is given as in Eq. (3.36).

Proof. The proof is almost identical to that of Lemma 3.17 in [39]. Taking the inner product
of Eq. (4.23) on L2(Ω ;Rn) and recalling the quasi-dissipativity property (3.37) of the discrete
operator (Ah(t),Vh⋆) proved in Lemma 3.2.2 yields〈

ξ
n+1
h ,ξ n

h

〉
L2(Ω ;Rn)

=
∥∥ξ

n
h (·)

∥∥2
L2(Ω ;Rn)

+δ t⟨An
hξ

n
h ,ξ

n
h ⟩L2(Ω ;Rn)−δ t⟨αn

h ,ξ
n
h ⟩L2(Ω ;Rn)

≤
∥∥ξ

n
h (·)

∥∥2
L2(Ω ;Rn)

−δ t
∣∣ξ n

h (·)
∣∣2
εh
+δ tωh

∥∥ξ
n
h (·)

∥∥2
L2(Ω ;Rn)

−δ t⟨αn
h ,ξ

n
h ⟩L2(Ω ;Rn).

(4.29)
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Using the identity 2ab = a2 + b2 − (a− b)2 on the left-hand side of Eq. (4.29), it may be
concluded that

1
2

∥∥∥ξ
n+1
h (·)

∥∥∥2

L2(Ω ;Rn)
+

1
2

∥∥ξ
n
h (·)

∥∥2
L2(Ω ;Rn)

≤ 1
2

∥∥∥ξ
n+1
h (·)−ξ

n
h (·)

∥∥∥2

L2(Ω ;Rn)
+
∥∥ξ

n
h (·)

∥∥2
L2(Ω ;Rn)

−δ t
∣∣ξ n

h (·)
∣∣2
εh
+δ tωh

∥∥ξ
n
h (·)

∥∥2
L2(Ω ;Rn)

−δ t⟨αn
h ,ξ

n
h ⟩L2(Ω ;Rn),

(4.30)

which is the desired result.

Bound on the discrete operator

The next step consists in deducing a suitable upper bound for the discrete operator (Ah(t),Vh⋆),
for which purpose the norms introduced according to Eqs. (3.27a) and (3.27b) are crucial, as
asserted by Lemma (4.3.3).

Lemma 4.3.3 (Boundedness of the discrete operator (Di Pietro and Ern [39])). The following
inequalities hold:〈

Ah(t)v,wh

〉
L2(Ω ;Rn)

≤C1⋆
∥∥v(·)

∥∥
h⋆

∥∥wh(·)
∥∥

h , for(v,wh) ∈Vh⋆×Vh, (4.31a)

∥∥Ah(t)vh(·)
∥∥

L2(Ω ;Rn)
≤C2⋆

√
ηc

h

∥∥vh(·)
∥∥

h , forvh ∈Vh, (4.31b)

where the constants C1⋆ and C2⋆ are independent of h, δ t, and the data f (x, t), C(t), and a(x, t).

Proof. The proof is almost identical to that of Lemma 3.18 in [39]. To prove (4.31a), it is first
convenient to integrate by part the advective term in Eq. (3.28), which, recalling that wh(x) is
piecewise constant, yields〈

Ah(t)v,wh

〉
=
∫

Ω

(
∇ ·a(x, t)

)
vT(x)wh(x)dx−

∫
Ω

(
a(x, t) ·ν(x)

)⊕
vT(x)wh(x)ds

− ∑
F∈F i

h

∫
F

a(x, t) ·νF(x)
{{

v(x)
}}Tq

wh(x)
y

ds

− 1
2 ∑

F∈F i
h

∫
F

∣∣a(x, t) ·νF(x)
∣∣qv(x)

yTq
wh(x)

y
ds

+
∫

Γ

vT(x)CT(t)ds
∫

Ω

wh(x)dx, for(v,wh) ∈Vh⋆×Vh.

(4.32)

Concerning the first two terms on the right-hand side of Eq. (4.32), applying Cauchy-Schwarz’
inequality gives∫

Ω

(
∇ ·a(x, t)

)
vT(x)wh(x)dx−

∫
Ω

(
a(x, t) ·ν(x)

)⊕
vT(x)wh(x)ds ≲

∥∥v(·)
∥∥

h

∥∥wh(·)
∥∥

h . (4.33)

Similarly, for the fourth term:

1
2 ∑

F∈F i
h

∫
F

∣∣a(x, t) ·νF(x)
∣∣qv(x)

yTq
wh(x)

y
ds ≤

∥∥v(·)
∥∥

h

∥∥wh(·)
∥∥

h . (4.34)
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Considering instead the third term, it may be deduced that

∑
F∈F i

h

∫
F

a(x, t) ·νF(x)
{{

v(x)
}}Tq

wh(x)
y

ds ≤

 ∑
F∈F i

h

∫
F

∣∣a(x, t) ·νF(x)
∣∣∥∥∥{{v(x)

}}∥∥∥2

2
ds


1/2

×
∥∥wh(·)

∥∥
h

≤

 ∑
T∈Th

ηc
∥∥v(·)

∥∥2
L2(∂T ;Rn)


1/2∥∥wh(·)

∥∥
h .

(4.35)

Finally, the last term may be bounded similarly as in Eq. (3.43):∫
Γ

vT(x)CT(t)ds
∫

Ω

wh(x)dx ≤
√

sup
t∈[0,T ]

∥∥C(t)
∥∥2∥∥v(·)

∥∥
L2(Γ ;Rn)

∥∥wh(·)
∥∥

L2(Ω ;Rn)

=
√

inf
(x,t)∈Γ×[0,T ]

∣∣a(x, t) ·ν(x)∣∣∥∥v(·)
∥∥

L2(Γ ;Rn)

×

√√√√ supt∈[0,T ]
∥∥C(t)

∥∥2

inf(x,t)∈Γ×[0,T ]
∣∣a(x, t) ·ν(x)∣∣∥∥wh(·)

∥∥
L2(Ω ;Rn)

≲
∣∣v(·)∣∣

η

√
εh
∥∥wh(·)

∥∥
L2(Ω ;Rn)

≲
∣∣v(·)∣∣

η

∥∥wh(·)
∥∥

h .

(4.36)

Combining the estimates in Eqs. (4.33), (4.34), (4.35) and (4.36), the result (4.31a) follows.
To obtain (4.31b), concerning the original definition of the operator (Ah(t),Vh⋆) as in Eq.

(3.28), observing that (a(x, t) ·∇h)vh(x) = 0 since the v(x) is piecewise constant, the first and
third terms may be bounded together as

∫
Ω

[(
a(x, t) ·∇h

)
vh(x)

]T

wh(x)dx+
∫

Γ

(
a(x, t) ·ν(x)

)⊖
vT

h (x)wh(x)ds ≤ 2
∥∥vh(·)

∥∥
h

∥∥wh(·)
∥∥

h .

(4.37)

Moreover, using the Cauchy-Schwarz’ and the discrete trace inequalities to bound the fourth
term provides

∑
F∈F i

h

∫
F

a(x, t) ·νF(x)
q

v(x)
yT
{{

wh(x)
}}

ds ≤
√

ηc

h

∥∥vh(·)
∥∥

h

∥∥wh(·)
∥∥

L2(Ω ;Rn)
. (4.38)

Combining the estimates in Eqs. (4.37) and (4.38) with those already derived in (4.34) and
(4.36), and recalling the fact that∥wh∥h ≲

√
ηc/h∥wh∥L2(Ω ;Rn) since h ≤ ηct⋆ together with

∥∥Ah(t)vh(·)
∥∥

L2(Ω ;Rn)
= sup

wh∈Vh\{0}

〈
Ah(t)vh,wh

〉
L2(Ω ;Rn)∥∥wh(·)

∥∥
L2(Ω ;Rn)

, (4.39)

leads to the desired result.
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Stability

The penultimate step involves the derivation of upper bounds for terms appearing on the right-
hand side of the energy estimate in Eq. (4.28). In particular, the first quantity relates to
the anti-dissipative nature of the forward Euler scheme, whereas the second one contains the
contribution of the space approximation error. The stability of the considered scheme is proved
in Lemma 4.3.4.

Lemma 4.3.4 (Stability of the forward Euler scheme). Assume that u ∈C2([0,T ];L2(Ω ;Rn))∩
C0([0,T ];H1(Ω ;Rn)) and that the CFL condition in Eq. (4.10) holds with ρ ≤ (2C2⋆)

−2, i.e.,

δ t ≤ h
4C2

2⋆ηc
. (4.40)

Then, there exists C⋆ independent of h, δ t, f (x, t), C(t), and a(x, t), such that∥∥∥ξ
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h (·)
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h (·)

∥∥2
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+δ tC⋆

(∥∥ξ
n
π (·)

∥∥2
h⋆+

1
t⋆

∥∥ξ
n
h (·)

∥∥2
L2(Ω ;Rn)

+δ t2t⋆C2
u

)
,

(4.41)

where the seminorm |·| εh
2

reads as in Eq. (3.26d).

Proof. The proof is almost identical to that of Lemma 3.20 in [39]. In particular, the three
terms on the right-hand side of Eq. (4.28), renamed T1, T2, and T3 for convenience, need to be
bounded. Starting with the third term, it holds that

|T3|≜ δ tωh
∥∥ξ

n
h (·)

∥∥2
L2(Ω ;Rn)

≲
δ t
tc

∥∥ξ
n
h (·)

∥∥2
L2(Ω ;Rn)

. (4.42)

To bound T2, the inequality (4.31a) is crucial. Recalling the definition provides

|T2|= δ t
∣∣∣⟨αn

h ,ξ
n
h ⟩L2(Ω ;Rn)

∣∣∣≤ δ t
∣∣∣⟨An
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n
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∣∣∣⟨πhθ

n
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n
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∣∣∣ . (4.43)

Resorting to the bound (4.31a) and applying the generalised verison of Young’s inequality to the
first term on the right-hand side yields
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(4.44)

Concerning instead the second term on the right-hand side of Eq. (4.43), it may be deduced that
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Consequently
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(4.46)

Collecting the two bounds and observing that t⋆ ≤ tc gives finally
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To bound the first term, the estimate (4.31b) is essential. First, from the error Eq. (4.23) it
follows that
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(4.48)

Concerning the first term on the right-hand side of Eq. (4.48), resorting to the bound (4.31b)
and specifying the CFL condition (4.10) gives
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(4.49)

Considering the second term, using the inequality (4.31a), the definition (4.39) and the estimate
(4.45) in combination with the CFL condition (4.10) leads to
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Combining Eqs. (4.49) and (4.50) and recalling that δ t ≤ t⋆ provides
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. (4.51)

Hence, collecting the estimates derived according to Eqs. (4.42), (4.47), and (4.51) yields

|T1|+|T2|+|T3| ≤
1
2

δ t
∣∣ξ n

h (·)
∣∣2
η
+δ tC

(∥∥ξ
n
π (·)

∥∥2
h⋆+

1
t⋆

∥∥ξ
n
h (·)

∥∥2
L2(Ω ;Rn)

+δ t2t⋆C2
u

)
. (4.52)

Proof of Theorem 4.2.1

Based on the results advocated above, it is finally possible to establish the proof Theorem 4.2.1,
asserting the convergence of the proposed forward Euler schemes.
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Proof of Theorem 4.2.1. The proof is almost identical to that of Theorem 3.7 in [39]. For all
n ∈ N0, set
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∥∥ξ

n
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∥∥2
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u

)
, (4.53)

so that the stability estimate may be recast more conveniently as

an+1 +bn ≤ (1+ γ)an +dn, n ∈ N0, (4.54)

where γ ≜ δ tC⋆/t⋆. Then, it may be easily proved by induction that
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∑
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Specifying n = N −1 and observing that 1 ≤ (1+ γ)n−m ≤ (1+ γ)N ≤ eNγ = eC⋆T/t⋆ and that
a0 = 0 since u0

h = πhu0 and ξ 0
h = 0 yields
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∑
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From an application of the triangle inequality, and recalling that ξ n
π = un − πhun and that∣∣ξ n
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(4.57)

Resorting to the definition of the norm∥·∥h⋆ as in Eq. (3.27b), the polynomial approximation
properties asserted by Lemmata 3.1.4 and 3.1.5, and to Assumption 3.2.1, it may be inferred that∥∥ξ

n
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and hence
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with χ1 and χ2 defined according to Eqs. (4.15). Finally, invoking again Assumption 3.2.1
provides
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Combining the bounds derived above, the desired result follows.
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4.3.2 Explicit RK2 schemes
The error analysis for the forward RK2 schemes follows a similar iter to that already outlined
for the forward Euler approximation. The main difference resides in the fact that bounds on
the discrete operator (Ah(t),Vh⋆) are more difficult to infer, since terms involving the broken
gradient do not identically vanish for k ≥ 1. The first step in the derivation of the main result
consists in deducing of a discrete time equation governing the evolution of the approximation
error.

Error equation

The present Section is devoted to deriving the error equation. In particular, by defining the
quantities ξ n

h and ξ n
π as in Eqs. (4.21) and introducing

ζ
n
h ≜ wn

h −πhwn, (4.61a)

ζ
n
π ≜ wn −πhwn, (4.61b)

the errors may be decomposed as
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h = ζ

n
π −ζ

n
h , (4.62b)

with

w ≜ u+δ t
du
dt

. (4.63)

Starting with Eqs. (4.21), (4.61), and (4.63), it is possible to derive the error equations as in
the following Lemma 4.3.5.

Lemma 4.3.5. Assume u ∈ C3([0,T ];L2(Ω ;Rn))∩C1([0,T ];H1(Ω ;Rn)) for the exact solu-
tion, f ∈C2([0,T ];L2(Ω ;Rn)), and A ∈C2([0,T ];L (H1(Ω ;Rn);L2(Ω ;Rn))). Then, the error
equation satisfies
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where
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with

θ
n ≜

1
δ t

∫ tn+1
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(
tn+1 − t

)2 d3u(t)
dt3 dt, (4.66a)
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Λ
n ≜
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(
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)
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dt2 dt, (4.66b)
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Proof. From Corollary 3.2.1, consistency at discrete time tn yields

πhwn = πhun +δ tπh
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= πhun +δ tAn

hun +δ t f n
h . (4.67)

Subtracting the above Eq. (4.67) from (4.16a) and defining αn
h according to (4.65a) provides

(4.64a). Moreover, a second-order Taylor expansion with integral remainder gives
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with θ n reading as in Eq. (4.66a). Analogously, a first-order Taylor expansion with integral
remainder of An+λ gives

An+λ = An +λδ t
dAn

dt
+λδ tΛ n, (4.69)

with Λ n defined according to Eq. (4.66b). Substituting the latter expression into Eq. (4.68) and
performing a similar first-order expansion for f n+λ provides, after some manipulations,
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where Fn reads as in Eq. (4.66c).
Projecting Eq. (4.70) onto Vh and invoking the time-shifted consistency property proved in

Lemma 3.2.1 for both An+λ

h un and An+λ

h wn therefore yields
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in which
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Subtracting Eq. (4.72) from (4.16b) and defining β n
h as in (4.65b) gives the desired result.
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Energy estimate

The next step involves obtaining an energy estimate for the term ξ
n+1
h appearing in Eq. (4.64b).

The result is formalised in Lemma 4.3.6 below.

Lemma 4.3.6 (Energy estimate). The error Eqs. (4.64) satisfy the following energy estimate:
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where the constant ωh is given as in Eq. (3.36).

Proof. Taking the inner product of Eq. (4.64a) with (2λ −1)/λξ n
h (x) on L2(Ω ;Rn) provides
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(4.76)

Observing that
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gives∥∥∥ξ
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Hence, multipying Eq. (4.75) by (2λ −1)/λ and adding the resulting expression to the above
(4.78) provides∥∥∥ξ
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(4.79)

Resorting to Young’s inequality for products to bound the term ⟨ξ n
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(4.80)

Finally, recalling the quasi-disspativity property (3.37) of the discrete operator (Ah(t),Vh⋆)
proved in Lemma 3.2.2 leads to the desired result.
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Preliminary stability bounds

The next result, formalised in Lemma 4.3.7, delivers some preliminary stability bounds that are
necessary to ensure stability and convergence of the considered RK2 schemes.

For what follows, the additional norm is introduced on Vh⋆:
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Furthermore, to allow for ease of notation, the following energy-like quantity, collecting the
contributions of the space and time approximation errors, is defined:
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where C f u and Cu read as in Eqs. (4.19).

Lemma 4.3.7 (Preliminary stability bounds). Assume u∈C3([0,T ];L2(Ω ;Rn))∩C1([0,T ];H1(Ω ;Rn))
for the exact solution, f ∈C2([0,T ];L2(Ω ;Rn)), and A∈C2([0,T ];L (H1(Ω ;Rn);L2(Ω ;Rn))).
Then, if the CFL condition in Eq. (4.10) holds, there exists C⋆ independent of h, δ t, and the data
f (x, t), C(t), and a(x, t) such that∥∥∥ξ
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(4.83)

Proof. The proof involves four different steps. First, it is shown that
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To this end, from the definition of the norm∥·∥⋆⋆ according to Eq. (4.81) and Assumption 3.2.1,
it may be deduced that
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Since
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Eq. (4.85) provides (4.84). Moreover, applying the inverse and trace inequalities, yields
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which, combined with Eq. (4.84), leads to∥∥Ah(t)vh(·)
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The next step consists in deriving upper bounds for the terms αn
h (x) and β n

h (x). Concerning the
first quantity, the bound in Eq. (4.84) and the usual CFL condition (4.10) imply
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Moving to the analysis of the term β n
h (x), using the triangle inequality gives
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The first two terms appearing in Eq. (4.90) may be bounded as
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Moreover, proceeding similarly as in the derivation of Eq. (4.46), it may be deduced that
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Finally, the third, second last and last terms may instead be bounded as∥∥Λ
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Combining all the above estimates and recalling that t ≤ t⋆ therefore yields
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with the constants C f u and Cu defined according to Eqs. (4.19). Next, it is necessary to bound
the term ζ n

h (x). Starting with the error equation (4.64a), and resorting to the triangle inequality,
the bounds (4.88) and (4.89) and the usual CFL condition (4.10) provides∥∥ζ
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Since δ t ≤ t⋆ ≤ tc, the above expression gives finally
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Lastly, bounds on the quantities δ t⟨αn
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n
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h ⟩ should be deduced.
Using the boundedness on orthogonal subscales (3.42) stated in Proposition 3.2.1, it is first
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Hence, an application of Young’s inequality for product yields
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Similarly, resorting again to Eq. (3.42), the bound previously deduced according to (4.94), and
Cauchy-Schwarz’ inequality provides

δ t

〈
β

n
h ,

1−λ

λ
ξ

n
h +ζ

n
h

〉
L2(Ω ;Rn)

≲ δ t
∥∥∥∥1−λ

λ
ξ

n
π (·)+ζ

n
π (·)

∥∥∥∥
⋆⋆

∥∥∥∥1−λ

λ
ξ

n
h (·)+ζ

n
h (·)

∥∥∥∥
h

+δ t
(

C f uδ t2 +Cuδ t3
)∥∥∥∥1−λ

λ
ξ

n
h (·)+ζ

n
h (·)

∥∥∥∥
L2(Ω ;Rn)

≲ δ t

(
1−λ

λ

∥∥ξ
n
π (·)

∥∥
⋆⋆
+
∥∥ζ

n
π (·)

∥∥
⋆⋆

)

×

∣∣∣∣1−λ

λ
ξ

n
h (·)+ζ

n
h (·)

∣∣∣∣
η

+
1√
tc

∥∥∥∥1−λ

λ
ξ

n
h (·)+ζ

n
h (·)

∥∥∥∥
L2(Ω ;Rn)


+δ t

(
C f uδ t2 +Cuδ t3

)∥∥∥∥1−λ

λ
ξ

n
h (·)+ζ

n
h (·)

∥∥∥∥
L2(Ω ;Rn)

.

(4.99)



58 CHAPTER 4. TIME DISCRETISATION AND EXPLICIT RK SCHEMES

Using again Young’s inequality for product therefore gives
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Invoking the estimate (4.95) to bound the terms involving
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deduced that
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Recalling that ωh ≤ 1/tc ≤ 1/t⋆, collecting the above bounds and inserting them into Eq. (4.74)
leads to the desired result.

Stability

Stability for the RK2 schemes is finally proved by inferring opportune bounds on the anti-
dissipative terms appearing on the right-hand side of energy estimate in Eq. (4.74). To this end,
the 2-CFL condition (4.12) is invoked. Lemma 4.3.8 asserts the result.

Lemma 4.3.8 (Stability of RK2 schemes). Assume u∈C3([0,T ];L2(Ω ;Rn))∩C1([0,T ];H1(Ω ;Rn))
for the exact solution, f ∈C2([0,T ];L2(Ω ;Rn)), and A∈C2([0,T ];L (H1(Ω ;Rn);L2(Ω ;Rn))).
Then, if the 2-CFL condition in Eq. (4.12) holds for some ρ ′ ∈ R>0, there exists C⋆ independent
of h, δ t, and the data f (x, t), C(t), and a(x, t) such that∥∥∥ξ
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where the seminorm |·| εh
2

reads as in Eq. (3.26d).

Proof. From the error Eq. (4.64b), it is possible to deduce that
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Substituting the expression for ζ n
h (x) from Eq. (4.64a) also yields
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Recalling that δ t ≤ t⋆, the last quantity appearing on the right-hand side may be bounded with
the aid of the estimates in Eqs. (4.88), (4.89), and (4.94) as
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Concerning the second term, combining the bound in Eq. (4.88) with the 2-CFL condition
(4.12), it may be immediately deduced that
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Finally, the first quantity may be bounded by applying two times the estimate (4.12) and invoking
the 4/3-CFL condition (4.11) (which is implied by the 2-CFL conditon in Eq. (4.12)). This
yields
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Therefore, combining Eqs. (4.105), (4.106), and (4.107) provides∥∥∥ξ
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Similarly, also from the error Eq. (4.64b), it may be inferred that
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Therefore, following a similar rationale as in the derivation of Eq. (4.108), it may be concluded
that ∥∥∥ξ
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Adding Eqs. (4.108) and (4.110) together yields the result.

Remark 4.3.1. It is worth observing that, in the proof of Lemma 4.3.8 above, concerning the
derivation of Eq. (4.108), the 2-CFL condition (4.12) was invoked only to provide an upper
bound on the term T2. If the operators (A(t),D) and (Ah(t),Vh⋆) do not depend upon the time
variable, the quantity T2 vanishes. Moreover, all the RK2 schemes analysed in the thesis reduce
to the form considered in [39], which may be obtained directly from Eqs. (4.16) be specifying

λ = 1. Accordingly, the contribution relating to
∥∥∥ξ

n+1
h (·)−ξ n

h (·)
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L2(Ω ;Rn)
disappears from the

energy estimate deduced as in Eq. (4.74). In this case, the less stringent 4/3-CFL condition
(4.11) might be invoked.



60 CHAPTER 4. TIME DISCRETISATION AND EXPLICIT RK SCHEMES

Proof of Theorem 4.2.2

The results derived previously permit to assert the main result, namely Theorem 4.2.2. The
proof is only sketched below.

Sketch of the proof of Theorem 4.2.2. The proof is almost analogous to that of Theorem 4.2.1,
with the difference that the norm ∥·∥h⋆ should be replaced by ∥·∥⋆⋆, and the term

∥∥ζ n
π (·)

∥∥
⋆⋆

need to be accounted for, in addition to
∥∥ξ n

π (·)
∥∥
⋆⋆

. The reader is redirected to [39] for further
details.



Chapter 5

Numerical experiments

The present Chapter is dedicated to the numerical approximation of the IBVPs introduced in
Chap. 2, using the techniques developed in 3 and 4. The emphasis is mainly on problems in one
space dimension that include boundary and trace terms, as those analysed in Sect. 2.2.1. More
specifically, Sect. 5.1 focuses on the error analysis concerning sufficiently regular solutions,
whereas Sect. 5.2 deals with the main rolling contact problems found in the literature. In the
following, the discussion is mainly restricted to RK2 schemes, since the result advocated in
Theorem 4.2.1 constitutes a minor modification of that already enounced in [39, 40].

5.1 Analysis for smooth solutions
The hyperbolic problems typically encountered in rolling contact mechanics do not enjoy
sufficient regularity to satisfy the conditions required by Theorem 4.2.2. Therefore, to verify
numerically the theoretical bound derived according to Theorem 4.2.2, simplified IBVPs are first
considered. The effect of boundary terms and time-varying operators are investigated separately
in Sects. 5.1.1 and 5.1.2, respectively.

5.1.1 Effect of boundary terms
In order to investigate numerically the rate of convergence for the total error predicted by
Theorem 4.2.2, it may first be beneficial to consider Eqs. (2.12) in the scalar case, i.e., u(x, t)∈R,
with constant data a(x, t) = a = 1, B(t) = B = 0, C(t) =C = 1/2, and f (x, t) = f = 0. With this
choice for the transport velocity a(x, t), the matrix C(t), and the forcing term f (x, t), Assumption
2.2.2 holds for all t ∈ [0,T ] and consequently the problem admits a unique strict solution, as
asserted by Theorem 2.2.2. In fact, since the transport velocity is constant, the corresponding
IBVP problem admits a closed-form solution, consisting of an integral expression combined
with a delay-differential equation (DDE) for the boundary term u(1, t) [32]. From the discussion
initiated in Sect. 2.3.2, it follows that the solution is sufficiently smooth owing to opportune
assumptions made on the regularity of the IC. In particular, the IC

u0(x) = x3 +
3
2

x2 +
5
2

x, forx ∈ [0,1], (5.1)

satisfies the compatibility condition up to the second order both in time and space, thus ensuring
the existence of sufficiently smooth solutions as those required by Theorem 4.2.2.

The total error, calculated using the expression appearing on the left-hand side of Eq. (4.17)
by specifying ψh = 3/2, is reported in Table 5.1 for decreasing values of the meshsize h and
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Meshsize h Total error (k = 1) Total error (k = 2)
0.025 0.0015 5.59 ·10−6

0.017 8.59 ·10−4 2.00 ·10−6

0.0125 5.63 ·10−4 9.73 ·10−7

0.01 3.92 ·10−4 5.56 ·10−7

Table 5.1: Error convergence for polynomial degrees k = 1 and 2 predicted using Heun’s second-
order method (λ = 1) for the IBVP described by Eqs. (2.12) and (5.1).

polynomial degrees k = 1 and 2, considering explicit RK2 schemes with λ = 1 (corresponding
to Heun’s second-order method) owing to the refined 4/3-CFL condition (4.11) with ρ = 0.2.
In fact, it is worth emphasising that, when the problem data are constant, the operators (A(t),D)
and (Ah(t),Vh⋆) are also time-independent, and, according to Remark 4.3.1, the 4/3-CFL
condition may be more conveniently invoked in place of the 2-CFL one to derive quasi-optimal
error convergence for the complete discrete RK2 schemes analysed in Sect. 4.3.2. Therefore,
according to Theorem 4.2.2, under the refined 4/3-CFL condition (4.11), the RK2 scheme with
polynomial degree k = 1 produces an error convegence in the order of O(h8/3 +h3/2), whereas
the polynomial degree k = 2 yields O(h8/3+h5/2) accuracy. In both case, the time error, relating
to the contribution h8/3, is dominated by that produced by the space discretisation, proportional
to either h3/2 or h5/2. The values reported in Table 5.1 and the trends illustrated in Fig. 5.1 seem
to confirm the bound derived according to Theorem 4.2.2 to be sharp.

The maximum simulation times, corresponding to a meshsize of h = 0.01 with 100 elements
simulated in MATLAB/Simulink® on a personal computer, amounted to 1.94 and 4.48 s for
k = 1 and k = 2, respectively.

5.1.2 Effect of time-varying operators

To investigate numerically the effect connected with the presence of a time-varying operator, Eqs.
(2.12) are again considered in the scalar case, i.e., u(x, t) ∈ R, with B(t) = B = 0, C(t) =C = 0,
f (x, t) = f = 0, and transport velocity and IC assigned as

a(x, t) = a(t) = 1+ t, for t ∈ [0,T ], (5.2a)

u0(x) = x3, forx ∈ [0,1]. (5.2b)

The above expressions for the transport velocity and IC ensure the existence and uniqueness of
sufficiently smooth solutions satisfying the assumptions of Theorem 4.2.2.

The total error, calculated as in the right-hand side of Eq. (4.17), is reported in Table 5.2
for decreasing values of the meshsize h and polynomial degrees k = 1 and 2, using Heun’s
method for time discretisation (RK2 schemes with λ = 1), with timestep δ t obeying the 2-CFL
condition of Eq. (4.12) with ρ ′ = 5 and 10 for k = 1 and 2, respectively. Figure 5.2 seems to
numerically corroborate that the bound derived in Theorem 4.2.2 is sharp. In particular, it is
evident that, especially concerning the RK scheme with polynomial degree k = 2, the refined
4/3-CFL condition (4.11) cannot ensure the optimal rate of convergence predicted by Theorem
4.2.2.

The maximum simulation times, corresponding to a meshsize of h= 0.0125 with 80 elements,
amounted to 1.57 and 3.15 s for k = 1 and k = 2, respectively.
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(a) Convergence of the total error predicted according to Theorem 4.2.2 (polynomial
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(b) Convergence of the total error predicted according to Theorem 4.2.2 (polynomial
degree k = 2).

Figure 5.1: Convergence of the total error for different polynomial degrees k = 1 and 2 for the
IBVP described by Eqs. (2.12) and (5.1).

Meshsize h Total error (k = 1) Total error (k = 2)
0.05 8.41 ·10−3 7.82 ·10−3

0.025 2.81 ·10−3 2.58 ·1.61−3

0.0125 8.54 ·10−4 4.17 ·2.99−4

Table 5.2: Error convergence for polynomial degrees k = 1 and 2 predicted using Heun’s second-
order method (λ = 1) for the IBVP described by Eqs. (2.12) and (5.2).
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(a) Convergence of the total error predicted according to Theorem 4.2.2 (polynomial
degree k = 1).
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Figure 5.2: Convergence of the total error for different polynomial degrees k = 1 and 2 for the
IBVP described by Eqs. (2.12) and (5.2).
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5.2 Application to linear hyperbolic rolling contact problems
The present Section is dedicated to the numerical approximation of some typical rolling contact
problems encountered in the literature.

5.2.1 Systems in one space dimension
The systems in one space dimension considered in this thesis are those governing the brush and
LuGre-brush models on time-varying domains. Similar formulations find frequently application
in the study of instability phenomena connected with oscillating normal and tangential forces
[56–58].

Brush models on a time-varying domain

After opportunely performing a change of variables [33], the brush models on a time-varying
domain may be recast in the form of Eqs. (2.12) with u(x, t) ∈ R2, B(t) = 0, and

a(x, t)≜
1

2α(t)

(
1+(1−2x)α̇(t)

)
, (5.3a)

C(t)≜
(

1− α̇(t)
)(

I2 +2α(t)M
)−1

M, (5.3b)

f (x, t)≜
(

I2 +α(t)M
)−1

σ(t)+α(t)

[
0

1−2x

]
ϕ(t), (5.3c)

where α ∈C1([0,T ]; [αmin,αmax]) with αmin > 0, α̇ ∈C1([0,T ]; [α̇min, α̇max]), max{|α̇min| ,|α̇max|}<
1, (σ ,ϕ) ∈C1([0,T ];R3), and M ∈ GL2(R) is a positive definite, diagonal matrix [33]. Note
that the assumptions on α(t) and α̇(t) imply also that C ∈C1([0,T ];M2×2(R)).

When α̇(t) = 0 for all t ∈ [0,T ], Assumption 2.2.2 is automatically satisfied and the cor-
responding IBVP even admits a closed-form solution [32]. When α̇(t) ̸= 0, the condition in
Assumption 2.2.2 is satisfied if the matrix

Σ(t)≜ I2 −
(

1− α̇(t)
)∫ 1

0

2α(t)
1+(1−2x)α̇(t)

dx
(

I2 +2α(t)M
)−1

M

= I2 −
(

1− α̇(t)
) tanh−1

(
α̇(t)

)
α̇(t)

(
I2 +2α(t)M

)−1
2α(t)M

(5.4)

is invertible, i.e., Σ ∈C1([0,T ];GL2(R)). Such a criterion is always verified provided that

(1− α̇min)
tanh−1(α̇min)

α̇min

(
1+2αmaxλmax(M)

)−1
2αmaxλmax(M)< 1, (5.5)

where λmax(M) denotes the largest eigenvalue of M. The formulation presented above has
been introduced in [7] in the context of transient tyre modelling, limited to the case of a fixed
contact patch (α̇(t) = 0 for all t ∈ [0,T ]), and then further developed in [16, 32]. Concerning
applications in railway dynamics, the same PDEs have been obtained for a time-varying contact
patch in [33], with C(t) = 0 for all t ∈ [0,T ]. In both the automotive and railway fields, the
variable u(x, t) ∈ R2 collects the tangential deformations of the material particles travelling
inside the contact patch, relatively to the road or rail surface, respectively. The transport velocity
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Figure 5.3: Analytical solution and DGM approximations to the rolling contact problem de-
scribed by Eqs. (2.12) and (5.3), with constant transport velocity a(x, t) = a = 1/(2α). Solid
line: analytical solution [32]; dashed line: RK2 with polynomial degree k = 1 and 5 mesh
elements; dash-dotted line: RK2 with polynomial degree k = 2 and 5 mesh elements. Model
parameters taken from [32]: α = 0.075, M = 4.44, σ = 0.7, ϕ = 0.

a(x, t) ∈ R, representing instead the rolling speed of the tyre or railway wheel, is clearly the
same for all the components of u(x, t).

In order to investigate numerically the rate of convergence for the total error predicted by
Theorem 4.2.2, it may first be beneficial to consider Eqs. (5.3) with constant data α̇(t) = 0 and
C(t) =C. In this case, the transport velocity also becomes constant, and, as in Sect. 5.1.1, the
corresponding IBVP problem admits a closed-form solution. In particular, when the matrix
C(t) =C ̸= 0, the analytical solution consists of an integral expression combined with a delay-
differential equation (DDE) for the boundary term u(1, t) [32], whereas the case C(t) = 0 may be
studied by resorting to the classic method of the characteristic lines. More specifically, by relying
on simple fixed-point arguments, the exact solution may be inferred to be even continuous for
any f ∈C0([0,1]× [0,T ];Rn) [32].

With respect to the scalar case, Fig. 5.3 illustrates two approximations of the solution to
the rolling contact problem described by Eqs. (2.12) and (5.3), obtained using Heun’s second
order method (RK2 schemes with λ = 1), with ρ ′ = 0.2 and different polynomial degrees k = 1
and 2 (dashed and dash-dotted lines, respectively). The corresponding closed-form expression
derived according to [32] is also reported (solid line). Both the complete discrete DGMs used to
generate Fig. 5.3 employed 5 mesh elements (h = 0.2), already yielding a satisfactory agreement
with the exact solution. The numerical simulation required a total time of 0.79 s on a personal
computer.

The error convergence is illustrated instead in Fig. 5.4 for both polynomial degrees k = 1
and 2. In particular, it is worth observing that, since the IC only satisfies the zeroth-order
compatibility condition, Theorem 2.2.2 yields C0([0,T ];H1((0,1);Rn))-regularity, and therefore
the error converges at a slower rate than that predicted by Theorem 4.2.2. More specifically, both
the RK2 schemes are characterised by O(h1/2) accuracy, independently of the value assumed by
the matrix of coefficients C(t).

A time-varying transport velocity appears when oscillating normal load and tangential forces
are considered. Concerning the scalar case, typical expressions for the time-dependent transport
velocity a(x, t), matrix C(t) and forcing term f (x, t) read according to Eqs. (5.4), with ϕ(t) = 0
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(a) Convergence of the total error (polynomial degree k = 1).
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(b) Convergence of the total error (polynomial degree k = 2).

Figure 5.4: Convergence of the total error for different polynomial degrees k = 1 and 2 for the
IBVP described by Eqs. (2.12) and (5.3).
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Figure 5.5: DGM approximations to the rolling contact problem described by Eqs. (2.12) and
(5.3), with time varying-data according to Eqs. (5.6). Solid line: RK2 with polynomial degree
k = 1 and 10 mesh elements; dashed line: RK2 with polynomial degree k = 2 and 10 mesh
elements. Model parameters: α0 = 0.075, αI = 0.1 ·α0, M = 4.44, σ0 = 0.7, σI = 0.1 ·σ0,
ϕ = 0, ω = 100. Total simulation time T = 2(α0 +αI).

and

α(t) = α0 +αI sin(ωt), (5.6a)
σ(t) = σ0 +σI sin(ωt), (5.6b)

where both signals are characterised by the same frequency ω .
In this case, a closed-form solution is unfortunately not available, but it is still worth

comparing the approximations obtained by employing DGMs with different polynomial degrees.
Figure 5.5 illustrates the numerical solution obtained using first and second-order polynomial
functions in conjunction with Heun’s second order method in time. In both cases, the plotted
solutions refer to a mesh with 10 elements, with ρ ′ = 0.2 in Eq. (4.12). It may be observed
that the trend predicted by the DGM with k = 2 is much smoother than that yielded by the
lower-order polynomial degree. The total simulation time amounted to 14.92 and 25.46 s for
k = 1 and 2, respectively. In this case, the heavier computational cost should be ascribed to the
more stringent 2-CFL condition in Eq. (4.12) than the 4/3-one invoked previously concerning
the problem with constant transport velocity.

For the IBVP described by Eqs. (2.12) and (5.3), the error convergence is illustrated in Fig.
5.6 for the usual polynomial degrees k = 1 and 2, respectively. As observed previously, the low
regularity of the exact solution does not fulfil the criteria required by Theorem 4.2.2, and hence
the rate of convergence is not optimal. In fact, the accuracy is approximately in the order of
O(h1/2). Concerning the problem under investigation, the simulation time was also prohibitive,
amounting at more than 420 s for the smallest meshsize h = 0.033 in combination with the
2-CFL condition of Eq. (4.12).

LuGre-brush models on a time-varying domain

After opportunely performing a change of variables [33], the LuGre-brush models with a spatially
constant pressure distribution on a time-varying domain may be recast in the form of Eqs. (2.12)
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Figure 5.6: Convergence of the total error for different polynomial degrees k = 1 and 2 for the
rolling contact problem described by Eqs. (2.12) and (5.3), with time varying-data according to
Eqs. (5.6).

with u(x, t) ∈ R2, a(x, t) and f (x, t) reading as in Eqs. (5.3a) and (5.3c), respectively, and

C(t)≜
(

1− α̇(t)
)(

I2 +2α(t)M1M2 p(t)
)−1

M1M2 p(t), (5.7a)

B̃(t)≜−β (t)M1, (5.7b)

K(x, t)≡ K(t)≜ 2α(t)
(

1− α̇(t)
)(

I2 +2α(t)M1M2 p(t)
)−1

M1M2

(
β (t)M1 p(t)− ∂ p(t)

∂ t

)
,

(5.7c)

where α(t) and α̇(t) satisfy the same assumptions as previously, β ∈ C1([0,T ];R≥0), p ∈
C1([0,T ]; [pmin, pmax]), with pmin > 0, and M1, M2 ∈ GL2(R) are positive definite diagonal
matrices [33].

Again, if α̇(t) = 0 for all t ∈ [0,T ], Assumption 2.2.2 is identically verified. When α̇(t) ̸= 0,
the analogous condition of Eq. (5.4) which satisfies Assumption 2.2.2 reads

Σ(t)≜ I2 −
(

1− α̇(t)
)∫ 1

0

2α(t)
1+(1−2x)α̇(t)

dx
(

I2 +2α(t)M1M2 p(t)
)−1

M1M2 p(t)

= I2 −
(

1− α̇(t)
) tanh−1

(
α̇(t)

)
α̇(t)

(
I2 +2α(t)M1M2 p(t)

)−1
2α(t)M1M2 p(t).

(5.8)

Clearly, Σ ∈C1([0,T ];GL2(R)) if the following criterion is fulfilled:

(1− α̇min)
tanh−1(α̇min)

α̇min

(
1+2αmaxλmax(M1M2)pmax

)−1
2αmaxλmax(M1M2)pmax < 1, (5.9)

where this time λmax(M1M2) denotes the largest eigenvalue of M1M2. In the context of tyre
dynamics, and limited to the case α̇(t) = 0 and C(t) = 0 for all t ∈ [0,T ], the LuGre-brush
models were derived in [17–20] and studied extensively also in [21–23]. The first formulation
accounting for the presence of boundary terms has recently appeared in [32]. According to such
a model, u(x, t) ∈ R2 is interpreted either as a tangential deformation or as an internal frictional
variable.
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The IBVP described by Eqs. (2.12), (5.3a), (5.3c), and (5.7) may be studied within similar
techniques as in Sect. 5.2.1, and are not dealt with explicitly in this thesis.

5.2.2 System in two space dimensions
The systems in two space dimensions considered in this thesis are those governing the equations
of the brush and LuGre-brush models on fixed domains.

In particular, when accounting for large spin slips, both formulations are in the form of Eqs.
(2.44), with u(x, t) ∈ R2, Ω ⊂ R2, and

a(x, t)≡ a(x) =

[
−ε1 + γx2
ε2 − γx1

]
, (5.10a)

B(t)≡ B =

[
−κ1 −ψ

ψ −κ2

]
, (5.10b)

f (x, t)≡ f (x) = σ +

[
−ϕx2
ϕx1

]
, (5.10c)

where κ1 = κ2 = 0 identically for the standard brush model and κ1, κ2 ≥ 0 for the LuGre-
brush models. For B(t) constant, or commuting with its integral in the time-varying case,
the corresponding evolution operator introduced in Sect. 2.2.2 reads evidently UB(t, t̃) =
exp(

∫ t
t̃ B(t ′)dt ′). Concerning the standard brush models, the matrix B(t) does not only commute

even in the time-varying case, but it is also skew-symmetric, i.e., B(t)∈ Skew2(R), and therefore
the evolution operator is unitary (κ1 = κ2 = 0 implies more specifically UB(t, t̃) ∈ SO2(R)).
The problem may, in principle, be solved analytically using the method of the characteristic
lines even when B = B(t) and f (x) = f (x, t) are time-varying. This may be accomplished either
directly or by converting the original IBVP (2.44) into the equivalent one (2.49). Analytical
solutions are reported, for example, in [14, 15, 24] concerning rectangular, circular, and elliptical
domains.

The numerical treatment of the two-dimensional problem is not discussed explicitly in this
thesis, whereas a summary of salient results may be found again in [39, 40] for exact solutions
enjoying sufficiently smooth regularity.



Chapter 6

Conclusions

The present thesis addressed the problem of recovering numerical solutions to linear hyperbolic
IBVPs encountered in rolling contact mechanics. All the equations considered in this work
assumed a brush-like representation for the friction model, as customary in vehicle dynamics and
automotive applications. Given the peculiar structure of the hyperbolic PDEs under investigation,
which included integral and boundary terms in the one-dimensional case, the first part of the
thesis was dedicated to establishing the well-posedness of the corresponding IBVPs. Existence
and uniqueness were proved for the continuous problem within the mathematical framework
provided by the semigroup theory. This allowed, in most cases, to derive strict solutions enjoying
sufficient regularity properties to satisfy the assumptions required for the subsequent numerical
analyses. With respect to problems involving several space dimensions, a classic result by
Bardos [50] was conveniently recalled which applies to the governing equations of spinning and
rolling bodies. In this context, it is also worth emphasising that, limited to the one-dimensional
problems, the results advocated in Chap. 2 concerning the well-posedness of the considered
equations represent already a novelty in the context of the mathematical analysis of rolling
contact models.

The second part of the work was then devoted to the development of numerical schemes
to approximate the exact solutions of the rolling contact problems described in Chap. 2. In
particular, this was accomplished by combining discontinuous Galerkin finite element methods
(DGMs) with explicit Runge-Kutta (RK) algorithms of first and second-order. Whilst the
semi-discrete problem and the discrete operator were introduced and analysed in Chap. 3, the
complete discrete formulation was fully developed in Chap. 4, where the two main results
were also asserted regarding the convergence of the proposed schemes. More specifically,
starting with the analyses initiated in [39, 40], analogous convergence results were established
in the case of time-independent continuous and discrete operators (A(t),D) and (Ah(t),Vh⋆)
when accounting for the presence of integral and boundary terms. In particular, under the
assumption of sufficiently smooth exact solutions and owing to a refined 4/3-CFL condition,
accuracy in the order of O(h4/3 + h1/2) and O(h8/3 + hk+1/2) was proved respectively for
the finite-volume approximation in combination with RK1 algorithms, and for the DGMs in
conjunction with RK2 schemes. The more involved case of time-dependent operators (A(t),D)
and (Ah(t),Vh⋆) yielded similar results in terms of convergence rate, but required instead a
stricter 2-CFL condition to hold. Applications to IBVPs typically encountered in the study of
rolling contact phenomena were discussed extensively in Chap. 5, with particular emphasis on
the one-dimensional problems that account for the presence of boundary and integral terms. The
developed algorithms showed an overall promising agreement with the exact solution derived in
[32] for the case of constant transport velocity, requiring also relatively small simulation times.

71
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On the other hand, the 2-CFL condition needed to ensure convergence in the time-dependent
case seems to pose heavy limitations concerning real-time applications.

Future research efforts may be directed to the analysis of higher-order RK schemes, which
are already available in virtual environments like MATLAB/Simulink®, and possibly able to
overcome the drawbacks connected with too stringent CFL conditions. Moreover, different
applications from those considered in this thesis could be explored in forthcoming studies.
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